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Abstract
We introduce a method of azimuthally invariant 3D Mueller-matrix (MM) layer-by-layer
mapping of the phase and amplitude parameters of anisotropy of the partially depolarizing
layers of benign (adenoma) and malignant (carcinoma) prostate tumours. The technique is based
on the analysis of spatial variations of Mueller matrix invariant (MMI) of histological sections
of benign (adenoma) and malignant (carcinoma) tissue samples. The phase dependence of
magnitudes of the first-to-fourth order statistical moments is applied to characterize 3D spatial
distributions of MMI of linear and circular birefringence and dichroism of prostate tumours.
The high order statistical moments and phase sections of the optimal differentiation of the
polycrystalline structure of tissue samples are revealed. The obtained results are compared with
the results obtained by conventional methods utilizing polarized light, including 2D and 3D
Mueller matrix imaging.
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1. Introduction

Presently, the methods and means of polarisation-based dia-
gnostics of biological tissues are extensively used in bio-
medical optics [1–4], including a number of subjects, such
as: investigation of scattering matrices [5–9], polarization
modeling of Monte Carlo [10–13], polarization spectroscopy
[14–16], Mueller-matrix (MM) polarimetry [17–21], polar
decomposition of MMs [22, 23], 2D MM mapping [24–27]
within the framework of various model approximations [28–
31] and other.

The variety of these polarizationmethods combines follow-
ing common points:

• The use of the MM formalism [4, 6, 9, 15, 17, 32, 33].
• The resulting MMs are represented either in 1D (‘indica-
trices’ [2, 5, 8, 9, 14, 19]) or in 2D (‘MM images’ [3, 18,
20, 21, 34, 35]) formats.

• The azimuthal dependence upon rotation of the sample
around the axis of the 12th probe of the 16 elements of the
MM [17–21, 24, 36, 37].

• Studies of MMs is carried out within the framework of two
boundary approximations—optically thin (nondepolarizing
[19–21]) layers and diffuse (depolarizing [3, 19, 26, 27, 34,
35]) objects.

• Almost complete lack of information about 3D distribu-
tions of matrix elements [32, 33].

Therefore, it is actually to develop 3D azimuthally invari-
ant MM polarimetry of the most common type of objects—
partially depolarizing biological tissues. The basis for this can
be the joint use of probing and reference coherent beams. This
will ensure the possibility of obtaining layered MM images
based on the synthesis of methods:

• 2D mapping of Mueller-matrix invariants (MMIs) of
biological layers—azimuthally independent distribu-
tions of matrix elements or their analytical combinations
[24, 36, 37];

• digital holographic restoration of distributions of complex
amplitudes of the object field of such layers [32, 33].

Our article is aimed at the development and experimental
validation of the diagnostic effectiveness of the method of
azimuthally invariant MM tomography of the polycrystalline
structure of histological sections of biopsy of benign and
malignant tumors of the prostate.

2. Brief theory of the method

In [24, 35–39], it was shown that the following matrix ele-
ments and their combinations are azimuthally invariant.

Figure 1. Optical scheme of polarization interferometry of 3D
distributions of MM elements. Explanations are in the text.

{F}==

∥∥∥∥∥∥∥∥
F11 F12 F13 F14

F21 F22 F23 F24

F31 F32 F33 F34

F41 F42 F43 F44

∥∥∥∥∥∥∥∥⇒


F11 (Θ) = const;

F14 (Θ) = const;

F41 (Θ) = const;

F44 (Θ) = const;

⇓{
[F22 +F33] (Θ)≡MMI22;33 (Θ) = const;
[F23 −F32] (Θ)≡MMI23;32 (Θ) = const

(1)
where Θ is the angle of rotation of the sample.

In [40–46], the interrelations between the MMI (relation
(1)) and averaged over the thickness (l) of the biological
layer by 2D parameters of linear (LB) and circular (CB)
birefringence. 

F44 ≡MMI44 ∼ cosLB;

∆M=
MMI23;32
MMI22;33

∼ tgCB
(2)

and dichroism (LD,CD)

F41 = (1−LD)sinLB (3)

F14 = 4
√
LDcosLB

CB
1+CB2

(4)

Figure 1 presents the optical arrangement for 3D MM polari-
metry of biological layers. Parallel (Ø= 2× 103 µm) beam of
He–Ne (λ= 0.6328 µm) laser 1, formed by optical collimator
2 by means of 50/50 beamsplitter 3, divided on illuminating
and reference ones.

Illuminating laser beam is directed through the polarization
filter 5–7 on the sample of biological layer 8. Polarization-
inhomogeneous image of the sample 8 by means of strain-
free objective 9 (Nikon CFI Achromat P, focal distance—
30 mm, numerical aperture—0,1, magnification—4x) is pro-
jected in the plane of digital camera 14 (The Imaging
Source DMK 41AU02.AS, monochrome 1/2′′ CCD, Sony
ICX205AL (progressive scan); resolution—1280× 960; sizes
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of light-sensitive plate—7600 × 6200 µm; sensitivity—
0,05 lx; dynamic range—8 bit, SNR—9 bit). Reference laser
beam by means of reflected mirror 4 is directed through
the polarization filter 10–12 in the plane of polarization-
inhomogeneous image of sample 8. As the result the interfer-
ence pattern registered by digital camera 14 is formed. Form-
ation of different polarization states of illuminating and ref-
erence beams is created by both polarization filters 5–7 and
10–12, each of them consists of two linear polarizers (B +W
Kaesemann XS-Pro Polarizer MRC Nano) and quarterwave
plate (Achromatic True Zero-Order Waveplate).

The technique of polarization-interference measurements
of MM elements consists in the following sequence of
operations:

• Formation of six polarization states (
(
00 − 00

)
;
(
900 − 900

)
;(

450 − 450
)
;
(
1350 − 1350

)
;(⊗−⊗) ;(⊕−⊕)) in both

illuminating and reference laser beams. Here ⊗,⊕ denote
right and left circulations correspondingly.

• Registration of each partial interference pattern after
passing through polarizer-analyzer 13 with follow-
ing sequence of orientations of it transmission plane
Ω= 00; Ω = 900.

Thus, by experimental measurement of the set of coordinate

distributions (q≡

{
F14;41;44 (x× y) ;

∆M(x× y)
), it is possible to obtain

azimuthally invariant information about the polarizationmani-
festations of the phase and amplitude anisotropy of biological
tissues.

The basis for the determination of a series of layered
distributions of q(x,y,z) is the use of a reference laser
radiation wave, which is superimposed on the polarization-
inhomogeneous image of the biological layer [31, 32].

The resulting interference pattern is recorded with a digital
camera.

Further, apply Fourier transform to interference pattern and
using the inverse Fourier transform obtained the distributions
of complex amplitudes |Ax| ; |Ay|exp i(δy− δx) in differ-
ent phase planes ( ϕj = (δy− δx)j =

2π
λ z; 0⩽ z⩽ l ) of the

object field with an arbitrary step ∆ϕj=0.p.
In each phase plane ϕj (x,y), for a series of planar (with

azimuths 00,900,450) and the right of circularly (⊗) polar-
ized irradiating beams, the distributions of Stokes vector

VSi(
00,900,450,⊗) and MMI are calculated.

VS1(
00,900,450,⊗) =

(
|Ax|2+ |Ay|2

)(00,900,450,⊗)
;

VS2(
00,900,450,⊗) =

(
|Ax|2 − |Ay|2

)(00,900,450,⊗)
;

VS3(
00,900,450,⊗) = 2Re

∣∣AxA∗
y

∣∣(00,900,450,⊗);
VS4(

00,900,450,⊗) = 2Im
∣∣AxA∗

y

∣∣(00,900,450,⊗)


(ϕj)

(5)

F44 (ϕj) =
(
VS⊗4 − VS⊕4

)
(ϕj)

= 2
(
Im

∣∣AxA∗
y

∣∣(⊗) − Im
∣∣AxA∗

y

∣∣(⊕)
)
(ϕj)

(6)

∆M (ϕj) =

(
VS452 − VS1352

)
−

(
VS03 − VS903

)(
VS02 − VS902

)
+

(
VS453 − VS1353

) (ϕj) =

=


((

|Ax|2 − |Ay|2
)(45)

−
(
|Ax|2 − |Ay|2

)(135)
)

− 2
(
Re

∣∣AxA∗
y

∣∣(0) − Re
∣∣AxA∗

y

∣∣(90))((
|Ax|2 − |Ay|2

)(0)
−

(
|Ax|2 − |Ay|2

)(90)
)

+ 2
(
Re

∣∣AxA∗
y

∣∣(45) − Re
∣∣AxA∗

y

∣∣(135))
 (ϕj)

(7)

F14 (ϕj) =
(
VS⊗1 − VS⊕1

)
(ϕj)

=

((
|Ax|2 + |Ay|2

)(⊗)

−
(
|Ax|2 + |Ay|2

)(⊕)
)
(ϕj)

(8)

F41 (ϕj) =
(
VS04 + VS904

)
(ϕj)

= 2
(
Im

∣∣AxA∗
y

∣∣(0) + Im
∣∣AxA∗

y

∣∣(90)) (ϕj)
(9)

The optical scheme and the technique of experimental
measurements of the MMI aggregate of biological layers
(relations (6)–(9)) are described in detail and presented in
[19–21, 24, 36, 37].

3. Principles of 3D azimuthally-invariant MM
differential diagnostics

To determine the diagnostic effectiveness of azimuthally-
invariant 3D MM tomography, two representative groups
of patients were formed with 28 samples of tumors in
each. For each operably extracted tumor 16 histological sec-
tions were prepared with the geometric dimensions which
are commensurable with the diameter of illuminating laser
beam (∼2000 × 2000 µm): (i) benign tumor (adenoma—16
samples)—group 1 (attenuation coefficient 0,79≺ τ ≺ 0,85,
degree of depolarization 43%≺ Λ≺ 48%); (ii) malignant
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Figure 2. Coordinate distributions of MMI F44, characterizing the linear birefringence LB of adenoma samples (fragment (1)) and
carcinomas (fragment (2)) of the prostate.

tumor (carcinoma—16 samples)—group 2 (0,81≺ τ ≺ 0,84,
45%≺ Λ≺ 47%).

The optical technology of differential diagnostics of such
samples includes the following steps:

(a) Definition of a series of ‘phase’ layered images (m× n—
number of pixels of a digital camera) of 3DMMI distribu-
tions {F44;∆M;F41;F14}(ϕ1 = 0,3rad;2ϕ1,6ϕ1) within
both groups of samples.

(b) The statistical moments of the first-fourth order
Zi=1;2;3;4 {[F44;∆M;F41;F14] (ϕk,m× n)} are calculated
for each distribution of MMI in each ‘phase’ section ϕj.

(c) The ‘phase’ planes (ϕ∗), in which the maximum dif-
ferences between the values of the statistical moments
(∆Z∗

i=1;2;3;4
≡∆Zi=1;2;3;4 (ϕ

∗)→max) are realized, are
determined.

(d) In the ‘phase’ plane ϕ∗, the mean ∆Z̄∗
i=1;2;3;4

and error σ (∆Z∗
i ) of the ensemble of values

(Zi=1;2;3;4)k=1,2,r that characterize the distributions
[F44;∆M;F41;F14] (ϕk,m× n) within the set (r) of the
histological sections of biopsy of prostate tumors from
group 1 and group 2 are determined.

(e) For the purpose of possible clinical application for each
of the statistical moments Zi=1;2;3;4 sensitivity (W);
specificity (P) and balanced accuracy (T) of the 3D
azimuthally-invariant MM tomography are determined
[47].


W=

k1
k1 + k2

100%;

P=
g1

g1 + g2
100%;

T=
W+P

2
100%,

(10)

where k1 and k2 is the number of correct and incorrect dia-
gnoses within group 2; g1 and g2- the same within group.

4. Analysis and discussion of the experimental
results

In figures 2–4 shows maps of the phase cross sec-
tions (ϕj) of the MMI distributions (m × n = 100pix ×
100pix ; 1pix = 10µm) F44 (ϕ

∗ = 0.45rad, m× n)
(figure 1); ∆M (ϕ∗ = 0.45rad, m× n) (figure 2);
F41 (ϕ

∗ = 0.75rad, m× n) (figure 3) and
F14 (ϕ

∗ = 0.75rad, m× n) (figure 4). The MMI
[F44 ;∆M] (m × n) maps are obtained for the ϕ∗ =
0.45rad phase section. Coordinate distributions of MMI
[F41 ; F14] (m × n) are obtained for ϕ∗ = 0.75rad.

Let us analyze the results obtained from the physical point
of view.

For the distributions of linear LB (figure 1) and circular
CB (figure 2) birefringence of samples of both types due to
different pathology of the prostate tissue, the following trans-
formations of the polycrystalline structure take place.

A benign tumor contains a developed newly formed linear
birefringent network, which is formed due to an increase in
the concentration of optically active protein molecules [2–4,
19–21, 34, 35].

Oncological processes are accompanied by destruction
of the fibrillar network. Optically, this is manifested in
a decrease in the structural anisotropy—linear birefrin-
gence (LB ↓) of the prostate tissue. Due to this, the
mean and range of variation of the random variables
of the MMI distribution F44 (ϕ, m × n) ∼ cos LB (rela-
tion (2)) increases (figure 2, fragments (1), (2)). In par-
allel with this, the concentration of optically active pro-
tein molecules decreases due to necrosis. As a result,
for the distribution ∆M(ϕ, m × n) ∼ tan CB (relation (2)),
there is a reverse scenario—a decrease in the mean and
range of variation of the random variables of this MMI
(figure 2, fragments (1), (2)).

Within the framework of the statistical analysis ofMMI dis-
tributions of the phase anisotropy of prostate tumors, one can

4
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Figure 3. Coordinate distributions of MMI ∆M, characterizing the circular birefringence CB of adenoma samples (fragment (1)) and
carcinomas (fragment (2)) of the prostate.

Figure 4. Coordinate distributions of MMI F41, characterizing the linear dichroism LD of adenoma samples (fragment (1)) and carcinomas
(fragment (2)) of the prostate.

expect the following relationships between statistical moments
[19, 24, 35, 38–43].{

Zgroup1
1;2 (F44) ≺ Zgroup2

1;2 (F44) ;

Zgroup1
3;4 (F44) ≺ Zgroup2

3;4 (F44) ;
(11)

{
Zgroup1
1;2 (∆M) ≺ Zgroup2

1;2 (∆M) ;

Zgroup1
3;4 (∆M) ≺ Zgroup2

3;4 (∆M) .
(12)

The most pronounced such scenario (relations (11), (12))
is realized in the scattering region of insignificant multi-
plicity, which corresponds to small values (0.3 rad≺ ϕ≺
0.6 rad⇒ ϕ∗ = 0.45 rad) of the phase cross sections of the
MMI [F44;∆M] (ϕ∗,m× n).

For the linear (LD∼ sinLB (relation (3)) dichroism of the
partially depolarizing layers of adenomas and carcinomas (fig-
ures 4 and 5) of the prostate decreases

{
Zgroup1
1;2 (F41)≻ Zgroup2

1;2 (F41) ;

Zgroup1
3;4 (F41)≺ Zgroup2

3;4 (F41) .

The circular (CD ↑, (equation (4)) dichroism of oncological
changed prostate layers—increases

{
Zgroup1
1;2 (F14)≻ Zgroup2

1;2 (F14) ;

Zgroup1
3;4 (F14)≺ Zgroup2

3;4 (F14) .

The greatest difference between statistical moments
Zi=1;2;3;4 (F41;F14) is achieved in the range of somewhat larger
values of the ‘phase’ cross sections (0.6rad≺ ϕ≺ 0.9rad⇒
ϕ∗ = 0,75rad).

Table 1 presents the statistical criteria for differentiating
benign and malignant prostate tumors using 3D azimuthally
invariant MM tomography [F44;∆M;F41;F14] (ϕ,m× n).
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Figure 5. Coordinate distributions of MMI F14, characterizing the circular dichroism CD of adenoma samples (fragment (1)) and
carcinomas (fragment (2)) of the prostate.

Table 1. The statistical moments of the 1st–4th order, which characterize the distributions of the MMI [F44;∆M;F41;F14] (ϕ
∗,m× n) set in

diagnostically optimal phase sections ϕ∗.

Parameters Adenoma Carcinoma Accuracy, Ac,%

MMI (ϕ∗ = 0.45rad) F44 ∆M F44 ∆M F44 ∆M

Z1 0.29 ± 0.017 0.12 ± 0.007 0.44 ± 0.029 0.07 ± 0.004 85 82
Z2 0.21 ± 0.012 0.15 ± 0.008 0.14 ± 0.006 0.11 ± 0.005 81 79
Z3 0.46 ± 0.029 0.63 ± 0.041 0.69 ± 0.037 0.92 ± 0.055 91 89
Z4 0.57 ± 0.033 0.88 ± 0.053 1.03 ± 0.059 1.39 ± 0.084 92 87

MM (ϕ∗ = 0.75rad) F41 F14 F41 F14 F41 F14

Z1 0.210 ± 013 0.0750 ± 0042 0.15 ± 0.091 0.093 ± 0.005 81 73
Z2 0.14 ± 0.008 0.09 ± 0.005 0.095 ± 0.006 0.12 ± 0.071 79 77
Z3 0.77 ± 0.043 0.98 ± 0.052 1.18 ± 0.063 0.61 ± 0.037 92 91
Z4 0.96 ± 0.054 1.31 ± 0.079 1.65 ± 0.093 0.99 ± 0.056 94 93

The most sensitive to the differences between the poly-
crystalline structure of the adenoma samples and the prostate
carcinoma parameters have been identified—the statist-
ical moments of the third and fourth orders, which char-
acterize the asymmetry and kurtosis of the distributions
[F44;∆M;F41;F14] (ϕ

∗,m× n).
For these parameters, according to the canons of evidence-

based medicine [47], an excellent level of balanced accuracy
of the 3D azimuthally invariant MM tomography method for
partially depolarizing (Λ⩽ 50%) layers of biological tissues in
differential diagnosis of benign and malignant prostate tumors
was achieved − Ac(Z3;4; (F44;41;14,∆M))∼ 91%− 94%.

The result stimulated an additional study—the determin-
ation of the comparative efficacy of traditional [1–4, 12–15,
19–21, 24, 34, 35, 38–43] and the methods of polarimetric dia-
gnostics proposed in this work, depending on the depolarizing
ability of biological tissue samples.

5. Comparative characteristics of the diagnostic
efficiency of the methods of polarization, 2D and 3D
MM mapping

The comparative results of the diagnostic efficiency of dif-
ferentiation of benign and malignant prostate tumors with

different depolarizing ability by azimuthally invariant polariz-
ation [19, 38, 42–44, 46], 2D [20, 21, 24, 35, 38, 39, 41, 45] and
3D MM mapping. For this purpose, groups (16 samples each)
of histological sections of adenoma biopsies and carcinomas
with various geometric (l, µm), optical (τ ) and depolarizing
(Λ,%) characteristics were studied.

Table 2 shows the maximum values of balanced accuracy,
which are achieved by the methods considered.

From the comparative analysis of the accuracy of the polar-
imetric methods for diagnosing the changes in the phase and
amplitude anisotropy of the depolarizing layers of benign and
malignant prostate tumors:

(a) Polarization mapping of the azimuth (α) and ellipticity (β)
polarization of the microscopic images of biological pre-
parations ensures satisfactory accuracy of differentiation
of adenoma and prostate carcinoma (Ac(τ = 0.25) =
76% − 77%) to an insignificant level of depolarization
(Λ = 28%); for large values Λ this method is ineffective
(Ac ≺ 70%).

(b) As the optical thickness (0.25 ≺ τ ≺ 0.62 ⇔ 28% ≺
Λ ≺ 43%) of the samples increases, the accuracy of
the method of azimuthally-invariant 2D MM mapping

6
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Table 2. Comparative diagnostic effectiveness of azimuthal
invariant polarimetry methods.

τ 0.25 0.45 0.62
l,µm 20 40 50
Λ,% 28 35 43
Ac,% {α,β} 2D 3D {α,β} 2D 3D {α,β} 2D 3D

Ac(Z1) 73 78 91 69 71 87 63 65 85
Ac(Z2) 76 79 93 70 74 89 65 68 87
Ac(Z3) 76 84 95 72 77 95 68 71 93
Ac(Z4) 77 83 96 73 79 95 70 75 94

τ 0.91 1.37 1.93
l,µm 60 80 100
Λ,% 52 68 89
Ac,% {α,β} 2D 3D {α,β} 2D 3D {α,β} 2D 3D

Ac(Z1) 59 63 83 53 57 64 54 53 52
Ac(Z2) 58 65 85 55 56 66 52 56 54
Ac(Z3) 61 68 91 57 59 78 53 57 65
Ac(Z4) 63 69 94 56 63 79 55 60 68

decreases from good (Ac (τ = 0.25; Λ = 28%) =
83% − 84%) to satisfactory (Ac (τ = 0.62; Λ = 43%) =
75%)).

(c) Azimuthal invariant 3D MM tomography proved to be the
most diagnostically effective (70%≺ Ac≺ 96%) in a wide
range of optical thickness (0.25≺ τ ≺ 1.37⇔ 28%≺
Λ≺ 68%) histological sections of biopsy of benign and
malignant tumors of the prostate.

6. Conclusion

A method of azimuthally-invariant 3D MM tomography of
phase and amplitude anisotropy of partially depolarizing lay-
ers of the prostate benign and malignant tumors is proposed
and justified.

Layered ‘phase’ dependences of the magnitude of the
statistical moments of the 1st–4th order, which characterize
the MMI [F44;∆M;F41;F14] (ϕk,m× n) of the polycrystalline
component of the histological sections of prostate tumors,
were investigated.

Optimal conditions for differentiation of polycrystalline
structures of benign andmalignant tumors—the range of phase

sections

{
ϕ∗ (F44;∆M) = 0.45rad;

ϕ∗ (F41;F14) = 0.75rad
and the most sensit-

ive parameters ∆Z∗
i=3;4

(F44;∆M;F41;F14)≡∆Zi=3;4 (ϕ
∗)→

max (statistical moments of the 3rd and 4th orders) are
revealed.

Statistical analysis of the distributions of the paramet-
ers of phase (LB,CB) and amplitude (LD,CD) anisotropy
[F44;∆M;F41;F14] (ϕ

∗,m× n) provided an excellent good
balanced accuracy (Ac(Z3;4 [F44;∆M;F41;F14])∼ 91%−
94%) of differential diagnosis of prostate tumors.

Comparative studies of the diagnostic efficiency of
azimuthally-invariant methods of polarization, 2D and 3D
MMmapping of prostate tumor samples with different optical
thickness (τ ) and depolarizing ability (Λ) were carried out.
On this basis, the levels of balanced accuracy (Ac) and limits

(0.25≺ τ ≺ 1.37⇔ 28%≺ Λ≺ 68%) of using the methods
are determined.
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