Towards automated provenance collection
for runtime models to record system history

Owen Reynolds
Antonio Garcia-Dominguez
Nelly Bencomo
180200041 @aston.ac.uk
a.garcia-dominguez@aston.ac.uk
n.bencomo@aston.ac.uk
SEA research group, EAS, Aston University
Birmingham, United Kingdom

ABSTRACT

In highly dynamic environments, systems are expected to make
decisions on the fly based on their observations that are bound to
be partial. As such, the reasons for its runtime behaviour may be
difficult to understand. In these cases, accountability is crucial, and
decisions by the system need to be traceable. Logging is essential
to support explanations of behaviour, but it poses challenges. Con-
cerns about analysing massive logs have motivated the introduction
of structured logging, however, knowing what to log and which
details to include is still a challenge. Structured logs still do not
necessarily relate events to each other, or indicate time intervals.
We argue that logging changes to a runtime model in a provenance
graph can mitigate some of these problems. The runtime model
keeps only relevant details, therefore reducing the volume of the
logs, while the provenance graph records causal connections be-
tween the changes and the activities performed by the agents in the
system that have introduced them. In this paper, we demonstrate a
first version towards a reusable infrastructure for the automated
construction of such a provenance graph. We apply it to a multi-
threaded traffic simulation case study, with multiple concurrent
agents managing different parts of the simulation. We show how
the provenance graphs can support validating the system behaviour,
and how a seeded fault is reflected in the provenance graphs.

CCS CONCEPTS

« Software and its engineering — System modeling languages;
Integration frameworks; Model-driven software engineering.

KEYWORDS

Provenance, runtime models, multi-threading, self-adaptation, self-
explanation

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SAM °20, October 19-20, 2020, Virtual Event, Canada

© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-8140-6/20/10...$15.00
https://doi.org/10.1145/3419804.3420262

ACM Reference Format:

Owen Reynolds, Antonio Garcia-Dominguez, and Nelly Bencomo. 2020.
Towards automated provenance collection for runtime models to record
system history. In 12th System Analysis and Modelling Conference (SAM
’20), October 19-20, 2020, Virtual Event, Canada. ACM, New York, NY, USA,
10 pages. https://doi.org/10.1145/3419804.3420262

1 INTRODUCTION

Increasing complexity of software systems makes it difficult to
determine the causes of behaviour at runtime [11]. An example of
this can be seen with systems that offer concurrent activities, which
present uncertainty about the order of events and interaction of
activities that may occur at runtime [8]. In other cases, a system
may need to make a decision over a body of information, and it
may be difficult to discern exactly why that decision was made [5,
33]. Algorithmic accountability and the right to explanation is an
important topic for software developers and society in general [34].

Explaining system behaviour requires runtime data to support
the explanations [33, 37]. Event logging is a typical approach to col-
lecting runtime data, where logs are therefore analysed to establish
sequences of events or states [35]. However, analysis of logging data
can be difficult and resource-intensive due to size-related issues.
Structuring log files eases analysis of large logs [20]: by organising
data (for example, into typed columns), analysis can be simplified
through sorting and filtering.

Current approaches to logging can be time consuming: they are
hard to build and refine [39]. Structured log files assist with analysis,
but seem to offer little assistance when implementing logging. Part
of the challenge with logging is knowing which events to log, and
what content to use as a description [13]. Log files are sequential
by nature, which presents additional challenges when trying to
represent concurrent activities. Developers are left to overcome
those problems by themselves, such as indicating time intervals or
relationships between events.

A runtime model [7] provides an abstraction of the runtime
system at a certain level, which discards details not relevant for
its scope. Such a runtime model is available to the system itself to
perform analysis [9]. The system is, therefore, self-aware of those
aspects represented and abstracted by that runtime model [26].
By logging the changes to the model, rather than the changes to
the system, we can abstract away details and therefore reduce the
volume of the logs. Knowing the provenance of the changes [31],
(i.e. who made those changes and for what reasons), creates the

https://doi.org/10.1145/3419804.3420262
https://doi.org/10.1145/3419804.3420262

SAM 20, October 19-20, 2020, Virtual Event, Canada

needed causal connections that can help answer questions about
the system’s behaviour. Such questions can be answered using
provenance graphs, which relate system entities to the agents who
produced them, and the activities they were performing at the time.

We argue that runtime models combined with provenance graphs
can create a logging-based infrastructure that solves some of the
present issues with structured logs. For each change, it is possible
to track who did it, and which activity caused it, within a concrete
time interval. This approach to creation of logs can, therefore, be
automated using a reusable provenance metamodel as a base, with
system descriptions derived from a runtime model.

We propose the creation of a reusable infrastructure that captures
the changes of a runtime model into a provenance graph, which
can, later on, be queried to explain causes for behaviour. In this
paper we present a first version of the architecture and evaluate
a proof of concept implementation, applying it to a simple, but
credible, multi-threaded system that uses a runtime model. The
infrastructure produces logs related to changes and transforms them
into a provenance graph that is ready and amenable to be queried.
Reusability is also offered as the provenance graph conforms to
a metamodel based on W3C PROV-DM [18] that is independent
of the system’s runtime metamodel. The infrastructure also offers
the concept of provenance scopes, a mechanism to automatically
capture the model access events and changes produced by an agent
performing an activity in the system. With the reusable provenance
infrastructure, it is possible to reduce the effort needed to build
a provenance graph of the evolution of the system over time: the
number of lines of code in the case study grew by less than 3%.

This paper is structured as follows. Section 2 presents the con-
cepts that underlie our research. Section 3 presents our approach
to automated provenance collection for runtime models to record
system history. Section 4 applies the approach to a traffic controller,
states the research questions and show the experimental results.
Section 5 further discusses the results obtained using the case study.
We discuss related works in Section 6. Section 7 presents the con-
clusions from these results, and outlines the areas of future work.

2 BACKGROUND

The ideas behind the present work emerge from several areas which
we present as background. Autonomous and self-aware systems
and the limitations of event logging motivate our work. Concepts
from provenance and runtime models are used in our approach.

2.1 Autonomous and self-aware systems

Kephart and Chess presented their vision for autonomic computing
back in 2001 [23], as they envisioned a future where systems be-
came large and complex enough that architects would not be able
to fully anticipate all the interactions in advance. Instead, many
of these concerns would need to be dealt with during execution.
They presented a system architecture known as the MAPE-K loop
(Monitor, Analyze, Plan, Execute — over a Knowledge base) [3],
where the system ran on top of models of its environment, its deci-
sions, and their consequences, built over a feedback loop. The paper
listed a number of self-management aspects of interest, such as
self-configuration, self-optimisation, self-healing, or self-protection.

Owen Reynolds, Antonio Garcia-Dominguez, and Nelly Bencomo

In more general terms, the research on self-aware systems is pro-
ducing systems that make decisions while explicitly taking into
account (i.e. being aware of) their goals [36], requirements [33], or
the time dimension [4]. A relevant self-awareness aspect is (self-)
history-awareness. In [30], the authors argue that systems should
be able to access their adaptation history to tailor future adapta-
tions accordingly, and they call it history-awareness (HA). Further,
they present four levels of HA that serve to frame explanation
capabilities: 1) forensic self-explanation, 2) live HA explanation,
3) externally-guided and HA decision-making with explanation
capabilities, and 4) automated HA systems.

This ability to make decisions on their own complicates their
validation and verification, and in general introduces a problem of
trust. This was already identified in [33], where it is argued that
the system must garner the confidence of its users and developers
by explaining why the system acted in a particular way at a certain
time. Otherwise, they may not be adopted by the general public [1].

2.2 Event logging

One way to obtain explanations is to record what the system was
seeing, doing, and “thinking” each time it made a decision. Tradi-
tional logging frameworks (e.g. Log4;j for Java [2]) can be used to
produce a log of various events in the system. Log data may be
used to identify system states or sequence of steps in a process for
analysis after an event. This process has its own difficulties, as Yuan
et al. [39] identified in a study of several high-profile open-source
programs. Developers typically do not get their log messages on the
first try: many have to be modified as afterthoughts, being changed
in 18% of all revisions. 26% of those are related to the verbosity
level, 27% are related to logging new variables, and 45% are about
modifying the static text. With better tools, this time could have
been saved and reinvested into the system itself.

Structured logging tries to produce better logs by making them
easier to parse with other tools (e.g. by using JSON/XML formats
instead of plain text), and by providing more guidance on how
to design the logged information. Legeza, Golubtsov, and Beyer
briefly mention the use of JSON/XML for logs, and focus more on
the guidance about their content [27]. They consider that a log
message is divided into metadata (when, where, and its severity),
and content (what happened, why, what’s next, and additional
details). Legeza et al. say that when/where can be automated, the
severity needs to be manually picked, and the content itself must
be manually crafted in an iterative process.

Legeza et al. also mention the difficulties in correlating logs from
different microservices in the same system, suggesting the addition
of unique request IDs which are passed along all data paths for this
purpose. In general, relating events (e.g. the start and end of an
activity) can be difficult, especially in a highly concurrent system.

2.3 Provenance

When tracking the reasons that motivated an autonomous or self-
aware system to make a decision, it may be useful to follow a more
principled approach than inserting log statements at the own dis-
cretion of the developer. The field of data provenance can provide
these principles. Pérez defined provenance to be “all the informa-
tion and relationships that contributed to the existence of a piece

Towards automated provenance collection for runtime models to record system history

wasDerivedFrom

Activity

_/

wasinformedBy

- .
wasAssociatedWith

actedOnBehalfOf

Figure 1: W3C PROYV provenance graph structure

of data” [31]. Within that field, the Open Provenance Model (OPM)
provides a standard reusable ontology to record provenance infor-
mation [29]. OPM was the foundation for the W3C PROV prove-
nance ontology, which is available in various notations: one of
those is the PROV Data Model (PROV-DM) [18], which is used in
our proposal (Section 3.1).

As shown in Figure 1, W3C PROV provenance graphs are formed
by AGENT nodes, ACTIVITY nodes, and ENTITY nodes. These nodes
are connected with various kinds of edges that establish causal rela-
tionships, such as “used”, “wasGeneratedBy”, or “wasDerivedFrom”.

e Agents identify who is performing an activity (“wasAsso-
ciatedWith”): the exact level of granularity depends on the
system. In a multi-threaded system, for example, each thread
could be an agent. Delegation can be described as a rela-
tionship of trust between two agents (“actedOnBehalfOf”),
which may occur as the result of a user interaction that re-
sults in a scheduled task. Agents generate entities through
their activities (“wasAttributedTo”).

e Activities identify high-level tasks performed by the sys-
tem, and can be nested at multiple levels to represent sub-
task relationships. Activities are related to entities through
their inputs (“used”) and outputs (“wasGeneratedBy”). An
activity using an entity generated by another activity “was-
InformedBy” that activity. An activity takes place during a
certain time interval.

¢ Entities represent system model features at the attribute
and value level. When the value for an attribute changes,
a new entity is created and related to its previous version
(“wasDerivedFrom”). These entities could be grouped or cat-
egorised like sub-assemblies, which enable higher level of
abstraction through a reduction in details.

Provenance can be automatically generated by a system at run-
time. We compare our approach with other automated provenance
collection methods in Section 6.

2.4 Runtime models

Models have been used for a long time to support the documen-
tation, development, and deployment of systems. More recently,
models have started to be used during the execution of the system
itself. Self-aware systems need to have a way to reflect upon their
own behaviour or goals, and manipulate them to adapt as needed

SAM 20, October 19-20, 2020, Virtual Event, Canada

to meet their goal. To do this, they maintain a runtime model [9]:
“a causally connected self-representation of the associated system
that emphasizes the structure, behavior, or goals of the system from
a problem space perspective”. “Causally connected” means that a
change in the runtime model will impact the system, just like a
change in the system will be observable through the runtime model.

A recent survey from Bencomo, G6tz and Song [7] identified
and classified 275 papers on runtime models. Many of these papers
(123) used runtime models to build self-adaptive systems. 41 papers
used runtime models to assure certain non-functional properties
in a system, and 32 used runtime models for self-optimisation and
self-organisation. The survey reports that most runtime models
operate at high levels of abstraction (specifically, 131 at the archi-
tecture level, and 32 at the goal level). However, there are still some
runtime models at the process (12), context (20), and/or code (16)
levels. Looking at these from a logging perspective, if our system
maintained a causally connected runtime model at the desired level
of abstraction, automatically recording the reasons for its changes
would produce logs at that same level of abstraction. For instance,
tracking changes in an architectural runtime model would produce
architecture-level logs, while tracking changes in a process-level
runtime model would produce process-level logs. Further abstrac-
tion can potentially reduce storage and processing demands to the
levels appropriate for the situation.

3 PROPOSED APPROACH

In the previous section, we provided a background on the chal-
lenges presented by the need to explain the complex behaviour of
autonomous and self-aware systems, and how traditional logging
was difficult to get right in practice. We considered more principled
ways to collect causal information with provenance ontologies. We
also discussed how the causal connection and the use of higher
levels of abstraction, provided by runtime models, offer support for
more appropriate approaches for recording and treatment of logs.

In this section, we outline our proposal for a reusable infras-
tructure to capture the provenance of changes to the system in an
automated manner and using runtime models. Our aim is to reduce
the cost of adding this capability to an existing system. We first dis-
cuss how to represent this information in a way that allows storage
and processing demands to be adjustable to the current needs. We
also outline the software architecture for such an instrumentation.

3.1 Data representation

In this paper, we consider systems that are self-aware, i.e. they
explicitly maintain and use abstractions of their state as they run [6,
26]. Specifically, we use the term system model for such runtime
models [10]. Tracking the changes of a model has already been
studied in the literature (e.g. via model versioning [19] or filmstrip
models [22]). However, to produce explanations about the system
from those changes, their reasons (i.e. provenance) need to be explic-
itly stated. Provenance, in our case, is underpinned by a structure
able to record both the changes and their reasons, while keeping
storage demands at a reasonable level.

Figure 2 illustrates our design for a history model, which rep-
resents the history of the system as a sequence of time windows

SAM 20, October 19-20, 2020, Virtual Event, Canada

System model | {| _ _History model
@ T+15 i T+15
i || Time window (10,15)
: Provenance graph
s
System model | } | ——— S
@T+10 || ——1t T+10
: Time window (5,10) 5
: Provenance graph g
|
e :
System model | } | -"——
@ms |i|——— T+5
: Time window (0,5)
i| || Provenance graph
e
System model | i
TO . T+0

related to the system’s execution in chronological order. This his-
tory model is created alongside the system model and provides the
basis for tracking. Each window has a reference to its base version
of the system model, which represents its state when the time win-
dow started, and a provenance graph of the changes to the system
model during that window laid on top of it. The use of windows
independent from each other allows for “forgetting” past history,
which is no longer relevant, by simply deleting those windows from
the history model: for instance, we could keep one window per day,
and only keep the windows for the last week.

By replaying the changes tracked in the provenance graph on top
of the initial state, it is possible to recreate the base version of the
following window. Beyond the concrete changes, the provenance
graph also tracks the reasons for those changes, which can be
used to provide explanations. In order to define what constitutes
the reasons or provenance of a change, the following pieces of
information are relevant:

e Who made the change? This may be either a part of the
system (e.g. one of its execution threads), or a human in-
teracting with the system. Therefore, the graph must keep
track of the various agents participating in the system.

e What was happening when the change was introduced?

On the one hand, the consumers of the explanations will
likely only have a high-level view of all the activities taking
place in the system. Therefore, rather than pointing them
to a specific line in the code, it may be more useful to think
about the high-level activity that this line was part of.
On the other hand, most modern systems will have several
activities taking place concurrently, e.g. through the use of
multi-threading and/or multiple processes being run in the
same or different machines. This means that tracking the
order of the activities and their overlap is also necessary.

e Which parts of the system model informed the change?
One way to identify problems in a system, or gain trust
by providing explanations, is to examine which pieces of
information guided a given decision. This can be done by
capturing model accesses along with the changes made.

Owen Reynolds, Antonio Garcia-Dominguez, and Nelly Bencomo

System being observed
Agent 1

Message queue

Observer 1

Curator
System
Agent 2 l\zllodel
[Observer 2
Model M Entity
N~

Figure 3: Reusable provenance collection layer components

In order to provide a formal structure for a provenance graph
that integrates these pieces of information, a provenance ontology
can be used. We have chosen W3C PROV-DM for this [18], as it is
an established and validated standard which provides a usable data
model that can be easily implemented (Section 2.3).

3.2 Data collection

After proposing a representation for the information, the next step
is to show how to populate that history model. Manually modifying
the system to produce the history model is a cumbersome and
error-prone activity, where some of the interactions may not be
captured. Instead, we propose to develop an instrumentation layer
to be added into the system; this layer automatically populates the
history model as the system interacts with its system model.

Figure 3 outlines the high-level components involved and their
interaction. A set of observers watch the writing and reading ac-
tions performed by the agents in the system model (e.g. execution
threads). The agents send this information to a message queue. The
message queue is meanwhile read by a curator that runs on its own
thread, and which populates the history model according to the
structures shown in Figures 2 and 1.

The current proof-of-concept of our architecture follows the pro-
cess described above. The design makes some assumptions about
the system. The system is assumed to run on a single machine, and
the model is shared in memory between threads in the same oper-
ating system process. Further, model transactions ensure isolation
between threads. Dealing with distributed models is part of our
future work as explained later.

3.2.1 Observer. The observer intercepts any access to the system
model by the agents, and records who performed the access. Record-
ing who did it (the agent) implies the identification of which agent
was doing what (the activity) when the agent read/modified which
part of the model (the entity). This interception is dependent on
the specific modelling technology used. For example, in the case
of the well-known Eclipse Modeling Framework, the use of a spe-
cialised EObject implementation may be an option. Another avail-
able approach is the use of aspect-oriented programming, where the
interception would be treated as an aspect [24].

In our current version, we require all our model elements to
inherit from a specialised EObject implementation which will in-
tercept any model access and notify the thread observer for the

Towards automated provenance collection for runtime models to record system history

Listing 1: Java try-with-resources for activity scopes

try (var aScope = new ActivityScope (" ActivityName")) {
// .. model reads and writes

}

agent in question. Since each agent runs on its own thread, we
automatically identify the agent through the name of its thread.

There are also different ways of identifying the activity. For
example, it can be done via stack trace analysis, method- or class-
level annotations, or with the use of dedicated "blocks" or activity
scopes that span the code for the activity at hand. The specific syn-
tax for these blocks would be language-specific. As suggested by
Section 2.3, there is a tradeoff between level of detail and under-
standability when choosing automatic or manual approaches to
identify the activity. A fully-automated approach via stack traces
could provide more detail, but manually added activity scopes may
be closer to how a domain expert thinks about the system.

In the current prototype, we chose to manually add activity
scopes for that reason. Our activity scopes are implemented through
Java try-with-resources blocks (see Listing 1), where resource acqui-
sition marks the start of an activity, and resource release marks its
end. It is important to note that scopes can be nested, as activities
may have sub-activities within them. The observer keeps track of
the stack of activity scopes, and associates model accesses with the
activity at the top of the stack.

As mentioned before, each agent runs on its own thread, with its
own thread observer collecting the notifications from the custom
EObject instances. The observers communicate with the curator
thread (detailed below) by adding messages to a thread-safe bounded
blocking queue in the curator. Messages are tuples of the form (id,
agent, activity, oldEntity, newEntity, commitTime):

o id uniquely identifies the message (mostly for debugging).

e agent is a description of the AGENT, with its name (the name
of the thread), and optionally the type and group.

e activity describes the AcTiviTy, which has its unique ID,
name, and its start and ending time (if set).

e oldEntity and entity describe the entities associated to
the old and new values of the accessed model element fea-
ture. Entity descriptions include i) a unique ID, ii) the name,
feature, and ID of the feature, iii) the value in question, iv)
the access type, and v) the storage and in-memory version
numbers for the object.

Our provenance layer makes a distinction between entity
versions that are reflected on disk in the versioned model
store (“storage versions”), and interim versions that are only
kept in memory during the execution of the activity (“mem-
ory versions”). Each modification to a model element feature
increments its memory version, and a commit resets it to 0.
Memory versions can be useful to track the exact sequence
of values that a feature took during an activity, rather than
just the values it took before and after the activity executed.

e commitTime is only used when reporting a commit of a

model transaction, pointing to that instant.

3.2.2 Curator. The curator runs on its own thread as a loop that
extracts and processes the messages arriving at its blocking queue.

SAM 20, October 19-20, 2020, Virtual Event, Canada

TW,) TW,
' A + {
getE set Eto E’

|
’ (EE,')

€ €Y

b)

Figure 4: Options for representing an activity A spanning
time windows TW; and TW;: a) keeping activities within the
time window they started in, b) letting messages populate
different time windows.

The curator operates in a stateless manner: it only uses the infor-
mation in each message to update the provenance graph. When
receiving a message, the curator follows these steps:

(1) If a model transaction has just been committed and enough
time has elapsed, a new time window is started. This new
time window uses the just-committed version in the model
store as its base version, and has its own provenance graph.
If not using a versioned model store, a base version may
require a costly full copy of the system model.

(2) The provenance graph nodes for the agent and activity are

searched by ID, and created if missing.

If a model element feature has been read, search for the

entity node and create it if missing. Add a “used” relation

with the AcTiviTy in question. If the entity “wasGeneratedBy”
another AcTIvITY, add a “wasInformedBy” relationship be-
tween the current AcTIvITY and that one. Finally, if this
required loading a model element from storage into memory,

search or create an ENTITY for the stored version and add a

“wasDerivedFrom” link with the memory-based entity node.

(4) If a model element feature has been set, search or create the
entity nodes for entity and for oldEntity (if set). Add a
“wasAttributedTo” relation between entity and the AGENT,
and a “wasGeneratedBy” relation between entity and the
Activity. If oldEntity has been set, add a relation “was-
DerivedFrom” from entity to oldEntity.

—
5Y)
=

The time windows are memory-based in the current prototype
for simplicity: this also helps speed up node searches. When a time
window ends, it is moved into an Eclipse Connected Data Objects
(CDO) repository to free memory [12]. The ability to dynamically
unload and load parts of a large model is crucial for long-running
systems, which may span over many time windows.

This use of multiple windows raises the question of how to
distribute the provenance nodes across them. Figure 4 shows the
two options that were considered. In this example, an activity A
is spanning over both time windows TW; and TW,, getting the
value of entity E during TW and setting it to E” at the beginning
of TW5. Option a) is to record the time window in which A started,
and record E and E’ in that time window. This complicates the
curator, and can present problems if an activity never finishes (e.g.
a continuously running background task in the system). Option b)
creates a first pair of provenance nodes (A; and E;) for “get E” in
TWi, and then simply allows A to continue into TW,. When “set E

SAM 20, October 19-20, 2020, Virtual Event, Canada

& ple Edtsottngs Locate

|@ @ o] T e o sk 13|

GAAR QD ers O @

ISUMOISUMO words word-2wori

sz yassen 1167610550

Figure 5: Screenshot of the SUMO-based traffic simulation

to E’” is processed, option b) will search for the nodes of A, E, and
E’ in the provenance graph of TWj. Since they are not there, it will
create a new set of provenance nodes for them: Az for A, E; for E
and E;, for E’. This increases the storage costs, but it simplifies the
process of “forgetting” past history: a time window strictly contains
what happened in the system model during a certain interval.
Continuing with option b), it is important to note that activities
and entities record their start and end instants. Thanks to this, it
is possible to know during a query if an activity or entity existed
before a certain time window. It is also possible to find out how
many windows a particular activity spans (which may help with
pruning), or check if an entity was created in a pruned time window.

4 CASE STUDY

The previous section described the general approach for our reusable
provenance layer. This section will apply the provenance layer to
an existing traffic simulation controlled by several agents that co-
ordinate through a shared system model. The rest of the section
introduces the case study, sets out the research questions, explains
the experimental process, and provides the results.

4.1 Description of the case study

The system to be extended is a traffic simulation running on the
open-source SUMO engine [16]. Figure 5 shows a partial view of
the simulation at hand, which consists of two 4-way junctions;
each managed by its own junction controllers. The controllers run
concurrently, each using its own thread, and they share a connection
to SUMO. The traffic lights in each intersection follow a cycle of
phases: when a phase ends, the next one starts. The controllers can
intervene to end phases earlier than the regular schedule. Each
controller runs its own MAPE feedback loop:

e Monitor: reads the number of cars (yellow triangles) stopped
at each lane area detector or LAD (blue rectangles). Reads
the current state of the traffic lights, and checks the last plan
that the other junction controller used (it may want to copy
it). Records both pieces of information in the system model.

e Analyze: checks if traffic is “jammed” at one of the LADs, by
comparing the number of cars against a threshold J (initially
set to 3). Checks if the other controller ended a phase for its
traffic lights in its last MAPE loop iteration. Records both
pieces of information in the system model.

Owen Reynolds, Antonio Garcia-Dominguez, and Nelly Bencomo

e Plan: based on the number of jammed LADs, it creates a
plan for incrementing J by one (if more than 2 are jammed),
or decrementing J by one (if less than 2 are jammed). If more
than 2 LADs are jammed, or if the other junction controller
ended a traffic light phase in its last iteration, then it creates
a plan to end the current traffic light phase. Records current
plans in the system model.

o Execute: conducts valid plans set out in Plan by communi-
cating to SUMO and updating the system model. To protect
against thrashing, Execute will block a phase change plan if
the phase has been running for less than half of its duration.

A class diagram for the metamodel that the system model con-
forms to is shown in Figure 6. In general, a Manager program
runs several concurrent SmartControllers. Each of the MAPE
phases is represented by a type that collects its inputs (e.g. Monitor-
Controls), and a type that collects its outputs (e.g. MonitorResults).
There are also entities which represent the elements managed by
each controller: the TrafficLights and the LaneAreaDetectors.

This simulation is a proof-of-concept of a simple traffic manage-
ment scenario, yet it captures the basic elements of a more realistic
simulation of city traffic. For the purposes of the case study, it shows
a system which monitors the environment, analyses the situation,
sets out plans to adjust itself, and attempts to execute those plans
by interacting with the other participants. This creates information
flows within the system that users and developers will want to
follow through a provenance graph (e.g. to answer questions such
as “why did the traffic lights end their phase at this point?”). It also
has multiple concurrent agents interacting with the system model.

4.2 Research questions

A goal of this case study is to answer the following research ques-
tions about our proposed reusable provenance layer:

(RQ1) What are the costs involved in the use of the provenance
layer? This includes developer effort, additional processing
time, and use of system memory and disk space.

(RQ2) How can we take advantage of the collected information?
Given that visualisation will not scale past a certain com-
plexity degree in the graph, we should be able to perform
queries to trace the provenance of the changes in the system,
or to test hypotheses about its behaviour over time.

RQ1 will be evaluated by running the simulation with and with-
out the instrumentation for the reusable provenance layer, com-
paring space/time usage and the number of lines of code involved.
RQ2 will be evaluated by developing sample queries illustrating
common use cases.

4.3 RQ1: costs involved

In terms of developers’ efforts, the integration of the reusable prove-
nance layer required adding the use of 16 activity scopes in two
levels. First, an activity scope defines each of the MAPE phases.
Next, each phase contained a further 3 nested activity scopes (e.g.
Monitor had “monitor traffic light”, “monitor LAD”, and “moni-
tor phase end from the other controller”). This required wrapping
the relevant parts of the junction controller code in 16 try-with-
resources blocks, as in Listing 1. Commits to CDO were modified so

they would go through the ThreadObserver for the current agent:

Towards automated provenance collection for runtime models to record system history SAM 20, October 19-20, 2020, Virtual Event, Canada

[MonitorControls | | [AnalysisControls | | [PlanToExecute
= ID : EString = ID : EString = ID : EString
= TrafficLight : EString 7 JamThreshold : Eint = 3 = EndPhase : EBoolean = false
&% LaneAreaDetectors : EString = Expect_Program_OFF : EBoolean = true 7 ReportLightsFailed : EBoolean = false
= CheckPhaseEnd : EBoolean = false = CopyPhaseEnd : EBoolean = false = JamThresholdChange : EInt = 0
= CopyingPhaseEnd : EBoolean = false
[MonitorResults [AnalysisResults | | [ExecutionResults
= ID : EString = ID : EString = ID : EString
= TrafficLightSeen : EString 7 LightsFailed : EBoolean = false = PhaseEnded : EBoolean = false
&% LaneAreaDetectorSeen : EString = LADsJammed : Eint = ReportedLightsFailed : EBoolean = false
= PhaseEndedSeen : EBoolean = false = PlanToCopyPhaseEnd : EBoolean = false = ChangedJamThreshold : EInt
‘ j
[TrafficLight
| [LaneAreaDetector [Manager = ID : EString
© ID : EString [smartController [0..*] SmartController o Time : EDouble = 0.0 = PhaseDuration : EDouble = 0.0
LanelD : EStrin 0..*] LaneAreaDetectors : ; y - = Program : EString
= %) 0.1 = D : Estring [0..1] TrafficLight i _
o JamLengthVehicle : Eint = NextSwitch : EDouble = 0.0

Figure 6: Class diagram for the metamodel of the system model

Metric Provenance? Mean SD
Time No 32.34s 0.26s
Yes 32.34s 0.30s
Memory No 8.95MiB 0.04MiB
Yes 18.50MiB 0.21MiB

Table 1: RQ1: means and standard deviations of execution
times and maximum memory usage, over 10 simulations
across 200 ticks without/with the provenance layer.

this is needed to manage the distinction between memory and stor-
age versions. The base class for the generated classes implementing
the system metamodel was changed from the default CDOObject-
Impl to our LoggingCDOObjectImpl. Finally, the simulation had
to notify the curator about its completion.

The simulation grew after these changes from 823 lines of Java
code to 846, as measured by sloccount 2.26 [38] while ignoring
generated code. This represents less than a 3% increase in code.
The reusable observer and curator components are independent
from this codebase, measuring at 943 lines (ignoring as well code
automatically generated by EMF).

In order to measure changes in disk usage, the instrumented ver-
sion of the simulation was run, and the sizes of the Derby databases
used by CDO to store models were measured. The system model
database took 864KiB and the history model database took 16 MB.
This shows that a history model can be much larger than its system
model, and therefore, it justifies the need for pruning old history to
manage storage demands.

To compare time and memory demands, the simulation uses a
background thread to record total heap memory usage with the
memory pool management beans present in Java (MemoryPool-
MXBean), once per second and once at the end of the execution.
The simulation was run 10 times over 200 ticks with and without
the reusable provenance layer. These executions were done on an
Ubuntu 20.04 system with a Linux 5.4.0-42-generic kernel, using
Oracle JDK 11.0.6, SUMO 1.4.0, and CDO 4.10 (as included in Eclipse
2020-06). The system ran on a Thinkpad X1 Carbon laptop with an
17-6600U CPU (dual-core with hyperthreading), with 16GB of RAM

and an SSD. Java was run with an initial heap size of 256MiB, and
a maximum heap size of 512MiB.

Table 1 has the results for each option. The execution times
have not been affected, showing that the time is dominated by the
simulation itself and that the curator can run in the background
without a noticeable impact. Peak memory usage has noticeably
increased (roughly doubled), though as this is a small system model,
it remained small as well. In general, the availability of CPUs with
higher core counts may allow for additional services such as prove-
nance to run on the background with less impact. However, more
memory will undoubtedly be required.

4.4 RQ2:leveraging provenance

Provenance graphs can become very large and complex. There
are various ways to extract information for them. In our previous
work [32], graph visualisations were used to explore the informa-
tion, however these quickly grew too large and complex to be of
practical use. For that reason, this work focuses on query-based
approaches to extracting information. For example, the survey by
Herschel [21] mentions searching by item/time/type of element
tracked, navigation (e.g. by following relationships or changing
granularity levels), and structured query languages. Among these
languages, common examples are XPath, SQL, SPARQL, or spe-
cialisations of those. As we are using CDO with its default Derby
backend, we could use SQL, but it would not translate to other CDO
backends. Instead, we can write the query with any of the existing
model query languages, such as OCL (supported out of the box
by CDO), or the Epsilon Object Language (EOL) [25]. For the case
study at hand, we have chosen to work with EOL, as it has recently
gained support for transparent parallel execution [28]. Further, EOL
can access models stored in CDO through the use of an Epsilon
extension developed by one of the authors of this paper [14].
With the infrastructure ready, we can illustrate an example of
how the provenance graph could be used to both identify the root
cause of a defect we had deliberately introduced in the junction
controllers, and to check that it has been fixed. Suppose that we are
a new developer in Smart Traffic Inc., and on our first day we are

[N T

SAM 20, October 19-20, 2020, Virtual Event, Canada

Listing 2: Excerpt of query Q1: find information used when
a phase was ended

// 1. When was PhaseEnded set to true?
var ePhaseEnded = Entity.all.select(ed |
ed.attr() == 'PhaseEnded' and ed.bool() and ed.isWrite());
for (entJT in ePhaseEnded) {
entJT.printLayer(0);
// 2. Where did the EndPhase this activity used come from?
for (entUsed1 in ent]T.wasGeneratedBy()?.Used
?.selectOne(e | e.attr() == 'EndPhase’)) {
entUsed1.printLayer(1);
// 3. What information was used when EndPhase was set?
for (entUsed2 in entUsed1.wasGeneratedBy()?.Used) {
entUsed2?.printLayer(2);
}
\n=end=".println();

I

Listing 3: Example of output of Q1 with faulty system

L0: PhaseEnded true > GenBy > executeEndPhase
L1: EndPhase true > GenBy > planEndPhase
L2: AnalysisResults AnalysisResults@OID268
L2: PlanToExecute PlanToExecute@QOID267
L2: LADsJammed 5 > GenBy > analysisLADJammed
=end=

told to investigate an issue with a recent update to a smart junc-
tion controller. The report says that the traffic lights are changing
too often. All the developer knows is that the junctions follow a
feedback loop, and that they have a provenance graph.

The developer would query the provenance graph to find the
activity where the phase changed (PhaseEnded in ExecutionRe-
sults was set to true). Then, the developer would ask for the
information used to make such a change, at several levels or lay-
ers. The developer would run the EOL query in Listing 2: the
printLayer EOL context operation prints the name and value of
the entity, and the name of the activity that generated it. The query
would produce outputs such as those in Listing 3. The outputs
show that PhaseEnded was set to true in the executeEndPhase
activity, which was informed by EndPhase, which was set to true
in planEndPhase after checking LADsJammed, which was set to 5
in analysisLADJammed. This is odd: LADsJammed should never be
larger than 4, the number of LADs at each junction.

The developer then knows that the problem is in the analysis-
LADJammed activity. At this point, the developer can look at the code
(see Listing 4), to find out that someone inadvertently commented
out an important line which resets the LADsJammed counter before
recalculation. After fixing the query, the developer can then let
the system run further, to then re-run the query and check that
the phases are ending for the correct reasons, producing an output
such as in Listing 5. The output shows valid cases when the phase
should end, i.e. when LADsJammed is above the threshold (set at 2
by default), as in line 4, or when copying the behaviour of the other
controller as in line 10.

Owen Reynolds, Antonio Garcia-Dominguez, and Nelly Bencomo

Listing 4: Excerpts of seeded fault located by Q1

// activity scope
try (var s = new ActivityScope("analysisLADJammed")) {
analysisLADs(sc.getLaneAreaDetectors(),
sc.getMonitorResults(), sc.getAnalysisControls(),
sc.getAnalysisResults());
}
// method being called
public void analysisLADs(...) {
//sysAR.setLADsJammed(0); // < FAULT
for (LaneAreaDetector sysLAD : sysLADs) {
if (sysMR.getLADSeen().contains(sysLAD.getSumolD())) {
if (sysLAD.getJamLength() > sysAC.getJamThreshold()) {
sysAR.setLADsJammed(sysAR.getLADsJammed() + 1);
B

Listing 5: Examples of output of Q1 with fixed system

L0: PhaseEnded true > GenBy > executeEndPhase
L1: EndPhase true > GenBy > planEndPhase

L2: LADsJammed 3 > GenBy > analysisLADJammed
=end=
L0: PhaseEnded true > GenBy > executeEndPhase
L1: EndPhase true > GenBy > planEndPhase

L2: LADsJammed 2 > GenBy > analysisLADJammed
L2: PlanToCopyPhaseEnd true > GenBy > analysisPhaseEndEvent
=end=

To save space, in this example we had the developer write the
query in Listing 2 all at once. However, in practice the developer
would most likely follow a number of steps to iteratively build the
query: i) look for the cases when PhaseEnded was set, ii) look for
what informed those cases, and finally iii) focus on EndPhase at
layer 1 and then look for what informed its value at the time. From
Herschel’s point of view, there are elements of search, step-wise
navigation, and structured querying in the example. As such, we
believe EOL is expressive enough to cover most scenarios, and the
ability to extend types with context operations (such as printLater
or attr, which are not part of the history metamodel) would make
it feasible to create a reusable library of functions to cover various
scenarios. It may be possible to package these queries themselves
into a UI for domain experts that covers the most common cases.
Still, EOL may not be the most concise language for certain queries:
for instance, a user may just want to see if there is a connection
from a particular entity to a particular activity. For that case, the
path expressions in graph query languages may be better suited.
Evaluating these languages is part of our future work.

5 DISCUSSION

The reusable provenance layer has been applied to a traffic simu-
lation case study with concurrent junction controllers operating
on a shared system model in a CDO repository, using transactions
to isolate threads. Applying this layer only required extending the
simulation code by less than 3%, and did not have impact on the

Towards automated provenance collection for runtime models to record system history

simulation time. In the current version, the extensions were done
manually, introducing activity scopes to the system. However, to
improve that, we plan to use aspect-based programming [24] to
introduce provenance as an orthogonal concern. This would keep
the existing codebase unchanged, and would also remove its cur-
rent dependency on the Eclipse Modeling Framework. As for the
lack of impact on execution time, we consider it was largely due to
the default rate set by SUMO. We will pursue further studies with
simulations with higher data throughput.

The provenance layer did increase the storage demands (with a
16MB provenance layer for a 864kB system model) and the mem-
ory demands (from 8.95MiB to 18.50MiB on average). While the
absolute values are small, the relative increases suggest that fur-
ther improvements can be done to reduce storage and memory
overheads. Internally, the provenance graph records all individual
accesses for each entity (e.g. two reads from the same activity): this
history could be compressed, e.g. by only keeping the first read in
a repeated series of reads from the same activity.

While this first version has stored provenance graphs in CDO,
leveraging the additional capabilities of dedicated graph databases
(e.g. path-oriented queries and mature graph-based visualisations)
may be of interest. For that reason, we are considering creating an
abstraction layer over the provenance graph storage, to therefore
switch between CDO, graph databases, or other technologies (e.g.
triple stores [40], popular in the provenance community).

The case study demonstrated how the provenance graph can
be queried using EOL, traversing layers of explanation by asking
for the entities that were used during a particular change. In its
current version, the approach requires an expert user who has
the knowledge to write EOL queries. We plan to study several
ways to support non-expert users, such as the construction of a
library of reusable queries for common scenarios, or the use of
alternative query approaches such as the path-oriented queries in
graph databases. We will also consider the relationships between
nested activities, and provide ways to increase or decrease the level
of granularity at which we study activities.

6 RELATED WORK

Our approach could be compared with other forms of automated
provenance. The survey by Herschel et al. on provenance [21]
states that there are largely three groups of solutions for automated
collection of provenance in general programming languages. The
first group requires explicit annotations to be added to the code.
The second group collects provenance without requiring changes
(e.g. via static analysis). A third group combines both approaches,
with the more abstract and easier to understand information from
manual annotations acting as a summary and the transparently
collected information as a detailed record that can be explored.
Ideally, a provenance collection approach should use this third
approach as we have done in this work.

Two similar implementations of automated provenance collec-
tion are D-TRACE and SPADE. D-TRACE automatically creates
provenance graphs for the interactions between an application and
the operating system, tracing system calls [17]. SPADE is an open-
source provenance middleware with more flexible capabilities [15]:
while running as a system service in the background, it can capture

SAM 20, October 19-20, 2020, Virtual Event, Canada

operating system-level provenance (e.g. open files and connections),
or application-level provenance. For application-level provenance,
SPADE allows developers to manually introduce provenance infor-
mation in a dedicated DSL, or to use compiler instrumentation to
automatically track the provenance of certain function calls (e.g.
via LLVM compiler options). Like SPADE, our approach enables
application-level provenance, but we do not capture at an operating
system level like D-TRACE. We are unique compared to both in our
use of runtime models as a subject for provenance collection.

Parra et al. [30] showed a system that could turn the structured
logs of a system into a temporal graph, giving users the ability to
write structured queries about its evolution. They framed their
approach into a gradual 4-level roadmap for introducing time-
awareness into self-adaptive systems, and placed themselves at
level 2 (live history-aware explanations). Their temporal graphs
focus on decision processes and do not allow for history pruning,
whereas our provenance graphs can cover all high-level activities
that impact the system state, and can be pruned to keep the length
of the history under control. The case study in the present work
is at level 1 of their roadmap (forensic explanations), but the in-
frastructure allows for level 2 use as it is possible to query the
provenance graph while the system runs.

7 CONCLUSIONS AND FUTURE WORK

This paper proposed tracking the behaviour of self-adaptive soft-
ware systems through an automated and efficient construction of
provenance graphs of the runtime models used by the executing
system to support explanation of runtime behaviour. Rather than
recording everything that happens in the system, the approach
abstracts away the details and records only the accesses to the
higher-level system runtime model. The system runtime model
raises the level of abstraction at which events in the system are
recorded. Further, recording this information allows for a methodi-
cal and better structured approach than those offered by traditional
line-by-line text-oriented log messages.

This work has also described the design of a reusable provenance
layer that can be applied to an existing system, with observers that
watch what agents do, and a curator that collects the intercepted
model accesses and builds a provenance graph from them. Multi-
ple concurrent observers are allowed, and the curator processes
accesses in a stateless way while splitting them over time windows.
The chronologically ordered time windows represent a history
model based on the system’s execution. The management of sep-
arate time windows allows for forgetting past history when no
longer relevant, allowing for efficiency and management of differ-
ent storage demands.

There are several areas where this work can be expanded. In the
current version, the queries require the specific knowledge of tech-
nical users, and the answers provided can be technical. Being able
to express queries and their results in a more natural manner (e.g.
by accepting and generating inputs and outputs closer to natural
language) would make the explanations more accessible to opera-
tors and end users for example. We also foresee that our approach
can support autonomy of the system, as the running system can
use its own provenance graph to perform self-diagnosis when its
system model becomes invalid. For instance, a watchdog agent in

SAM 20, October 19-20, 2020, Virtual Event, Canada

the case study could have detected the invalid LADJammed value,
and then it would have identified the responsible activity through
a query, disabling it temporarily before warning a system operator.

In terms of case studies, the shown case study is focused on a sys-
tem model built around the MAPE-K loop. Additional case studies
with larger systems and other types of runtime models according
to the survey by Bencomo [7] would provide additional insights
on how to leverage and further improve the reusable provenance
layer at other levels of abstractions, which would be provided by
goal-level or process-level models.

On the infrastructure side, a future line of work is to revisit the
need for discrete time windows. The use of disjoint provenance
graphs for each time window can complicate the writing of queries:
some of the context operations in Listing 2 required additional code
to handle discontinuities between time windows. We plan to com-
pare the use of “continuesIn” links between activities and entities
that span windows, with the use of a single rolling provenance graph
that is periodically pruned by a background process. Either way,
users may wish to protect certain activities or entities from pruning,
or specify different retention periods.

Finally, the proof-of-concept has only considered a system run-
ning on a single machine. Tracking a distributed system would
introduce new issues around data consistency between nodes, vis-
ibility of the various areas of system model, and network com-
munication complexities. There are ways to architect each solu-
tion, e.g. with a centralised curator, or a distributed set of curators.
While distributed models are a long-standing challenge in the mod-
els@run.time field [7], it is also a promising area of further work.

Acknowledgements: The work was partially funded by the
Leverhulme Trust Research Fellowship (Grant RF-2019-548) and the
EPSRC Research Project Twenty20Insight (Grant EP/T017627/1).

REFERENCES

[1] R. Andrews, J. Diederich, and A. Tickle. 1995. Survey and critique of techniques
for extracting rules from trained artificial neural networks. Knowledge-Based
Systems (1995). https://doi.org/10.1016/0950-7051(96)81920-4

[2] Apache Foundation. 2020. Log4] homepage. https://logging.apache.org/log4j/2.x/
Date last checked: August 1st, 2020.

[3] P. Arcaini, E. Riccobene, and P. Scandurra. 2015. Modeling and Analyzing MAPE-
K Feedback Loops for Self-Adaptation. In Proc. of SEAMS 2015. 13-23.

[4] T. Becker, A. Agne, P. R. Lewis, et al. 2012. EPiCS: Engineering Proprioception
in Computing Systems. In IEEE 15th International Conference on Computational
Science and Engineering. https://doi.org/10.1109/ICCSE.2012.56

[5] Victoria Bellotti and W. Keith Edwards. 2001. Intelligibility and Accountability:
Human Considerations in Context-Aware Systems. Human—Computer Interaction
16 (2001), 193 - 212.

[6] N. Bencomo and L. H. Garcia Paucar. 2019. RaM: Causally-Connected and
Requirements-Aware Runtime Models using Bayesian Learning. In Proc. of MOD-
ELS 2019. ACM, 216-226.

[7] N.Bencomo, S. Gotz, and H. Song. 2019. Models@run.time: a Guided Tour of the
State-of-the-Art and Research Challenges. Software and Systems Modeling 18, 5
(2019), 3049-3082. https://doi.org/10.1007/s10270-018-00712-x Springer-Verlag.

[8] F. A. Bianchi, A. Margara, and M. Pezzé. 2018. A Survey of Recent Trends in

Testing Concurrent Software Systems. IEEE Transactions on Software Engineering

44, 8 (2018), 747-783. https://doi.org/10/ggvqro6

G. Blair, N. Bencomo, and R. B. France. 2009. Models@ run.time. Computer 42,

10 (2009), 22-27. https://doi.org/10.1109/MC.2009.326

[10] G.S.Blair, N. Bencomo, and N. B. France. 2009. Models@run.time. IEEE Computer

42,10 (2009), 22-27. https://doi.org/10.1109/MC.2009.326

[11] National Research Council. 2014. Complex Operational Decision Making in Net-

worked Systems of Humans and Machines: A Multidisciplinary Approach. National

Academies Press, Washington DC. https://doi.org/10.17226/18844

Eclipse Foundation. 2019. CDO Model Repository. https://www.eclipse.org/cdo/

Date last checked: July 19th, 2020.

=
X0

[12

(13

[14]

[15]

(16

(18

[19]

[20

[21

(23]

[24

[25]

[26

[29]

[30

[31

@
&,

(33]

[34

[35

[36]

[37

[38

[39

[40]

Owen Reynolds, Antonio Garcia-Dominguez, and Nelly Bencomo

Q. Fu, J. Zhu, W. Hu, et al. 2014. Where do developers log? an empirical study
on logging practices in industry. In Companion Proceedings of ICSE 2014. ACM,
24-33. https://doi.org/10/ggvqsz

A. Garcia-Dominguez and S. Madani. 2020. emc-cdo GitHub project.
//github.com/epsilonlabs/emc-cdo Date last checked: August 1st, 2020.
A. Gehani and D. Tariq. 2012. SPADE: Support for Provenance Auditing in Dis-
tributed Environments. In Middleware 2012 (LNCS). Springer, Berlin, Heidelberg,
101-120. https://doi.org/10.1007/978-3-642-35170-9_6

German Aerospace Center. 2019. SUMO homepage. http://sumo.sourceforge.net/
Date last checked: August 2nd, 2020.

E. Gessiou, V. Pappas, E. Athanasopoulos, et al. 2012. Towards a Universal
Data Provenance Framework Using Dynamic Instrumentation. In Information
Security and Privacy Research. Vol. 376. Springer Berlin Heidelberg, 103-114.
https://doi.org/10.1007/978-3-642-30436-1_9

P. Groth and L. Moreau. 2013. PROV-Overview. Working Group Note. W3C.
https://www.w3.org/TR/prov-overview/ Last checked: August 2nd, 2020.

M. Haeusler, T. Trojer, J. Kessler, et al. 2018. Combining Versioning and Metamodel
Evolution in the ChronoSphere Model Repository. In Proc. of SOFSEM 2018.
Edizioni della Normale, 153-167. https://doi.org/10.1007/978-3-319-73117-9_11
S.He, J. Zhu, P. He, and M. R. Lyu. 2016. Experience Report: System Log Analysis
for Anomaly Detection. In 2016 IEEE 27th International Symposium on Software
Reliability Engineering (ISSRE). 207-218.

M. Herschel, R. Diestelkamper, and H. Ben Lahmar. 2017. A survey on provenance:
What for? What form? What from? The VLDB Journal 26, 6 (2017), 881-906.
https://doi.org/10.1007/s00778-017-0486-1

F. Hilken and M. Gogolla. 2016. Verifying Linear Temporal Logic Properties in
UML/OCL Class Diagrams Using Filmstripping. In 2016 Euromicro Conference on
Digital System Design (DSD). 708-713. https://doi.org/10.1109/DSD.2016.42

J. O. Kephart and D. M. Chess. 2003. The vision of autonomic computing. Com-
puter 36, 1 (Jan. 2003), 41-50. https://doi.org/10.1109/MC.2003.1160055

G. Kiczales, J. Lamping, A. Mendhekar, et al. 1997. Aspect-Oriented Programming.
In Proceedings of ECOOP’97. LNCS, Vol. 1241. Springer-Verlag, Jyvaskyl4, Finland,
220-242. https://doi.org/10.1007/BFb0053381

D. S. Kolovos, R. F. Paige, and F. Polack. 2006. The Epsilon Object Language
(EOL). In Proceedings of ECMDA-FA 2006. Bilbao, Spain.

S. Kounev, P. Lewis, K. Bellman, N. Bencomo, et al. 2017. The Notion of Self-aware
Computing. Springer International Publishing, Cham, 3-16. https://doi.org/10.
1007/978-3-319-47474-8_1

V. Legeza, A. Golubtsov, and B. Beyer. 2019. Structured Logging: Crafting Useful
Message Content. :login; Summer 2019, Vol. 44, No. 2 (2019). https://www.usenix.
org/publications/login/summer2019/legeza

S. Madani, D. S. Kolovos, and R. F. Paige. 2019. Towards optimisation of model
queries : A parallel execution approach. Journal of Object Technology (2019).
https://doi.org/10.5381/JOT.2019.18.2.A3

L. Moreau, B. Clifford,]. Freire, et al. 2011. The Open Provenance Model core
specification (v1.1). Future Generation Computer Systems 27, 6 (2011), 743-756.
https://doi.org/10.1016/j.future.2010.07.005

J Parra-Ullauri, A. Garcia-Dominguez, L. Garcia-Paucar, and N. Bencomo. 2020.
Temporal Models for History-Aware Explainability. In 12th System Analysis and
Modelling Conference (SAM °20), October 19-20, 2020, Virtual Event, Canada. https:
//doi.org/10.1145/3419804.3420276 To be published.

B. Pérez, J. Rubio, and C. Saenz-Adan. 2018. A systematic review of provenance
systems. Knowledge and Information Systems 57, 3 (Dec. 2018), 495-543. https:
//doi.org/10/gf8q84

O. Reynolds, A. Garcia-Dominguez, and N. Bencomo. 2020. Automated Prove-
nance Graphs for models@run.time. In ACM/IEEE MODELS 2020 Companion
Proceedings. https://doi.org/10.1145/3417990.3419503 To be published.

P. Sawyer, N. Bencomo, J. Whittle, E. Letier, and A. Finkelstein. 2010.
Requirements-Aware Systems: A Research Agenda for RE for Self-adaptive Sys-
tems. In Proceedings of RE’10. https://doi.org/10.1109/RE.2010.21

Andrew D Selbst and Julia Powles. 2017. Meaningful information and the right
to explanation. International Data Privacy Law 7, 4 (12 2017), 233-242. https:
//doi.org/10.1093/idpl/ipx022

M. Szvetits and Uwe Zdun. 2013. Enhancing root cause analysis with runtime
models and interactive visualizations. CEUR Workshop Proceedings 1079 (2013).
G. Tamura, N. M. Villegas, H. A. Miiller, et al. 2013. Improving context-awareness
in self-adaptation using the DYNAMICO reference model. In Proceedings of
SEAMS. https://doi.org/10.1109/SEAMS.2013.6595502

K. Welsh, N. Bencomo, P. Sawyer, and J. Whittle. 2014. Self-Explanation in
Adaptive Systems Based on Runtime Goal-Based Models. 122-145. https://doi.
0rg/10.1007/978-3-662-44871-7_5

D. A. Wheeler. 2013. sloccount homepage. https://sourceforge.net/projects/
sloccount/ Date last checked: August 1st, 2020.

D. Yuan, S. Park, and Y. Zhou. 2012. Characterizing logging practices in open-
source software. In Proceedings of ICSE 2012. IEEE Press, 102-112.

M. Tamer Ozsu. 2016. A survey of RDF data management systems. Frontiers of
Computer Science 10, 3 (June 2016), 418-432. https://doi.org/10.1007/s11704-016-
5554-y

https:

https://doi.org/10.1016/0950-7051(96)81920-4
https://logging.apache.org/log4j/2.x/
https://doi.org/10.1109/ICCSE.2012.56
https://doi.org/10.1007/s10270-018-00712-x
https://doi.org/10/ggvqr6
https://doi.org/10.1109/MC.2009.326
https://doi.org/10.1109/MC.2009.326
https://doi.org/10.17226/18844
https://www.eclipse.org/cdo/
https://doi.org/10/ggvqsz
https://github.com/epsilonlabs/emc-cdo
https://github.com/epsilonlabs/emc-cdo
https://doi.org/10.1007/978-3-642-35170-9_6
http://sumo.sourceforge.net/
https://doi.org/10.1007/978-3-642-30436-1_9
https://www.w3.org/TR/prov-overview/
https://doi.org/10.1007/978-3-319-73117-9_11
https://doi.org/10.1007/s00778-017-0486-1
https://doi.org/10.1109/DSD.2016.42
https://doi.org/10.1109/MC.2003.1160055
https://doi.org/10.1007/BFb0053381
https://doi.org/10.1007/978-3-319-47474-8_1
https://doi.org/10.1007/978-3-319-47474-8_1
https://www.usenix.org/publications/login/summer2019/legeza
https://www.usenix.org/publications/login/summer2019/legeza
https://doi.org/10.5381/JOT.2019.18.2.A3
https://doi.org/10.1016/j.future.2010.07.005
https://doi.org/10.1145/3419804.3420276
https://doi.org/10.1145/3419804.3420276
https://doi.org/10/gf8q84
https://doi.org/10/gf8q84
https://doi.org/10.1145/3417990.3419503
https://doi.org/10.1109/RE.2010.21
https://doi.org/10.1093/idpl/ipx022
https://doi.org/10.1093/idpl/ipx022
https://doi.org/10.1109/SEAMS.2013.6595502
https://doi.org/10.1007/978-3-662-44871-7_5
https://doi.org/10.1007/978-3-662-44871-7_5
https://sourceforge.net/projects/sloccount/
https://sourceforge.net/projects/sloccount/
https://doi.org/10.1007/s11704-016-5554-y
https://doi.org/10.1007/s11704-016-5554-y

	Abstract
	1 Introduction
	2 Background
	2.1 Autonomous and self-aware systems
	2.2 Event logging
	2.3 Provenance
	2.4 Runtime models

	3 Proposed approach
	3.1 Data representation
	3.2 Data collection

	4 Case study
	4.1 Description of the case study
	4.2 Research questions
	4.3 RQ1: costs involved
	4.4 RQ2: leveraging provenance

	5 Discussion
	6 Related work
	7 Conclusions and future work
	References

