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Abstract

Poly(butylene succinate) (PBSU) is a biodegradable and biocompatible synthetic aliphat-

ic polyester, which has been used extensively in packaging, catering and agriculture, and

more recently in drug delivery and bone and cartilage repair. PBSU-based mats created

by electrospinning show promise as wound dressing materials because of their good

mechanical properties, high surface area-to-volume ratio and increased levels of poros-

ity. In this work, we present the creation of antimicrobial PBSU fibrous mats through

the incorporation of natural food grade agents via blend electrospinning. Three types of

edible gums (namely arabic, karaya and tragacanth), two essential oils (coriander and

lavender), and one free fatty acid (linoleic acid) were added to PBSU containing a chain

extender and their effect on six clinically relevant pathogens was evaluated. Mats con-

taining essential oils at the highest concentration studied (7% w/v) showed some

antimicrobial behaviour against S. aureus, E. hirae and P. aeruginosa, whereas the incor-

poration of linoleic acid at both concentrations tested (3% and 5% w/v) gave a strong

reaction against S. pyogenes. Gum arabic was the only gum that had a considerable

impact on S. aureus. Furthermore, the three gums enhanced the mechanical properties
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of the polymer mats and brought them closer to those of the human skin, whilst all

agents maintained the high biocompatibility of the PBSU mats when contacted with

mouse fibroblasts. This work, for the first time, shows the great promise of PBSU

blended fibres as a skin substitute and paves the way towards bioactive and cost effec-

tive wound dressings from renewable materials.
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Introduction

Poly(butylene succinate) (PBSU) is a synthetic aliphatic polyester, which can be

produced from biomass-based raw materials, as well as the traditional petro-

chemical route. Since its commercial introduction in 1993, PBSU has gained

popularity in various areas, including packaging, catering and agriculture [1–3].

More recently, PBSU has found application in the biomedical field, particularly

in tissue engineering and drug delivery [4–6]. Although not as widely researched

as other aliphatic polyesters, e.g. poly(lactic acid) (PLA), poly(glycolic acid)

(PGL) and poly(e-caprolactone) (PCL) [7–12], it is considered a very promising

biomaterial candidate, because in addition to its biodegradability and biocom-

patibility, it can be easily tailored to suit different applications [4]. PBSU

copolymer-based nanoparticles have been used as drug delivery vehicles, whereas

various scaffold configurations have been employed for bone and cartilage repair

[13,14], as well as in wound healing [15]. A comparison of some aliphatic poly-

esters used in wound dressing and other biomedical applications can be found in

Table S1.
Although there are various methods available for the production of nano- and

micro-fibres [16], electrospinning is one of the most favoured techniques for the

creation of tissue engineered skin scaffolds [17,18]. It can be cost-effective, scalable,

fast, ‘green’ (depending on the processing solvent(s) employed), and can produce a

wide variety of materials with tuneable properties, compositions, shapes and

dimensions using a large array of polymers (natural and synthetic) [7,17]. The

generated nanofibrous constructs can have controllable porosity, and, with their

high surface area-to-volume ratio, can closely resemble the architecture of the

natural extracellular matrix (ECM). These properties allow for cell proliferation,

moisture retention, haemostasis and removal of exudates [18]. The ‘ideal’ skin

dressing, however, should also have mechanical properties which resemble those

of the human skin, to ensure patient comfort and allow for its easy handling and

application [19,20]. PBSU constructs suffer from poor mechanical properties, and

low biodegradation rate due to the polymer’s high propensity to crystallise [4,5].
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Although co-polymerisation with different monomers has been explored to allevi-

ate these problems [21–23], Fabbri and co-workers [4] reported a reduction in

strength of their synthesised polymers. The presence of small amounts of diisocya-

nates, typically diisocyanahexane (DCH), as chain extenders can, however, reduce

brittleness and increase the elongation at break up to values comparable to those

of polyolefins [4,5].
Current research in wound management aims to create ‘smart’ or ‘bioactive’

materials through the incorporation of therapeutic and/or antimicrobial agents,

in order to fulfil multiple parts of the wound healing process and ultimately

produce personalised bandages for different types of wounds and surfaces

[17,24]. These agents include, but are not limited to, antibiotics, peptides, nano-

particles (e.g. iron oxide, titanium dioxide, silver, etc.) and natural substances

(e.g. curcumin, henna, chitosan, etc.) and the reader is referred to some extensive

reviews already published on the subject [10,25–27]. In this work, extended PBSU

(PBSU-DCH) has been electrospun into fibrous mats suitable for skin wound

regeneration for the first time. Through blend electrospinning, natural substances

in the form of edible gums (arabic, karaya and tragacanth), essential oils (cori-

ander and lavender) and a free fatty acid (linoleic acid) have been incorporated

into the PBSU-DCH fabrics. All of these natural additives have been shown to

possess antimicrobial effects against a broad spectrum of Gram positive and

Gram negative bacteria [28–31]. Furthermore, and compared to other antimicro-

bial agents, are easy to process, inexpensive, abundant and pose no risk of

antimicrobial resistance [25,32] The biocompatibility, antimicrobial performance

and handling properties of the resulting constructs have been tested to evaluate

our novel fabrics for their potential use in the treatment of burn and chronic

wounds.

Materials and methods

Materials

Poly(butylene succinate) extended with 1,6-diisocyanatohexane (PBSU-DCH),

gum arabic, gum karaya, gum tragacanth, linoleic acid, coriander oil, lavender

oil, Luria Bertani (LB), Mueller-Hinton agar medium, Dulbecco’s Modified

Eagle’s Medium (DMEM), Fetal Bovine Serum (FBS, c-irradiated, sterile filtered),
trypsin (0.25%)-EDTA and Trypan Blue, were purchased from Sigma-Aldrich Ltd

(Gillingham, UK). Chloroform, dichloromethane, methanol and ethanol were

acquired from Fisher Scientific (Loughborough, UK). 3T3-Swiss albino

(ATCCVR CCL-92TM) mouse fibroblasts were obtained from the American Type

Culture Collection (Manassas, VA, USA). Staphylococcus aureus,Methicillin resis-

tant Staphylococcus aureus (MRSA), Escherichia coli, Pseudomonas aeruginosa,

Enterococcus hirae and Streptococcus pyogenes, were isolated and classified at

Aston University (Birmingham, UK).
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Preparation of antimicrobial PBSU-DCH mats

Prior to incorporating the antimicrobial agents, a series of optimisation experi-

ments was carried out to determine the best combination of polymer concentra-

tion, solvent mixture and electrospinning conditions. Samples of PBSU-DCH

solutions (final concentrations of 12% and 14% w/w) were transferred to a

5mL standard syringe fitted with a 20G blunt stainless steel needle. High voltage

(10, 15 and 20 kV) was applied (Genvolt, Bridgnorth, UK) and the fibres were

collected on a grounded stainless steel plate covered with aluminium foil. Three

different flow rates (1, 1.5 and 2mL h�1) and tip to collector distances (TCD; 10,

15 and 20 cm) were investigated in order to identify optimum preparation condi-

tions. The ambient temperature was �20�C and RH30%. The solvent mixtures

tested were chloroform: methanol, chloroform: ethanol and dichloromethane:

methanol, at 90:10, 80:20 and 70:30 solvent ratios.
Six natural antimicrobial agents were incorporated into the PBSU-DCH fibres

during the electrospinning process, namely gum arabic, gum karaya, gum traga-

canth, coriander oil, lavender oil and linoleic acid. For the edible gums (arabic,

karaya and tragacanth), 6 g were dissolved in 60mL of methanol (under continu-

ous stirring for 16 h at 40�C), filtered to remove any residual solids and then placed

in a fume hood until most of the methanol was evaporated, leaving 4mL of con-

centrated gum solutions. Each solution was subsequently mixed with chloroform

(90:10 chloroform: gum solution) and then used to dissolve PBSU-DCH (14% w/

w) prior to electrospinning. In the case of linoleic acid and essential oils (coriander

and lavender), they were added directly to the PBSU-DCH solution (14% w/w in

90:10 chloroform: methanol) at various concentrations (3, 5 and 7% w/v), stirred

at 40�C until dissolved completely and then used for electrospinning. Following

optimisation experiments, the electrospinning conditions for all antimicrobial

fibrous mats were: 15 kV voltage; 1mL h�1 flowrate; 20 cm tip to collector dis-

tance. The fibrous mats were subsequently placed in a convection oven at 60�C for

20-30min (SciQuip Oven-80 HT, Newtown, UK) to evaporate the solvent residues,

before being transferred to a desiccator (NalgeneTM, ThermoFisher Scientific,

Loughborough, UK) to cool down. Controls, in the form of PBSU-DCH films

containing antimicrobial agents, were prepared by casting the final mixtures into

glass Petri dishes and drying at RT. The fibrous mats and films were cut into

squares (8 x 8 mm2), sterilized by UV illumination (365 nm, 15 Watts) using a

Chromato-vue C71 light box and UVX radiometer (UV-P Inc., Upland, CA,

USA) for 2 h and then placed in sterile closed containers prior to the antimicrobial

and cytotoxicity assays.

Characterisation of fibrous mats

Fourier transform infrared (FTIR) spectroscopy was performed with a

PerkinElmer FrontierTM FT-IR spectrometer (PerkinElmer Inc., Waltham, MA,

USA) over the range of 4000–600 cm�1 with a resolution of 4 cm�1 within 16 scans.
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The mechanical properties of the antimicrobial PBSU-DCH mats (8mm gauge

length; 0.13mm average thickness; n¼ 5) were measured using a Hounsfield 10K

Tensometer (Tool and Gauge Co, Birmingham, UK) at room temperature with a

stress range (50MPa), an extension range (300%) and a test speed of 20mm min�1

with samples taken to failure. PBSU-DCH fibrous mats without antimicrobial

agents were used as controls.
The morphology of the PBSU-DCH mats, as well as those containing gum

arabic and linoleic acid 3% (w/v), was examined by a Philips XL-30 FEG

Environmental Scanning Electron Microscope (FEI Company, Hillsboro, OR,

USA) operated at 10.0 kV. Prior to imaging, the fibrous mats were sputter

coated in gold or platinum. Fibre diameters were measured using ImageJ software

(National Institutes of Health, Bethesda, MD, USA) and reported as an average

value of �100 independent measurements. ImageJ was also used to determine the

average porosity of the mats containing gum arabic and linoleic acid (i.e. the mats

with the best antimicrobial behaviour). Grayscale SEM images (see Figure S1) of

different magnifications (1500�, 5000� and 10,000�) were analysed and the aver-

age value was calculated from 4 measurements [24,33].

Antimicrobial activity assay

The agar disc diffusion method was employed for the determination of the anti-

microbial properties of the PBSU-DCH fibrous mats and films. First, the bacterial

isolates (S. aureus, MRSA, E. coli, S. pyogenes, P. aeruginosa, and E. hirae) were

transferred from frozen glycerol stock solutions to Trypticase Soy Agar (TSA)

plates (supplemented with 5% v/v horse blood for S. pyogenes) and incubated

for 24 h at 37�C in aerobic conditions. A single colony was then transferred to

5mL LB broth medium and incubated for 24 h at 37�C. Mueller-Hinton agar

plates were inoculated with the bacterial suspension (�1 x108 CFU mL�1) and

left to dry for 5min before adding the sterile mats. The plates were incubated for

24 h at 37�C in aerobic conditions, before measuring the zone of inhibition around

each sample.

Cytotoxicity assay

3T3-Swiss albino mouse fibroblasts were cultured in Dulbecco’s Modified Eagle’s

Medium supplemented with 10% FBS, up to 50% confluence in a Heracell 150i

CO2 incubator (Thermo Scientific, Fisher Scientific, Waltham, MA, USA) in a

controlled environment (5% CO2, 37
�C) prior to initiating the cytotoxicity assay.

The cytotoxic effect of the antimicrobial fibrous mats was assessed using the

‘direct contact’ method, as well as the ‘extract’ (or ‘indirect’) test. The former

method evaluates the effects of the physical interaction between the support and

the cells, whereas the latter looks at the influence of potential leachable compo-

nents. Cells cultured in the absence of fibrous mats were used as a negative control,

and addition of 70% (v/v) ethanol acted as a positive cytotoxic response.
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Cells were seeded in sterile 24-well plates at a concentration of 6� 105 cells mL�1

and incubated at 37�C and 5% CO2 for 24 h until a cell monolayer was formed.

For the direct contact test, and following monolayer formation, the medium was
discarded and replaced with fresh medium (2mL), and the fibrous mats were

placed on top of the cells and left to incubate for 24 h. For the indirect test, fibrous
mats were added to sterile 24-well plates containing 2mL culture medium and left

for 24 h. This liquid was then used to replace the growth medium over the cell
monolayer, followed by a further 24 h incubation. After incubation, 1mL of
trypsin-EDTA was added in each well to aid cell detachment. Trypsin was then

inactivated by the addition of 2mL of fresh culture media. The cell suspension was
centrifuged at 220 g for 5min, the supernatant discarded and the pellet re-

suspended in 1mL of culture medium. Cell viability was checked with Trypan
blue exclusion assay and cells were counted using a haemocytometer and an

Olympus CK2 Inverted Microscope (Olympus Corporation, Tokyo, Japan).

Results and discussion

Following an initial screening experiment, the optimum combination of solvent
and electrospinning conditions for the production of bead-free PBSU-DCH mats

(in the absence of antimicrobial agents) was identified (see Table 1 and Figure 1),
and subsequently used for the creation of the antimicrobial fibres (see Figure 2).

From Table 1, it can be seen that PBSU-DCH dissolved in 90:10 chloroform:
methanol at a 14% (w/w) concentration, was easy to electrospin and gave consis-

tently bead-free fibres [34,35], whereas lowering the concentration to 12% (w/w),
resulted in a less reliable process. It was also noted that the other two solvent

systems tested led to either bead formation or non-spinnable solutions due to
solidification of the sample prior to electrospinning.

Additional investigation into the effect of flow rate, voltage and tip to collector
distance on the fibre diameter showed that increasing the flowrate and/or reducing

the TCD has a negative impact on fibre homogeneity (Figure 1) [36,37]. Therefore,
the optimum conditions for this study were revealed as: 1mL h�1 flow rate; 20 cm

TCD; 15 kV; chloroform: methanol (90:10) as solvent; PBSU-DCH concentration
14% (w/w). Further process optimisation involving the use of, for example, a

greener solvent system is currently under way in our laboratories.

Chemical composition of antimicrobial PBSU-DCH fibrous mats

FTIR spectroscopy has been used to elucidate the presence of the functional

groups in the mats, and to reveal the effect of the preparation procedures and
electrospinning on the chemical functionality of the antimicrobial agents.

FTIR spectra showed clear differences in the concentration of expected func-
tional groups between the PBSU-DCH control and the mats containing linoleic

acid, gum arabic and essential oils (7% w/v) (see Figure 3), whereas these differ-
ences are far less prominent in the remaining mats (see Figure S3). The differences
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arise from the active components present in the natural antimicrobials (see Figures

S4-S9).
FTIR spectra for the mats containing edible gums revealed an increase in the

absorption bands. Most notably, increases were observed between 2900-3000 cm�1

related to C-H stretching (methylene group); at 1720 cm�1 due to C¼O stretching

(carbonyl, acetyl and carboxylic groups); between 1300-1500 cm�1 due to C-H

bending (methyl, methylene and aldehyde groups), O-H bending (carboxylic

acids) and COO asymmetric stretching (carboxylate); between 1160-1210 cm�1

Table 1. Optimization of the PBSU-DCH electrospinning parameters.

Solvent ratio

Polymer

(% w/w)

Flow rate

(mL h�1)

Voltage

(kV) Observations

Chloroform (CF): Ethanol (EtOH)

90:10 12 1 10 þþ
15 þ
20 þ þ

80:20 12 – – Solidified after preparation

70:30 12 – – Solidified after preparation

90:10 14 1 10 þ
15 þ þ
20 þ

80:20 14 – – Solidified after preparation

70:30 14 – – Solidified after preparation

Chloroform (CF): Methanol (MeOH)

90:10 12 1 10 þþ
15 þ
20 ��� No beads

80:20 12 – – Solidified after preparation

70:30 12 – – Solidified after preparation

90:10 14 1 10 ��� No beads

15 ��� No beads

20 ��� No beads

80:20 14 – – Solidified after preparation

70:30 14 – – Solidified after preparation

Dichloromethane (DCM): Methanol (MeOH)

90:10 12 1 10 þ
15 þ
20 þ

0.75 10 þ
15 þ
20 þ

80:20 12 – – Solidified after preparation

70:30 12 – – Solidified after preparation

þ refers to a small number of beads present in the sample (see Figure S2-B). þþ refers to a large number of

beads present in the sample (see Figure S2-C).
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due to C-O stretching (ester); at 1050 cm�1 is a complex bands due to C-O stretch-
ing (starch content) and C-O-C asymmetric bridge stretching; and below 900 cm�1

due to the vibration of the pyranose ring (Figure S8; [38–40]).
Linoleic acid-based mats (3% and 5% w/v) showed the most significant changes

among the antimicrobial mats when compared to the control. Similar differences in
the FTIR data were observed to those of the edible gums, in addition to a new
peak at 800 cm�1 and an increase in the bands between 600-100 cm�1 due to C¼C
bending [41].

Moving to essential oils, the main components of their chemical structure
include linalool, linalyl acetate, aliphatic aldehydes and aromatic compounds.

Figure 1. Scanning electron microscopy images and corresponding fibre diameter distributions
for electrospun PBSU-DCH mats (from chloroform: methanol 90:10) using different tip-to-col-
lector distance (cm), flow rate (mL h�1), and voltage (kV). (a) 20 cm, 1mL h�1, 10 kV; (b) 15 cm,
1mL h�1, 10 kV; (c) 10 cm, 1mL h�1, 10 kV; (d) 20 cm, 1.5mL h�1, 10 kV; (e) 20 cm, 2mL h�1,
10 kV; (f) 20 cm, 1mL h�1, 15 kV.
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Figure 2. Schematic of the preparation process of PBSU-DCH antimicrobial fibrous materials.

Figure 3. FTIR spectra for PBSU-DCH mat containing (a) linoleic acid (5% w/v), (b) gum arabic,
(c) coriander oil (7% w/v), (d) lavender oil (7% w/v) (red line), compared to the control PBSU-
DCH mat (black line).

Aliko et al. 9



(see FiguresS6 and S7). Accordingly, the following differences in their FTIR spec-
tra were observed at: 2900–3000 cm�1 due to C-H stretching (alkene); 1700–
1800 cm�1 due to aromatic compounds; 1300–1400 cm�1 due to O-H bending
(phenol groups); 1160–1300 cm�1 due to C-O stretching (aliphatic and aromatic
esters) and 800–1000 cm�1 due to C¼C bending (Figure S9; [42,43]). These
changes increased as the oil concentration was increased in the fibrous mats.

Aside from the additional bands arising from the presence of the functional
groups of the edible gums and essential oils in the FTIR spectra, it is notable that
the broad band in the region of 3000-3700 cm�1 relating to O-H stretching
(observed in the FTIR spectra of the antimicrobial agents alone; see Figures S8
and S9) is not present in any of the samples. This is attributed to esterification
occurring between the carboxylic acid functionality in the antimicrobial agents and
the methanol used in the preparation of the PBSU-DCH spinning solution. This
was further confirmed by the increase in the absorption bands at 1180 cm�1 due to
C-O stretching (aliphatic and aromatic esters).

Mechanical properties

An important requirement for the ‘ideal’ wound dressing is possessing mechanical
properties that are similar to those of the human skin [19,20]. The dressing can
then aid effective wound healing, but also be easily handled and manipulated.

Figure 4 shows the mechanical properties of the PBSU-DCH mats with and
without antimicrobial agents, and representative stress-strain curves can be found
in Figures S10 and S11. Typical Young’s modulus values reported in the literature
for normal human skin are 4.6-20MPa, based on tensile tests at quasistatic speeds
(6–54mm min�1) and are highly dependent on the body part, age, skin colour and

Figure 4. Mechanical properties of the antimicrobial PBSU-DCH fibrous mats (� 1 standard
deviation). Grey bars – Young’s modulus; Black bars – Elongation at break; White bars – Tensile
strength. Key: C¼Control (PBSU-DCH mat); GA¼ gum arabic; GK¼ gum karaya; GT¼ gum
tragacanth; CO¼ coriander oil; LO¼ lavender oil; LA¼ linoleic acid.
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genetic heritage [44,45]. The Young’s moduli for all of our materials (measured at
20mm min�1) were between 1.2 and 3.11MPa, which indicates that they are less
stiff than human skin, with less resistance to deformation.

The presence of the gums increased the strength of the PBSU-DCH mats (stress
at failure of 3.3-7.8MPa for all gums, compared to 0.2MPa for the PBSU-DCH
control), and made them more resistant to failure (as indicated by the increase in
ultimate tensile strength from 2.97MPa for the control, to 4.18, 4.4 and 6.07MPa
for the gum arabic, gum karaya and gum tragacanth, respectively). Incorporation
of the gums also led to a considerable reduction in their elongation at break,
thereby resulting in less elastic materials, whereas gum tragacanth enhanced the
stiffness of the mat, measuring the highest Young’s modulus amongst all samples
tested, producing a fabric with mechanical properties much closer to the most
elastic types of human skin. Arabic, karaya and tragacanth gums are well
known thickening agents in the food industry and have been used extensively to
modify the rheology of different foods [46]. The addition of these highly branched
hydrocolloids (see Figure S4) therefore led to the strengthening of the mat struc-
ture, whilst simultaneously restricted their ability for plastic deformation due to
the enhanced non-specific entanglement of the disordered polymer chains [46,47].

The incorporation of the essential oils or free fatty acid did not appear to have a
major impact on the stiffness or hardness of the mats, but did affect their ductility.
In all but one case, the elongation at break was less than the PBSU-DCH mat
without additives. The coriander oil at 3% (w/v) concentration was the only
sample that showed a tendency to undergo larger plastic deformation before
breakage than the control, however it is not possible to draw definitive conclusions
without further investigations, due to the high standard deviation associated with
these measurements (see Figure 4).

Antibacterial activity of the fibrous mats against common skin pathogens

The effect of the natural antimicrobial components on pathogens commonly found
in wound infections, was evaluated by agar disc diffusion. The six different anti-
microbial mats (gum arabic, gum karaya, gum tragacanth, coriander oil, lavender
oil and linoleic acid) were tested against Gram positive S. aureus, MRSA, S.
pyogenes and E. hirae, and Gram negative E.coli and P. aeruginosa, and the results
are summarised in Table 2. The above bacteria were chosen because they are
routinely isolated from burn wounds. More specifically, Streptococcus,
Staphylococcus and Enterococci spp. colonise the wound very soon following
injury, whereas E. coli and Pseudomonas spp. are associated with secondary infec-
tions following hospitalisation [48,49].

The PBSU-DCH mats containing gum arabic and gum karaya showed a sig-
nificant antimicrobial effect against S. aureus and to a lesser extend MRSA, but
had no impact on S. pyogenes, E. hirae and P. aeruginosa. Gum arabic also inhib-
ited the growth of E. coli. Our results partially agree with other studies, which have
demonstrated activity of gum arabic and gum karaya extracts against some Gram
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positive and Gram negative bacteria [50–53]. At the same time, we observed no
effect in the presence of gum tragacanth for all bacteria species tested, which
contradicts what has been claimed by Padil et al. [28] and Ranjbar-Mohammadi
et al. [54]. Discrepancies between our results and others’ can be attributed to the
difference in the gums’ final composition, which is influenced by the country of
origin, plant age, plant part (e.g. leaves, bark, etc.) and process used to obtain the
extractants, i.e. the use of aqueous or organic solvents [55]. Although combina-
tions of edible tree gums with polymeric materials or metal/metal oxide nano-
particles have been used successfully for biomedical applications, including
wound dressings [28,54], their usefulness as antimicrobial agents hasn’t been
firmly established yet, which highlights the importance of additional investigations
such as our work.

The incorporation of coriander and lavender oils equipped the mats with very
similar antimicrobial characteristics, which can be attributed to the presence of
common compounds such as linalool, camphor, borneol and limonene (see
Table 3). The increase in essential oil concentration did not seem to have an
effect in the case of S. aureus, but there was an indication of improved antimicro-
bial properties against E. hirae. Furthermore, coriander essential oil failed to pro-
duce any antimicrobial effect against S. pyogenes, which is in agreement with Silva
and co-workers who found that most Gram-positive bacteria are less sensitive to
coriander essential oils than Gram-negative bacteria [58]. In contrast, lavender oil
is more potent against streptococci [59], as demonstrated by the 9mm inhibition
zone around S. pyogenes. Neither coriander nor lavender essential oils supressed
the growth of MRSA and E. coli, despite contrasting reports in the literature
[29,30,57,60]. One possible reason for this unexpected result could be the source
of the oils. Similar to the edible gums, the chemical composition of the essential
oils is highly dependent on the part of the plant they are extracted from (e.g. for

Table 2. Antimicrobial efficacy of PBSU-DCH fibrous mats against six clinically relevant patho-
gens, expressed as sizes of zone of inhibition (radii in mm) observed following direct application.

Pathogen

Zone of Inhibition (mm)

Control GA GK GT

CO LO LA

3% 5% 7% 3% 5% 7% 3% 5%

S. aureus – 20 15 – 10 10 10 10 10 10 10 10

MRSA – 9 9 – – – – – – – – –

S. pyogenes – – – – – – – – – 9 23 23

E. hirae – – – – – 10 10 – – 10 11 11

E. coli – 10 – – – – – – – – – –

P. aeruginosa – – – – – 10 10 – 10 10 – –

Control: PBSU-DCH without antimicrobial agent; GA: gum arabic, GK: gum karaya; GT: gum tragacanth;

CO: coriander oil; LO: lavender oil; LA: linoleic acid; MRSA: Methicillin resistant Staphylococcus aureus. All

values quoted have a margin of error of �0.5mm.
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coriander it can be the leaves, the immature plant (cilantro), or the seeds), and
varies enormously between the different geographical locations (see Table 3 and
associated references). This, combined with the fact that they are complex mixtures
of more than 300 compounds in some cases [61], makes it difficult to carry out
exact comparisons between reported data across the world.

The addition of linoleic acid to the PBSU-DCH fibrous mats exerted highly
potent activity against S. pyogenes (23mm), and moderate suppression of S. aureus
(10mm) and E. hirae (11mm). Medium and long chain polyunsaturated fatty acids
have been shown to be more active against Gram positive bacteria than Gram
negative bacteria and their antibacterial properties are influenced by their structure
and shape [62,63]. In general, it appears to be a direct correlation between the
number of double bonds and their isomerism (preferably cis) in the carbon chain of
an unsaturated fatty acid and its antibacterial efficacy, and therefore fatty acids,
such as c-linolenic, eicosapentaenoic and the linoleic used in this study (an 18-
carbon chain with two double bonds in cis configuration; see Figure S5), are more
potent compared to, for example, elaidic acid [31,62].

Nanoparticles are currently considered the most promising alternatives to anti-
biotics and have already entered the market within various sectors, such as health-
care, consumer goods, food and construction (e.g. Biomaster Antimicrobial
technology, Microban, etc.). Although most natural compounds are not as effec-
tive, they can elicit a considerable antimicrobial response, as we demonstrated in
our work, with the additional lack of potential toxicity frequently associated with
nanoparticle use [25,32].

Finally, and in order to investigate the influence of the morphology of the
fibrous mats on their efficacy in releasing the antimicrobial agents, antimicrobial
PBSU-DCH films were also tested with the six pathogenic bacteria, using the agar
disc diffusion method. None of the films showed antimicrobial behaviour towards
the pathogens. This is more probably due to the diffusion limitations associated
with the film configuration. Electrospun mats have an open structure and therefore

Table 3. Major chemical compounds of the essential oils of Lavandula angustifolia and Coriandrum
sativum L.[56,57].

Compound Lavandula angustifolia (flowers) Coriandrum sativum L. (seeds)

Linalool 23–57% 25–83

Limonene 0.2–3.9 0.5–4

Linalyl acetate 4–35 –

Camphor 2.8–11.8 0.9–11.2

Borneol 0.3–22.4 0.3–5.9

Terpinen-4-ol – 0.4–14

Geraniol – 1.2–4.6

Geranyl acetate – 2–8

a-Pinene 0.2 1.7–9.3

c-Terpinene 0.3 0.4–14
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higher porosity compared to films, which makes them ideal supports for wound

dressings and facile release of bioactive substances, such as anti-inflammatory and

antimicrobial agents [17].

Biocompatibility of the fibrous mats

The effect of the chain extended PBSU, as well as the toxic solvents (i.e. chloro-

form and methanol) employed in the electrospinning of PBSU-DCH on cell via-

bility was assessed, in order to confirm the biocompatibility of the fibrous mats

[5,14] (see Table S2). In addition, it has been shown that essential oils at high

concentrations can be cytotoxic, due to their lipophilic nature, which causes

damage to the plasma membrane, and therefore have been used to kill cancer

cells [64,65]. Indirect cytotoxicity tests, using the extraction media, following

24 h of contact with the scaffolds, showed 100% biocompatibility with mouse

fibroblasts in all cases. Direct cytotoxicity studies also confirmed the creation of

cell-friendly surfaces, resulting in 94-100% viable cells for the PBSU-DCH and

antimicrobial mats. These results are in agreement with the well documented bio-

compatibility of the edible gums [28], whereas the concentration of the

essential oils employed in this study, is far below the cytotoxic thresholds reported

elsewhere [66].

Effect of antimicrobial additives on PBSU-DCH fibre morphology

Surface topography, and in particular pore size, of tissue engineering scaffolds is a

very important factor in the promotion of cellular adherence, differentiation and

proliferation [67], and therefore the effect of the addition of gum arabic and lin-

oleic acid (the two compounds that gave the most promising antimicrobial

responses) on the PBSU-DCH fibre morphology was further investigated.
Incorporating gum arabic into the electrospun mats significantly reduced fibre

diameter and also led to better homogeneity (see Figures 1(f) and 5(a)). This was

an expected outcome, since gum arabic is a negatively charged gum [68] and its

presence in the mixture leads to increased charge on the surface of the droplet to

form Taylor cone and a decrease in fibre diameter [69]. In contrast, the linoleic

acid-containing PBSU-DCH fibres were less uniform compared to the control,

resulting in a significantly wider diameter range (see Figures 1(f) and 5(b)).
Similar results in terms of the effect of the incorporation of natural compounds

on polymer fibre morphology have been reported elsewhere. For example, through

the addition of cinnamon extract to PCL fibres, Ahmed and co-workers created

antifungal bandages comprising thinner and more homogeneous fibres compared

to ‘plain’ PCL [26]. It is worth noting however, that the increase in fibre diameter

for the mats containing linoleic acid was mirrored by enhanced porosity (32.6�
1.5% c.f. 21.7� 1.3% for those containing gum arabic), reaching values which

are closer to the open structures (>30%) suitable for wound healing

applications [15,24].
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Conclusions

Six different food grade antimicrobial agents were successfully incorporated into

PBSU-DCH mats using blend electrospinning. The addition of edible gums ren-

dered the mats mechanical properties, in terms of Young’s modulus and ultimate

tensile strength, closer to human skin but compromised their ductility. Of the

different food grade agents, linoleic acid and to a lesser extend gum arabic, dem-

onstrated the highest antimicrobial activity against three out of the six pathogens

tested, whereas gum tragacanth and low concentrations of the two essential oils

showed no effect. The gum arabic also improved the homogeneity of the fibres,

which in turn contributed towards the creation of stronger fibrous mats.

Furthermore, the presence of the additives didn’t compromise the biocompatibility

of the PBSU-DCH mats.

Figure 5. SEM & fibre diameters for fibrous mats created from: (A) PBSU-DCH with gum arabic;
(B) PBSU-DCH with 3% (w/v) linoleic acid. Electrospinning conditions: 1mL h�1 flow rate; 20 cm
TCD; 15 kV; chloroform: methanol (90:10 ratio) solvent; PBSU-DCH concentration 14% (w/w).

Aliko et al. 15



Based on our results, a combination of two or more of the natural agents tested

has the potential to fulfil the different requirements of the wound healing

process and therefore merits further investigation, as is the use of other fibre

configurations, such as core-sheath, to aid the controlled delivery of the active

components [70].
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