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Abstract—Nonlinearity compensation is considered as a key
enabler to increase channel transmission rates in the installed
optical communication systems. Recently, data-driven approaches
— motivated by modern machine learning techniques — have
been proposed for optical communications in place of traditional
model-based counterparts. In particular, the application of neural
networks (NN) allows improving the performance of complex
modern fiber-optic systems without relying on any a priori
knowledge of their specific parameters. In this work, we introduce
a novel design of complex-valued NN for optical systems and
examine its performance in standard single mode fiber (SSMF)
and large effective-area fiber (LEAF) links operating in relatively
high nonlinear regime. First, we present a methodology to design
a new type of NN based on the assumption that the channel model
is more accurate in the nonlinear regime. Second, we implement
a Bayesian optimizer to jointly adapt the size of the NN and its
number of input taps depending on the different fiber properties
and total length. Finally, the proposed NN is numerically and
experimentally validated showing an improvement of 1.7 dB in
the linear regime, 2.04 dB at the optimal optical power and
2.61 at the max available power on Q-factor when transmitting
a WDM 30x200G DP-16QAM signal over a 612 km SSMF
legacy link. The results highlight that the NN is able to mitigate
not only part of the nonlinear impairments caused by optical
fiber propagation but also imperfections resulting from using
low-cost legacy transceiver components, such as digital-to-analog
converter (DAC) and Mach-Zehnder modulator.

Index Terms—Neural network, nonlinear equalizer, channel
model, metropolitan links, Bayesian optimizer, coherent detec-
tion.

I. INTRODUCTION

ACHINE learning (ML) techniques have been recently

proposed as a promising tool to address various chal-
lenges in optical communications. In particular, neural network
(NN) based algorithms have demonstrated their potential to
mitigate nonlinear transmission impairments in optical com-
munication links [1-3]. The knowledge of physical effects,
and underlying mathematical models, can be used to build

This paper was supported by the EU Horizon 2020 program under the
Marie Skodowska-Curie grant agreements No.766115 (FONTE) and 813144
(REAL-NET).

Pedro J. Freire, Vladislav Neskornuik, Jaroslaw E. Prilepsky and Sergei K.
Turitsyn are with Aston Institute of Photonic Technologies, Aston University,
United Kingdom, p.freiredecarvalhosouza@aston.ac.uk.

Antonio Napoli and Bernhard Spinnler are with Infinera R&D, Sankt-
Martin-Str. 76, 81541, Munich, Germany, anapoli @infinera.com.

Nelson Costa is with Infinera Unipessoal, Lda, Rua da Garagem n°1, 2790-
078 Carnaxide, Portugal, ncosta@infinera.com.

Ginni Khanna was with TUM, Munich, Germany.

Emilio Riccardi is with Telecom Italia Mobile,
emilio.riccardi @telecomitalia.it

Manuscript received xxx 19, zzz; revised January 11, yyy.

Torino, Italy,

the respective NN’s architecture for specific transmission
systems to improve their performance. Importantly, those
techniques showed performance comparable to that achieved
by using conventional methods such as digital backpropagation
(DBP) [4]. On the other hand, some works proposed NN
to mitigate the fiber nonlinearity, taking advantage of the
large amount of symbols passing through the line that can
be used as a training data source. For the regression task, it is
possible to include the delay taps into the NN architecture to
account for the channel memory that reflects interaction with
the neighboring received symbols [5, 6]. For the classification
task, the ML-based techniques have been applied to determine
the decision boundaries in QAM modulation formats [6-8].
In this paper, a new design of a complex-valued artificial
NN - to be placed at the received (Rx) side — is proposed.
Our strategy was numerically tested with transmission over
6x80 km and 12x80 km of standard single mode fiber
(SSMF) and large effective area fiber (LEAF) links. The
selected fiber types are among the most commonly deployed
fibers in legacy optical networks [9]. Our numerical analysis
considers a dual polarization (DP) single channel. We selected
64 quadrature amplitude modulation (QAM) format for the
proof-of-principle analysis at a symbol rate of 32 GBd and
roll-off = 0.06 for pulse shaping realized with a root-raised-
cosine (RRC) filter. Here we report a Q-factor improvement,
after 6x80 km, of ~0.4 dB for SSMF and ~2.1 dB for LEAF.
In case of 12x80 km, the gain in Q-factor is ~0.4 dB for
SSMF and ~1.25 dB for LEAF.
The performance assessment of the proposed algorithm has
been carried out against conventional electronic dispersion
compensation and phase/amplitude normalization of the re-
ceived signal. In addition, when compared to the NN proposed
in [5, 10, 11] — with 2 dense layers and 192 neurons — an
improvement of ~0.4 dB (SSMF) and ~1.7 dB (LEAF) after
6 spans; and ~0.4 dB (SSMF) and ~1 dB (LEAF) after 12
spans, was obtained. Finally, we experimentally validated the
proposed technique by applying it to a 30x200G wavelength
division multiplexing (WDM) system, with each channel em-
ploying DP-16QAM signal, transmitted over a 612 km of
SSMF legacy link [12, 13]. In this scenario, the Q-factor
improvement of 1.7 dB in the linear regime, 2.04 dB at the
optimal optical power and 2.61 dB at the max available power
are demonstrated compared to the use of electronic dispersion
compensation combined with phase/amplitude normalization.
The remainder of the paper is organized as follows. In
Sec. II, we review the theoretical background of our chan-
nel model and introduce the NN design. Sec. III presents
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Fig. 1: The architecture of the proposed neural network.

the experimental setup and results, including the comparison
between the proposed NN and DBP. Sec. IV analyses the
complexity of the proposed NN compared to the standard DBP.
The last section concludes the paper.

II. NEURAL NETWORK DESIGN
A. The Channel Model

The averaged evolution of the slowly varying complex-
valued envelopes of the electric field in an optical fiber is
described by the pass-averaged Manakov equation [14]:

Qupyv(t,2)  jB2 umyv(t,2)
0z 2 ot?

.
= 55w, 2P+ v () sy (1), ()

where u /v (t, z) are the normalized optical fields of horizon-
tal (H) and vertical (V) polarization, respectively, [ is the
group velocity dispersion, ¥ = ye~*? is the effective averaged
nonlinearity coefficient, that includes the effective length scale
Legr = (1—e~ L) /o emerging due to averaging over periodic
loss and gain, - is the fiber nonlinear coefficient, L is the span
length and « is the fiber loss coefficient. In case S = 0, one
can show that the analytical solution of Eq. (1), at the end of
the transmission link, can be expressed for H-polarization in
terms of the transmitted zp, and received yp, soft symbols
as [15]:

TH, = YH, 6*8j/9’YLeffNS[‘ka \2+|yvk.|2], )
where IV is the number of spans.

We suggest the application of Eq. (2) to recover digitally
the transmitted symbols x; out of the received signal when
the chromatic dispersion (CD) was already compensated for.
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Fig. 2: Receiver setup
in the simulator.

For the Manakov equation (Eq. (1)), perturbative methods de-
scribing the field evolution in the highly nonlinear regime [16—
19] have been developed under some limiting assumptions.
Conversely, we suggest adding trainable general nonlinearity
functions to the memory-less solution provided by Eq. (2):
additions ©1, 02 to the exponential power, responsible for
phase distortion, and additions =, =5, responsible for ampli-
tude distortion. The additional degrees of freedom, introduced
by these functions, will let the equalizer learn the features of
the system behavior, which are not covered by the original
Eq. (2). Particularly, we introduce the following model for the
dual-polarization case:

— 2_ 2 —

T, = Y el-eMm el ro] g )
—c5|Ya, |2—c|Yv, |2 -

Ty, = C43Vk€[ eslYin [P=colY [* +62] 4 =, 4)

where fE/Vk JH, is the k-th recovered symbol in each polariza-
tion, Y(v, ), is the vector containing the sequence of received
symbols [y(V/H)Ic—N7 s Y(V/H) s y(V/H)k+N]’ 2N + 1, is
the size of the memory in the model, ¢, with Kk =1,...,;5 are
complex vectors of size 2N + 1 each, and ©4,5(Yy,, Yv;,)
and = /5(Yn,, Yy, ) are the two adaptive nonlinear functions
mentioned above, which depend on the vectors Yy, and Yy, .
We would like to stress that this model is used for the design
of the NN, and not for solving the propagation equations.
The point-wise multiplication of the sequence of received
symbols Y(y,m), and the weight coefficients c define the
memory introduced into the nonlinear distortion Eq. (2) by CD
and transceiver impairments. Furthermore, nonlinear functions
©1/2 and =y, reflect the residual nonlinear distortion intro-
duced by the optical fiber and the transmitter components. In
other words, the proposed NN is designed to compensate at
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the receiver the deterministic intra-channel nonlinear distortion
originating in both optical fiber and transceiver equipment.

The model hyper-parameters depend on the total fiber length
and on the relationship between [ and . Consequently,
during the numerical study, we considered links based on
two different types of optical fibers: large effective area
fiber (LEAF) and standard single-mode fiber (SSMF). The
considered link lengths of 6x80km (480 km) and 12x80km
(960 km). The characteristics of the SSMF and LEAF are
reported in Table I.

TABLE I: Considered fiber parameters.

[ Fiber | o [dB/km] [ B2 [ps/(nm km)] | ~ [1/W km] |
SSMF 0.21 16.8 1.14
LEAF 0.225 4.2 1.3

To describe the scope of the proposed ML algorithm, it is
important to show qualitatively where strong nonlinear regime
starts in both fibers. The definition of the different regimes
can be carried out by taking into account the relationship
between chromatic dispersion (Lp) and Kerr nonlinearity
(L nrr) effective lengths, described as [15]:

T2 1

Lp=, Lyu=—,
P g MM T 4P

where Ty is the pulse length and P is the launch optical
power. Fig. 3 shows the dependency of those two lengths
on the launch power considering a symbol rate equal to 32
GBd. In the “hot” region, the nonlinearity is the dominant
signal distortion source whereas, when we are in the “cold”
region, the linear distortions are dominant. As expected, LEAF
has a stronger nonlinear dependence on the launch power
than SSMEF, resulting from its chromatic dispersion parameter
which is four times smaller than the one of SSMF.
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Fig. 3: Qualitative estimation of the relative strengths of
chromatic dispersion and Kerr nonlinearity [Eq. (5)] for LEAF
and SSMF at different power levels.

B. Neural Network Description

We propose to build the NN topology based on the loose
signal evolution model Egs. (3), (4). Contrary to the conven-

tional real-valued NN architectures [21], in our design we
implement complex-valued weights, activation functions, and
input symbols as suggested in [22, 23] to reflect the complex-
valued laws describing the signal propagation. The proposed
NN topology is schematically depicted in Fig. 1.

The NN depicted in Fig. 1 predicts the k-th symbol trans-
mitted in V polarization xy,. The proposed NN can obtain
the transmitted symbols from the Horizontal (H) polarization
Ty, by swapping V, yy,, and H, yp,, polarization symbol
sequences at the NN input. The architecture of the suggested
NN is described by the following equations: each of the
equations defines the exits of the neurons a), b), c), d) and
e), as referred to in Fig. 1 (the corresponding exit labels are
also marked in the figure with the sub-index “a”, “b”, etc.):
2

k+N
Neuron g ous = —| Y yviai (©6)
i=k—N
k+N
Neuron, o+ = In Z yv;bi |, @)
i=k—N
k+N 2
Neuron . oy = — Z YHCi| ®)
i=k—N
Neuron g oy = €xp (Neurona,outdl—l—
ngfl
-+ Neuronp oyt + Neuron ¢ oyida + Z O;diys |, )
i=0
ns—l
Neuron ¢ ot = Neuron g oy + Z Hi€it1- (10)

i=0
Egs. (6)—(10) can be combined in a single pipeline connecting
NN output a:’vk to its inputs yy;, yx,. This form is convenient
to show the similarities between the NN architecture and
Eq. (4) (the similar expression can be written down for another
polarization component):

2

E+N k+N
Ty, = Z yv,bi | exp | —da Z yv,a;| —
i=k—N i=k—N
kN | ng—1
—d3 Z YH,Ci| + Z ©idit3 | + Z Eieir1. (1D
i=k—N i=0 i=0

Here a;, b;, ¢;, d; and e; are complex tensor weights con-
stituting the parameters of the NN. After a random initial-
ization, these weights are learned from propagated data by
means of stochastic gradient descent optimization performed
by Adam optimizer [24]. The optimizer minimizes the mean-
squared error (MSE) loss function L, describing the difference
between the predicted symbols z and the actually transmitted
(’desired”) ones x;:
M—1

1
L:M;|x,’i—xi2,

12)
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Fig. 4: The principal scheme of the Bayesian optimizer [20] used to find hyper-parameters of NNs
approximating nonlinear functions © and =, Eqs. (3—4). The detailed explanation of the schematic is given in the main text.

where M is the batch size.

We used custom activation functions —|z|?, In(z) and €%, to
reflect in the architecture our estimation of the distortion form,
given by Egs. (3) (4). Furthermore, © and =, as mentioned be-
fore, are the analytically unknown nonlinear functions taking
into account the deviation of the considered link from the ideal
zero-dispersion case provided by Eq. (2); these functions are
modelled via the NNs. Particularly, a three layer perceptron
was used for each function, given the fact that the multi-layer
perceptron is a universal function approximator [21].

The NN that learns © has n; neurons in the first layer, 1
neurons in the second, and n3 neurons in the third one. In the
same way, the NN that learns = has n4 neurons in the first
layer, ns neurons in the second one, and, finally, ng neurons in
the third one. For both NN, all neurons have complex-valued
activation function f(z)

e2zr -1 eZz,; _

62w1.+1 +j62x1+1

flz =x, + jz;) = (13)

C. Hyper-parameters optimization

Since the functions approximated by © and = may have
different nonlinearity type and memory size at different power
levels depending on the leading propagation effect: the Kerr
nonlinearity or the CD (Fig. 3), a Bayesian optimization
algorithm [20] was implemented to derive the optima values
for the hyper-parameters of © and = NNs for each studied
communication system: the number of input taps /N; neuron
numbers n; in each layer of each NN.

Fig. 4 illustrates the hyper-parameters optimization process.
During the optimization, we consider a signal optical launch
power 3 dB higher than the CDC optimal level for every

test-case in order to have a stronger response of the system
performance to the hyper-parameters values. The learning rate
and the batch size are fixed to 0.001 and 1000, respectively.
In the beginning, the number of input taps N and the numbers
of neurons in all layers ni—ng are initialized as 20 and 100,
respectively. The optimization cycle starts with training the
NN via backpropagation with a fixed set of hyper-parameters
for 5000 epochs, i.e. full passes through the whole dataset,
over the training dataset containing 2'® restored symbols. After
each training epoch, we calculate the BER obtained by the
whole NN (Fig. 2) on the independently generated testing
dataset containing 2'¢ symbols. The best BER obtained during
the training is recorded. After training, the best BER is fed as
the optimization target to the Bayesian optimizer [20]. The
optimizer assumes that the conditional distribution of BERs —
given the particular values of hyper-parameters — is a Gaussian
process. Having received the new measured BER value, the
optimizer updates the process model and generates a new set of
hyper-parameters to be tested. Having carried out 20 Bayesian
optimizer cycles, we selected the set of hyper-parameters with
the lowest BER.

Fig. 5 shows an example of the benefits provided by the
Bayesian optimizer method. This figure displays the opti-
mization for the case of transmission of a DP-64QAM single
channel over LEAF (6x80km) at a launch power of 3 dBm
(that will be discussed in detail in the next section). As can
be seen, this method reached the best set of hyper-parameters
— and thus best Q-factor — on the 8" optimization cycle. The
best configurations obtained for each considered scenario in
this paper, are shown in Table II.

Noticeable, the optimizer suggested several sets with similar
performance levels. Among these, one could select the set
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with the best balance between the performance and numerical
complexity. However, in this study, we decided to maximize
optical performance and, hence, always chose the best per-
forming point. Seeking the optimal balance between optical
performance gain and cost is left beyond the scope of this
work. Besides fine-tuning the Bayesian optimization, other
advanced ML techniques such as pruning [25] and efficient
scaling [26] can be used to achieve lower computational
complexity levels without reducing the NN performance.

Q-Factor [dB]

I I e S I A
1234567 891011121314151617181920
Bayesian Cycles

Fig. 5: Example of the iterative optimization for the Bayesian
method in the case of DP-64 QAM single channel LEAF
(6x80km) at 3 dBm.

To eliminate some possible dataset periodicity, which could
cause overfitting and overestimation [27], the training dataset
objects were randomly shuffled at the beginning of every
epoch. The numerically generated training and testing datasets
were measured to achieve a normalized cross correlation below
0.6%, to ensure their independence. The code developed to
obtain the results depicted in this paper is provided online on
the platforms Github and Zenodo [28].

TABLE II: Hyper-parameters of neural networks
approximating © and = functions from Eq. 11
learned by means of Bayesian optimization.

Scenario N (taps) — 1 | ns | ne
LEAF (Numerical — 6 x 80km) 11 544 gg ‘518
LEAF (Numerical — 12x80km) 18 gg ?g 45&8
SSMF (Numerical — 6 x 80km) 20 ?; ;; gg
SSMF (Numerical — 12x80km) 26 ZT ;L; 2(1)
SSMF (Trial data — 8 x 76+4km) 20 gg 2(3) gi

III. ML-BASED NONLINEAR EQUALIZER
A. Numerical study

1) Numerical setup: The system setup considered in the nu-
merical study is illustrated in Fig. 6. First, a random bit stream
is generated for each polarization. Afterwards, Gray coded 32

GBd 64QAM symbols are mapped from the bit sequences. The
resulting signals are upsampled with a sampling rate equal to
four times the symbol rate and shaped using an RRC with
roll-off = 0.06. Finally, a polarization beam combiner (PBC)
is used to combine both polarizations to the single-channel
dual-polarized signal which is then fed into the optical fiber.

Digital Modulator <———— Source
¢ ¢ ¢ Encoder
Pulse Shaper DSP
PBC < (RRC) Digital Coherent
_________________________ . Rx

' A
: H |V
—» EDFA>—> PBS

Fig. 6: The system setup of the transmission loop considered
in our numerical simulations.

To simulate the (forward) propagation of the signal in the
fiber, we used a symmetrized split-step Fourier method [15]
solving the ordinary Manakov equation [29]. We considered
6x80 km and 12x80 km systems consisting of LEAF or
SSMF. The considered fiber parameters are given in Table 1.
At the end of each span, the fiber losses are fully compensated
by a lumped Erbium-doped fiber amplifier (EDFA). Additive
White Gaussian Noise (AWGN) representing the amplified
spontaneous emission (ASE) noise is also added. The EDFA
noise figure is NF' = 4.5 dB. At the receiver side, both H and
V polarizations are first separated using a polarization beam
splitter (PBS) and then fed to a digital coherent receiver where
the signal passes through a matched filter and is downsampled
to the symbol rate. The resulting signal is processed offline
using the DSP outlined in Fig. 2 to recover the transmitted
symbols. Since we considered no transceiver impairments
in numerical simulations, the receiver DSP consisted of: an
ideal CDC compensator followed by a single-tap adaptive
filter performing amplitude and phase normalization of the
received symbol stream to the desired one (CDC + Norm),
and, finally, the tested nonlinearity mitigation algorithm.

2) Numerical Results: The proposed NN was benchmarked
against the classic digital backpropagation (DBP) [30] with 2
samples/symbol and 2 and 3 steps per span (StPS), along with
the NN-based equalizer proposed in [11]. This reference NN
was implemented exactly as stated in [11]: it had two layers
with 192 neurons and processed the same number of input taps
as our proposed NN did. The sequences of symbols from both
polarizations were simultaneously fed as input to the reference
NN from Ref. [11]. In this case, however, real and imaginary
parts are fed as different parts of the input vector [31], since
this is a real-value neural network. All the algorithms used in
this paper are static algorithms. As the performance metric,
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Fig. 7: Signal equalization performance of the proposed NN, benchmarked against digital backpropagation (DBP) and the
reference neural network (2x192) [11] for various numerically studied fiber-optic links. In all testcases DP-64QAM 32 GBd
single-channel optical signal was considered.

we used the Q-factor expressed through BER as follows:

Q = 20log,, [\/5 erfc*(2BER)| | (14)
where erfc ! is the inverse complementary error function. All
main results of this subsection are summarized on Table III.
Fig. 7 shows the comparison of Q-factors obtained by
employing the considered algorithms for nonlinearity mitiga-
tion in the numerically studied testcases. For LEAF, Fig. 7a
illustrates the 6 x80 km case and Fig. 7b the 12x80 km case.
In the first case, the proposed NN improved the Q-factor

by up to ~2.1 dB when compared with CDC + Norm and
up to ~1.7 dB when compared with the reference NN from
Ref. [11], at their respective optimal optical launch powers.
The proposed NN also outperforms the DBP with 2 StPS
performance by 0.7 dB. Evidently, it is expected that the
DBP with higher complexity (with more steps or sampling
points) outperforms our NN. Indeed, the DBP with 3 StPS
offers a better performance. For the second scenario, a similar
improvement trend was observed, see Fig. 7b. At the optimal
launch powers, the proposed NN increased the Q-factor by up

TABLE III: Summary of all results obtained by CDC + Norm, NN 2x192 neurons[11], DBP and the proposed NN. The
optimal launch power, in dBm, and the peak Q-factor, in dB, are indicated for all considered testcases.

[ Fiber [ Q/Best P [CDC + Norm] | Q/Best P [NN in [11]] [ Q/ Best P [Proposed] [ Q / Best P [DBP-2 StPS] [ Q / Best P [DBP-3 StPS] |

LEAF 6x80km

8.94 dB / 0 dBm

9.37 dB /1 dBm

11.16 dB / 3 dBm

10.4 dB /2 dBm

12.3 dB / 4 dBm

LEAF 12x80km

6.09 dB / 0 dBm

6.28 dB / 0 dBm

7.34 dB /2 dBm

6.52 dB / 0 dBm

8.31 dB /3 dBm

SSMF 6 x80km

10.83 dB / 0 dBm

10.81 dB / 0 dBm

11.19 dB /2 dBm

11.50 dB /2 dBm

13.7 dB/ 4 dBm

SSMF 12 x80km

7.91 dB / 0 dBm

7.98 dB / 0 dBm

8.29 dB /1 dBm

7.66 dB/ 0 dBm

9.68 dB / 3 dBm

SSMF (Trial data)

6.81 dB / 3 dBm

7.58 dB / 3 dBm

8.85 dB / 4 dBm
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to ~1.25 dB when compared to the CDC + Norm and by ~1
dB when compared with the reference NN from [11]. Also,
the proposed NN outperforms the DBP 2 StPS performance
by 0.8 dB.

For the SSMF system, Fig. 7c shows the result for a 6x80
km case, where we have observed an improvement of the Q-
factor of up to ~0.4 dB when using the proposed NN with
respect to both the CDC + Norm and the reference NN in
[11]. In the 12x80 km case, (Fig. 7d) the proposed NN led
to the Q-factor improvement of up to ~0.4 dB with respect
to both the CDC + Norm and the NN from [11]. In this
case, the DBP with 2 StPS was not able to outperform the
simple CDC compensator followed by a single-tap adaptive
filter performing the amplitude and phase normalization. As
predicted in Sec. II-A, using a fiber with 4 times higher chro-
matic dispersion (/32) impacts the performance of the proposed
NN, since the proposed NN shows better performance when
the nonlinearity produces the dominant contribution, as it is
expected due to the chosen structure.

In all the numerically considered testcases, the optimal
launch power for the proposed NN was higher than for CDC
+ Norm and the reference NN in [11]. This shows that
the performance gains of the proposed NN are obtained by
improving nonlinearity mitigation.

B. Experimental Study

1) Experimental setup: In the experimental study, the data
were obtained by using the setup of the field trial described
in [12] and [13]. The transmission link consisted of 8x76
km G.652 SSMF spans along with two 2 km long SSMF
connectors deployed between Torino and Chivasso in Italy,
leading to a total length of 612 km. The transmitted spectrum
consisted of 15x200G DP-16QAM neighbor channels on the
right- and left-hand sides of the channel under test, resulting
in a 31 channel WDM transmission system in the 37.5 GHz
grid (33.01 GBd). At the receiver side, the WDM signal was
first amplified and then converted into the electrical domain
using a coherent front-end. An ADC with 18 GHz bandwidth
operating at 80 GSample/s was used to capture sets of 5 x 10°
samples per tributary. Digital signal processing is then applied
at the receiver. Firstly, bulk accumulated chromatic disper-
sion was compensated using a frequency domain equalizer,
followed by removal of carrier frequency offset. Constant-
amplitude-zero-autocorrelation based training sequence was
then located in the received frames, and the equalizer transfer
function was estimated from it. After equalization, the two
polarizations were de-multiplexed, and time corrected. Carrier
phase estimation was then achieved through the aid of pilot
symbols. Finally, two independent downsampled measurement
shots, processed by DSP, were used as training and testing data
for the offline testing of the considered nonlinearity mitigation
algorithms.

2) Experimental result: On the contrary of the numerical
studies, in the experiment we were not able to apply the DBP
technique because the carrier had no appropriate information
about the system parameters installed: they were laid in the
field and are poorly accessible. So only the downsampled

data was available for our tests. Therefore, we will compare
the proposed NN with the traditional CDC + norm and the
reference NN from [11].

Fig. 8 shows the experimental results obtained in the field
trial and processed by the CDC, the NN from [11], and,
eventually, the proposed NN. First, the optimal launch power
obtained using our new NN equalizer increased from 3 to
4 dBm, and the Q-factor improved by up to ~2 dB and
~1.2 dB when compared, at the best power level, with the
CDC+Norm and the reference NN from [11], respectively.
Moreover, we have highlighted the different gains on the
linear and nonlinear regions which indicates that our NN
is compensating for nonlinear effects since the performance
improvement increases with the launch power. At the lowest
measured launch power (0 dBm), we observed a gain of 1.7
dB when comparing with the traditional CDC + norm. We
assume that this gain in the linear regime comes from the
ability of the neural network, by using the specially designed
nonlinear parts =; /5, to mitigate the impact of additional
limitations such as, e.g., the impact of low-resolution digital-
to-analog and analog-to-digital converters, the driver amplifier,
and the dual polarization Mach-Zehnder modulator, that were
not entirely tackled by the current DSP. The imperfections
of the transmitter — e.g., the Sa1(f) — and of the DAC low-
resolution — showed as ENOB versus frequency — are reported
in Fig. 3 of [32]. On top of these linear regime gains, we found
that, at the optimum power levels, (3 dBm for CDC+Norm and
4 dBm for the proposed algorithm) our NN provides additional
0.34 dB of Q-factor gain, with the total gain being 2.04 dB.
For the proposed NN, the optimum launch power increases
in the experiment by ~1 dB, which is in agreement with
the numerical analysis. Notably, the reference NN from [11]
did not improve the optical performance when increasing the
optimal launch power.

| | =8~ CDC + Norm --
—— NN 2x192 in [11]
Proposed NN

Q-Factor [dB]

Launch power [dBm)]

Fig. 8: Comparison of the equalisation performance obtained
by the considered algorithms in the field trial of 612 km SSMF
legacy link.
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IV. COMPUTATIONAL COMPLEXITY ANALYSIS

The goal of this section is to discuss the computation
complexity required by the proposed method and compare
it with the traditional DBP method and the NN densely-
connected architecture proposed in [11]. The comparison is
performed in terms of the total number of real multiplications
per transmitted bit required by each of the two nonlinear
compensation schemes. To calculate the complexity of the
DBP strategy, we followed the approaches given in [4, 33].

We start our analysis with the DBP-based receiver. As men-
tioned before, the basic implementation of the DBP algorithm
is considered, where each propagation step comprises a linear
part for dispersion compensation followed by a nonlinear
phase cancellation stage. The linear part is achieved with
a zero-forcing equalizer by transforming the signal in the
frequency domain and multiplying with the inverse dispersion
transfer function of the propagation section. The complexity
of the method is [33]:

n NFFT[IOgQ (NFFT) + ].]

(N]:]:T — ND + 1) logQ(Mod) + n>7
(15)

where Ny, is the number of steps per span used, Nggr is the
FFT size, Mod is the order of the modulation format, n is the
oversampling ratio, and Np = 7 /T, where 7 corresponds
to the dispersive channel impulse response and 7 is the symbol
duration.

In the case of the NN, the complexity is evaluated for
the most critical mode of operation when the trained NN is
working as the part of the data communication chain, i.e., on
the inference stage. In this case, the forward propagation step
complexity is given by:

CDBP = 4NspanNstep (

4
0g,(Mod)
+ (ning + nong + nans + nsne) + (n3 + 3)+
+ (ng + 1) 4+ Cepc].-

In more details, we assume the neurons of first layer require
(2N +1)(2n1 + 2n4 + 3) complex multiplications. The dense
layers of © and = contribute with nins + naong + nans +
nsng multiplications. Moreover, the neurons d) and e) add
ns + 3 and ng + 1 complex multiplications, respectively. The
found amount of complex multiplications was multiplied by
4 to convert from complex to real multiplications and divided
by log,(Mod) to convert from multiplication per symbol to
those per bit. Finally, we have added the number of complex
multiplications per symbol of the CDC step (Ccpc) that was
taken equivalent to one linear step of the DBP algorithm, with
the step covering the whole transmission link.

The last complexity calculation to be presented here is from
the NN given in [11] that is a real-value multilayer perceptron
with two layers and 192 neurons in each of them. Eq. 17
displays how the complexity of this NN was calculated. Firstly,
the input layer feeds separately the real and imaginary parts
of the complex symbol for both polarizations. This step adds
2(4N +2)n,, operations, considering that NV is the number of
taps and n1, is the number of neurons of the first layers. After

(16)

that, we accounted for the multiplication of the hidden layer,
N14N24, Where no, is the number of neurons in the second
layer, and the number of multiplications for the output layer
is 2n9,, which is multiplied by 2 because we have two outputs
(real and imaginary) to recover the symbol. Finally, similarly
to the addition of the dispersion compensation complexity
to the overall value of our proposed NN, Eq. (16), we add
this part Ccpce to the complexity of the NN from [11]. We
have divided the final result by log,(Mod) to convert from
multiplication per symbol to per bit. The result reads as

1
log,(Mod)
2n24 4+ 4Cenc] -

Cret. 1111 = [2(4N + 2)n14 + N1gN2a+

a7

B Proposed NN
DBP-3 StPs
DBP-2 StPs

EEE NN 2x192in[11]

12500 A

10000 A

7500 A

5000 +

Real multiplications per transmitted bit

2500 A

LEAF 12x80km  SSMF 6x80km  SSMF 12x80km

LEAF 6x80km

Fig. 9: Comparison of computational complexity in terms of

real multiplications per transmitted bit among the proposed

NN, NN in [11] and DBP with 2 and 3 steps-per-span (StPS)
and 2 samples-per-symbol.

Fig. 9 presents the complexity for all the suggested NNs
shown in Table II, the reference NN from [11], and for the
DBP with 2 and 3 StPS. First of all, we can see that the
method [11] that uses the NN in a form of a black box not
only gives somewhat worse results, but also requires more real
multiplications than our proposed NN; this notion refers to all
scenarios. Secondly, one can see that the proposed NN leads
to much higher complexity than the DBP. Nonetheless, the
proposed method has an important advantage over DBP. In
fact, NN is by nature channel-agnostic, and therefore it does
not require a priori exact knowledge of the channel parameters,
like in DBP, since it learns them from training dataset. Also,
as presented in [34], DBP performance might be considerably
degraded in case of imperfect link knowledge'. Therefore,
the implementation of proposed NN — for the systems where
no channel parameters are known in advance — represent a
valuable option.

To conclude this section, we investigated the relationship
between the performance and computational complexity which

In [35] the performance of a DBP with wrong values for the nonlinear
coefficient v was compared against the alternative proposed by the authors to
automatically derive the correct value of this parameter.
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TABLE IV: Topologies of the proposed neural network learned
by means of Bayesian optimization and used in the Fig. 10.

oo [ N a0 P2t P
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T.6 14 321 ﬁ gg
GR = == ==
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can be achieved with the proposed NN. We have considered
here the case of DP-64QAM single channel LEAF (6x80km)
at 3 dBm, the one with the best gains in numerical study.
Fig. 10 relates the Q-factor gains and the complexity for eight
different topologies of the proposed NN. The topologies differ
in the number of neurons and the input sizes of ©;,, and
E1/2 — the parameters optimized by the Bayesian optimizer.
The different numerical complexity — for the 8 topologies
— were obtained by starting the optimization from its own
initial set of hyper-parameters. The found hyper-parameter
sets — corresponding to every topology — are described in
Table IV. One can observe on Fig. 10 that the Q-factor gains
by the NN are proportional to the complexity, expressed via
a number of real multiplications. Noteworthy, the proposed
NN requires considerable complexity (topologies T.6, T.7 and
T.8) to outperform the Q-factor achieved by DBP with 2
StPS. Nonetheless, even the simplest topologies (T.1 and T.2)
had provided considerable performance gains in the order
of ~ 1 dB over CDC+norm. Further optimization of the
performance/complexity ratio is possible, notably, by using
advanced ML techniques that can optimize the number of
connections between neurons without reducing their amount.
However, this last consideration is beyond the scope of the
current study.

V. CONCLUSIONS

We present a novel design of a complex-valued neural
network for the signal equalisation on the receiver side. This
approach is based on the assumption of Kerr nonlinearity
being the leading distortion. We investigated the performance
of the suggested neural network in several fiber systems
where we compared it with the multi-layer neural network
proposed in [11] and standard digital back-propagation. We
implemented Bayesian optimizer to fine-tune the parameters
of the proposed architecture, i.e. its hyper-parameters, to
every considered testcase. In our study, the focus was on
the metro networks for which we considered both standard
single mode fiber and large effective-area fiber base. The
presented numerical and experimental results demonstrate that

the proposed neural network leads to significant system perfor-
mance improvement. Moreover, our approach was also shown
to be able to mitigate not only nonlinear fiber transmission
distortions, but also impairments arising in the components of
both transmitter and receiver.

T T

—B— Proposed NN
DBP 2StPS

- == CDC + norm

11

10

Q-Factor [dB]
©
T

|
0 1,000 2,000 3,000 4,000 5,000 6,000
Real Multiplications per Transmitted Bit

Fig. 10: Relationship between computational complexity and
Q factor performance for some possible topologies (Table
IV) of the proposed NN in the case of DP-64 QAM single
channel LEAF (6x80km) at 3 dBm and its comparison with
the performance of DBP with 2 steps-per-span (StPS) and 2
samples-per-symbol and CDC + norm techniques.
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