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Scalable Harmonisation of Complex Networks with
Local Controllers

Miroslav Kárný, Randa Herzallah

Abstract—Computational and communication complexities call
for distributed, robust, and adaptive control. This paper pro-
poses a promising way of bottom up design of distributed
control in which simple controllers are responsible for individual
nodes. The overall behaviour of the network can be achieved
by interconnecting such controlled loops in cascade control
for example, and by enabling the individual nodes to share
information about data with their neighbours without aiming
at unattainable global solution. The problem is addressed by
employing a fully probabilistic design, which can cope with
inherent uncertainties, that can be implemented adaptively and
which provide a systematic rich way to information sharing. The
paper elaborates the overall solution, applies it to linear-Gaussian
case and provides simulation results.

I. INTRODUCTION

Complex dynamical systems formed by large ensembles
of nodes interacting with a limited number of neighbouring
nodes are essential in nature, technology and human societies.
Controlling the dynamics of such a network is an important
research, which is specifically considered here. The complexity
and high dimensionality of a network often deny the oppor-
tunity of controlling the targeted enormous number of nodes
in a centralised manner. Even a recent viable and effective
approach of controlling a small fraction of the network nodes,
known as pinning control [1], [2] has its inherent limits.
Typically, the network need not be controllable with a tech-
nically feasible amount of centrally controlled nodes. Thus,
it is worthwhile to inspect distributed adaptive control. The
distributed solution admits to cope with the computational and
communication complexities in large scale systems, when the
noise, uncertainties and slow variations are respected by using
probabilistic machinery. Width and variations of topology of
complex networks make bottom-up design natural and the only
fully scalable way. In this design method, simple controllers
focus on individual nodes either completely independently
or within various architectures such as cascade control. The
desirable simplicity of controllers at individual nodes makes
such architecture vulnerable to improper overall behaviour.
Access to cheap computational and communication resources
now allows the individual nodes to harmonise their acting by
sharing information with their neighbours without aiming for
unattainable global solutions.
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The harmonisation can be supported by a message-passing.
It is one of new decentralised methods for managing systems
with large ensembles of interconnected nodes [3] where in-
formation is retrieved and disseminated in a consistent prob-
abilistic fashion. The approach has emerged independently
in a number of fields, including communications theory [4],
artificial intelligence [5], and statistical physics [6]. However,
the techniques and their potential generalisations have not yet
been adequately introduced into the control community.

This paper develops a broadly applicable decentralised
probabilistic adaptive control with an active passing of data-
based as well as probabilistic “messages” that are exploitable
without the need to increase complexity of the knowledge
sharing nodes. It formulates the control of the large scale
networks as a collection of smaller control problems, one for
each connected node (subnetwork) in the system. The node-
control problems are treated independently. Controllers can act
asynchronously and autonomously and can be implemented
individually. Knowledge sharing runs in the same mode. This
brings additional advantages: a) nodes may follow individual
aims and the network will (hopefully) stabilises at an accept-
able compromise, b) design costs, which strongly limit top
down decomposition of large scale problems into distributed
solutions [7], [8], are low and do not limit scalability, c)
designed controllers are randomised and naturally explorative,
d) hierarchical solutions, possibly in pinning control style, can
be simply created via set-point control of (selected) nodes.

This paper primarily proposes an adaptive controller appli-
cable to each node. It controls a few outputs by its inputs while
treating other available measurements as external variables.
It recursively estimates parameters of a simple model while
coping with inevitable approximation errors via stabilised
forgetting [9], [10]. It exploits this model for control design via
fully probabilistic design of controllers (FPD, [11], [12], [13]).
In FPD, the optimal randomised controller is the minimiser
of the Kullback-Leibler divergence [14] of the probability
density (pd) describing closed loop dynamics to its ideal
counterpart. Its relevance is due to its ability: i) to cope with
stochastic nature of the controlled nodes, ii) to also adapt the
ideal pd, expressing control aims, and iii) to use its unified
probabilistic language for designing an efficient and well-
grounded message-passing scheme, which does not force the
knowledge sharing nodes to increase their complexity.

Section II formulates and solves the proposed adaptive
control design for a single control node, which uses observed
external variables. Its flexibility and computational simplicity
form the main message brought. Section III deals with a
network of such nodes and equips them with a simple way
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of sharing knowledge contained in predictors they deal with.
It opens a novel use of a recent methodology developed for
knowledge elicitation [15]. Section IV applies the general
methodology to linear Gaussian case and Section V illustrates
it by simulations. Section VI provides concluding remarks.

II. ADAPTIVE CONTROL OF SINGLE NODE WITH
EXTERNAL VARIABLES

A collection of control nodes is considered. Each node
selects a sequence of real multivariate inputs1 ut ∈ ut,
t ∈ t = {1, . . . , |t|}, with the aim to influence real multivariate
outputs yt ∈ yt, t ∈ t. The outputs are also influenced by
multivariate observed external variables xt−1 ∈ xt−1. The
relations of these random variables are modelled by a Markov-
type probability density (pd2), by the system model

M(yt, xt|ut, . . . , u1, yt−1, . . . , y0, xt−1, . . . , x0)

= M(yt|ut, wt−1)M(xt|xt−1) (1)
wt−1 = [yt−1, xt−1], t ∈ t, w0 given.

The first factor M(yt|ut, wt−1) in (1) expresses the assumed
Markovian dependence. The chosen form of the second factor
M(xt|xt−1) in (1) expresses the assumption (only approxi-
mately valid) that xt are external variables with their inherent
dynamics uninfluenced by the inputs ut and outputs yt.

The discussed node optimises the system inputs by using
fully probabilistic design of decision strategies. FPD expresses
the control objectives via pds (subscripted by I), which can be
interpreted as factors of an ideal (desired) closed loop model

CI(yt, ut, xt|ut−1, . . . , u1, yt−1, . . . , y0, xt−1, . . . , x0)

= MI(yt|wt−1)SI(ut|wt−1)M(xt|xt−1), t ∈ t. (2)

In (2), the factor M(xt|xt−1) describing the desired behaviour
of the external variable xt equals to the corresponding coun-
terpart in (1). This respects the “externality” of xt and allows
it to evolve uncontrollably.

With the given ideal closed loop model (2), FPD se-
lects the optimal strategy SO from the set S of randomised
strategies, formed by sequences of randomised control laws3

S = {S(ut|wt−1), t ∈ t}, as follows

SO = arg min
S∈S
D(CS||CI). (3)

There, Kullback-Leibler divergence D (KLD, [14])

D(H||G) =

∫
z

H(z) ln(H(z)/G(z)) dz

measures proximity of pds H, G. In (3), FPD compares the
closed loop model

CS = CS(y|t|, . . . , y1, u|t|, . . . , u1, x|t|, . . . , x1|w0)

=
∏
t∈t

M(yt|ut, wt−1)S(ut|wt−1)M(xt|xt−1),

1A set of values of a variable z is denoted z. It is specified when needed.
2Pd is Radon-Nikodým derivative [16] with respect to a dominating measure

– either Lebesgue or counting one – denoted d•. Different functions denoted
by the same letter are distinguished by identifiers of their arguments and
possibly by an additional decoration, often being the set to which concerns.

3Individual admissible control laws are described by pds S(ut|wt−1)
having their supports on admissible sets of inputs ut and conditioned by
the available knowledge. For the system model (1) and the ideal closed loop
model (2), the knowledge of wt−1 suffices.

with the ideal closed loop model (over whole time span)

CI = CI(y|t|, . . . , y1, u|t|, . . . , u1, x|t|, . . . , x1|w0)

=
∏
t∈t

MI(yt|xt−1)SI(ut|wt−1)M(xt|xt−1).

FPD is taken as a ready methodology in this paper. Its
details and axiomatic background are left aside. It suffices
to recall that it densely extends the set of control problems
that can be formulated and solved within Bayesian framework
[13]. Note that a closely related and independently developed
technique [17], [18] is referred to as KL control.

A. FPD with Observed External Variables

The next proposition specialises the general solution [12]
of the optimisation (3) to the control design with observed
external variables.

Proposition 1 (FPD with Observed External Variables): The
optimal strategy in the FPD sense (3), for the system model
(1) and the ideal closed loop model (2), consists of the optimal
control laws SO(ut|wt−1), wt−1 = (yt−1, xt−1), t ∈ t,

SO(ut|wt−1) =
SI(ut|wt−1) exp[−ω(ut, wt−1)]∫

ut

SI(ut|wt−1) exp[−ω(ut, wt−1)] dut︸ ︷︷ ︸
γ(wt−1)

ω(ut, wt−1) =∫
yt

M(yt|ut, wt−1) ln
( M(yt|ut, wt−1)

MI(yt|wt−1)γ̄(yt, xt−1)

)
dyt ≥ 0

ln(γ̄(yt, xt−1)) =

∫
xt

M(xt|xt−1) ln(γ(yt, xt)) dxt,

with γ̄(·), γ(·) ≤ 1. (4)

The evaluations run in backward manner with γ(y|t|, x|t|) = 1.
Proof Let us assume that we already optimised over control
laws for time moments starting after time t ∈ t up to the
horizon |t|. The achieved minimum is assumed to be of the
form − ln(γ(yt, xt)) = − ln(γ(wt)) ≥ 0. For time |t|, this
form is valid with γ(w|t|) = 1. We perform an inductive
step for a time t ≤ |t| by optimising over the control
law S(ut|wt−1). The part of the partially minimised KLD
influenced by this control law has the form

R(wt−1) =

∫
yt

∫
ut

∫
xt

M(yt|ut, wt−1)S(ut|wt−1)M(xt|xt−1)

× ln

(
M(yt|ut, wt−1)S(ut|wt−1)

MI(yt|wt−1)SI(ut|wt−1)γ(yt, xt)

)
dytdutdxt

The form of the ideal closed loop model (2), definitions of
symbols in (4), Fubini theorem on multiple integration and
normalisation of pds imply the next optimised part of KLD

R(wt−1)

= − ln(γ(wt−1)) +

∫
ut

S(ut|wt−1) ln

(
S(ut|wt−1)

SO(ut|wt−1)

)
dut.

The last term is conditional KLD, which is minimised for
equal arguments and it is zero when the equality is achieved.
This demonstrates the optimality of SO and describes the back-
ward evolution of the function γ(wt−1). For the inductively
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assumed γ(yt, xt) = γ(wt) ≤ 1, the function γ̄(yt, xt−1) ≤ 1
and thus the function ω(ut, wt−1) ≥ 0. Thus, γ(wt−1) ≤ 1.
This completes the inductive step. �

Remarks 1:
• The function − ln(γ(yt, xt)) = − ln(γ(wt)) corresponds

with the value function in dynamic programming [19].
• It is important to see the role of the model M(xt|xt−1)

describing external variables. It just maps ln(γ(yt, xt)) =
ln(γ(wt)) on ln(γ̄(yt, xt−1)) by averaging. This makes
the design computationally undemanding even for high-
dimensional external variables, cf. Section IV.

B. Bayesian Estimation in Exponential Family

FPD relies on availability of the system model (1). In
the considered adaptive context, it is obtained via recur-
sive Bayesian estimation [20] of a parametric model. The
permanent estimation allows us to rely on simple models
describing the modelled system locally. This motivates the use
of system models from exponential family (EF, [21]). This
is essentially the only family admitting a finite dimensional
sufficient statistic [22] and consequently the permanent non-
approximated estimation. It is recalled here.

The model relating a predicted multivariate real variable
δt ∈ δt, δt ∈ {yt, xt} to a multivariate explanatory variable
ψt ∈ {(ut, wt−1), xt−1} parameterised by a finite-dimensional
Θ ∈ Θ belongs to EF if it is described by a pd of the form

M(δt|Θ, ψt) = exp 〈A(Ψt),B(Θ)〉 ,Ψt = [δt, ψt], (5)

where data Ψt enters the multivariate function A, dimension
of which makes the scalar product 〈A,B〉 with the multivariate
function B(Θ) well defined.

Bayesian estimation evolves the posterior pd P(Θ|Kt),
which is the pd of the unknown parameter Θ conditioned
on knowledge Kt. The evolving knowledge Kt compresses
prior knowledge K0 and data observed up to the time t,
Kt = (Ψt,Kt−1), t ∈ t. The parameter Θ ∈ Θ is unknown
to the considered controllers, i.e.

S(ut|Θ,Kt−1) = S(ut|Kt−1) (6)
⇔ P(Θ|Kt−1) = P(Θ|Kt−1, ut) = P(Θ|Kt−1, ψt).

Under these natural conditions of control [20], the evolution
of the posterior pd is driven by the Bayes rule written for EF

P(Θ|Kt) =
exp

〈
V̄t,B(Θ)

〉
P(Θ|K0)

J̄(V̄t)

=
exp

〈
V̄t−1 + A(Ψt),B(Θ)

〉
P(Θ|K0)

J̄(V̄t−1 + A(Ψt))

J̄(V̄ ) =

∫
Θ

exp
〈
V̄ ,B(Θ)

〉
P(Θ|K0) dΘ. (7)

V̄t = V̄t−1 + A(Ψt) is the sufficient statistic4 of the fixed
and finite dimension of A. The recursion starts with V̄0 = 0.
The evaluation needs a prior pd P(Θ|K0) quantifying prior
knowledge K0 about Θ. Without a substantial decrease of
flexibility, the conjugate prior pd P(Θ|K0) ∝ exp 〈V0,B(Θ)〉,

4Recall, sufficient statistic comprises all knowledge on Θ brought by data.

[23], is considered further on. It has the form mimic to the
likelihood of EF and simplifies (7) to the form

P(Θ|Kt) = P(Θ|Vt) =
exp 〈Vt,B(Θ)〉

J(Vt)
, Vt = V̄t + V0

Vt = Vt−1 + A(Ψt), V0 chosen a priori,

J(V ) =

∫
Θ

exp 〈V,B(Θ)〉dΘ. (8)

This estimation exactly provides the model of δt as the
predictor, i.e. the pd

F(δt|Kt−1, ψt) = F(δt|Vt−1, ψt) =
J(Vt−1 + A(Ψt))

J(Vt−1)
. (9)

This form exploits the natural conditions of control (6).
For the parametric system model in EF, the predictor (9) can

formally be used in Proposition 1 as the system model. It leads
to dual control problem [24] or, in the more recent vocabulary,
the problem of approximate dynamic programming [25]. We
avoid its complexity by adopting certainty-equivalence approx-
imation of the predictive pd (9), i.e. by taking

F(δt|Vt−1, ψt) ≈ M(δt|Θ̂t−1, ψt). (10)

There, Θ̂t−1 is a point estimate of Θ ∈ Θ selected according
to the pd P(Θ|Vt−1), say, its expected value or its maximiser.

The used system model is intentionally simple to keep
computational demands low. Thus, it is inevitably approxi-
mate. Paper [9] has shown that stabilised forgetting [10] is
the proper tool for preventing a permanent accumulation of
approximation errors. Within EF, it modifies the updating of
the value of the sufficient statistic Vt to

Vt = φt(Vt−1 + A(Ψt)) + (1− φt)Vt−1 = Vt−1 + φtA(Ψt).
(11)

The forgetting factor φt ∈ [0, 1] entering (11) is in [9] selected
heuristically. An asymptotic analysis of the corresponding
weighted Bayes rules [26] leads to the following, better
motivated, choice used further on

φt =
J(Vt−1 + A(Ψt))

2

J(Vt−1 + 2A(Ψt))
, (12)

which coincides with the recommendation in [26] when taking
the predictive pd in measured data – after using them in
updating – as the predictor ideally fitting them. A detailed
justification of (12) is out of scope of this paper. Importantly,
the forgetting factor (12) is always in the range [0, 1]. It
approaches 1 if the posterior pd P(Θ|Kt−1) is concentrated
and the observation δt is close to its point prediction.

C. Parametric System Model and Ideal Closed Loop Model

The recalled estimation is applied to the system model
parameterised by multivariate parameters (Θ,Θx) ∈ (Θ,Θx)

M(yt, xt|Θ,Θx, ut, wt−1)

= M(yt|Θ, ut, wt−1)M(xt|Θx, xt−1). (13)

The independent parametrisation respects the external nature ofxt.



4

The call for simplicity of parameter estimation makes us to
assume that both factors of the system model (13) are in EF.
The first one is

M(yt|Θ, ut, wt−1) = exp 〈A(Ψt),B(Θ)〉
ψt = [ut, wt−1], Ψt = [yt, ψt]

and its conjugate posterior pd P(Θ|Kt) = P(Θ|Vt) is deter-
mined by the sufficient statistic Vt = Vt−1+A(Ψt), V0 chosen
a priori. The second one modelling the external variables in EF

M(xt|Θx, xt−1) = exp 〈Ax(Ψt;x),Bx(Θx)〉
ψt;x = xt−1, Ψt;x = [xt, xt−1]

deals with its choice of functions Ax, Bx, data Ψt;x =
[xt, xt−1] and unknown parameter Θx described by the conju-
gate posterior pd P(Θx|Kt) = P(Θx|Vt;x) with the sufficient
statistic Vt;x = Vt−1;x + Ax(Ψt;x), V0;x chosen a priori.

Remarks 2:

• The parameter estimation concerning a multivariate pre-
dicted variable, say, y′t = [yt;1, . . . , yt;`y ], ′ is transpo-
sition, can be reduced to parallel estimation of single
variate parametric models: the chain rule for pds implies

M(yt|Θ, ut, wt−1) (14)

=

`y∏
i=1

M(yt;i|Θi, yt;i+1, . . . , yt;`y , ut, wt−1).

The factors in the right-hand side of (14) predict scalars
and have to deal with collection of explanatory variables
ut, wt−1 extended by yt;i+1, . . . , yt;`y . The parameters
Θi are constituents of Θ. Their choice allows us to in-
troduce a structural prior knowledge about independence
of some predicted entries. This is especially important
for external variables. Their rough model often neglects
mutual dependencies of the current and delayed entries
of xt;i, xt;j , xt−1;i, xt−1;j , j 6= i and assumes

M(xt|Θx, xt−1) =

`x∏
i=1

M(xt;i|Θxi, xt−1;i). (15)

The simplification (15) reduces estimation computational
load and it is at least partially compensated by adaptivity
(recursive learning with forgetting) and by the knowledge
sharing discussed in Section III-B.

• The errors caused by certainty-equivalence approximation
of the predictor (10) are also counteracted by adaptivity.

• The lack of active exploration connected with the
certainty-equivalence approximation is a hard and open
problem [27]. Its systematic treatment goes beyond the
scope of this paper. We conjecture that the randomised
nature of the FPD-optimal control laws, Proposition 1,
diminishes the lack of an intentional exploration.

• The difficult and important choice of the ideal pd, falling
into the general problem of preference elicitation [28],
is treated here marginally. For the elaborated classical
aim of pushing the output yt to an externally supplied

set-point yt;s, which is embedded into xt, the following
system-model-dependent choice is meaningful

CI(yt, ut|wt−1) = MI(yt|wt−1)SI(ut|wt−1). (16)
There MI(yt|wt−1) = M(yt|ut;s, wt−1)

ut;s ∈ Arg max
ut∈ut

M(yt;s|ut, wt−1)

and SI(ut|wt−1) is a flat pd concentrating its mass on the
set ut of desired inputs. This makes the ideal closed loop
model potentially reachable. The use of the recursively
estimated system model in (16) then also adapts the ideal
closed loop model. For related discussions, see [29], [30].

III. UNLIMITED NETWORK OF CONTROL NODES

A. Considered Network of Controllers

The control node described in Section II in fact acts within
a network of interacting nodes of the same type. They may
differ in explanatory variables and thus in character and dimen-
sions of unknown parameters and possibly even in functions
A, B, Ax,Bx defining specific members of EF.

The targeted size of the network and disparity of local aims
prevent a global joint optimisation. Individual nodes share part
of the data with a limited (small) number of their neighbours.
Without a message passing, each node selects the input ut and
tries to influence the output yt that it is responsible for. The
other observed data, including inputs and outputs optimised
locally by neighbours, is modelled and treated by the specific
node as external variables in xt.

If the mutual influence of locally optimised nodes is weak
enough, it may happen that the whole network will behave
well. Generally, however, incompletely compatible aims and
non-harmonised dynamics cause emergent behaviours, which
are very far from the desired ones (up to instability).

Question arises, whether it is possible to allow neighbours to
systematically share additional information, which harmonises
their acting but does not force individual nodes to go beyond
the model they handle. In other words, the sharing of addi-
tional information does not force nodes to go towards the
infeasible global model and global optimisation of the net-
work. This constraint reduces the harmonisation to information
sharing, which improves description of unknown parameters
entering parametric models. This direction is elaborated here.

The sharing of information between nodes is asynchronous
and distributed over the network within various overlapping
groups of neighbours. This practically makes the sharing fully
scalable with respect to the network size. At the same time,
it allows us to consider information sharing merely for a pair
of nodes indexed by ρ ∈ {α, β}. Each node has its elements
used for constructing and using adaptive controllers. Recall
that they consist of optional inputs ut;ρ ∈ ut;ρ, optimised
outputs yt;ρ ∈ yt;ρ, the related set points yt;sρ ∈ yt;ρ, external
variables xt;ρ ∈ xt;ρ, the parametric system models in EF

M(yt;ρ|Θρ, ut;ρ, wt−1;ρ)M(xt;ρ|Θxρ, xt−1;ρ),

and, importantly, the conjugate pds describing the unknown
parameters, for nodes ρ ∈ {α, β},

P(Θρ|Kt;ρ) = P(Θρ|Vt;ρ), P(Θxρ|Kt;ρ) = P(Θxρ|Vt;xρ).
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Neighbours, by their definition, share a non-void part δt of
data vectors Ψt;ρ,Ψt;xρ and each node has disposal models of
their future occurrences, i.e. pds

F(δt|Kt−1;ρ) = F(δt|Kt−1;ρ, ψt;ρ). (17)

Indeed, these pds are the output predictors if outputs are part of
δt, or they are the designed randomised control laws (property
of FPD) if inputs are part of δt, or they are predictors of
external variables included in δt.

The nodes are assumed to be uninformed about system
models or control laws used by their neighbours as the extent
of possible options is too broad even when dealing with EF
only. Thus, they cannot directly share information about their
parameters. Thus, the predictors of common data δt (17) offer
the only affordable way for improving neighbours’ models
without increasing their complexity.

B. Sharing of Knowledge Brought by Predictors

Question arises how to extract the information contained in a
probabilistic data model for correcting description of unknown
parameters. Exactly this question was answered in the context
of knowledge elicitation and led to the definite proposal
summarised in Proposition 2 below. The derivation of the
sharing formula (18) below is simple but it needs machinery,
which goes beyond the scope of this paper. It is presented in
[31]. Let us note that it was proposed by the first author of
[15] and successfully applied in [32]. Loosely, it follows from
an application of minimum cross-entropy principle [33], [34]
and its generalisation [35] allowing non-linear constraints on
pds to be optimised according to this principle.

Proposition 2 (How Data Pd Modifies Pd of Parameter):
Let us consider a fixed knowledge, K, determining the pd
M(δ|Θ, ψ) of a finite-dimensional data δ ∈ δ, conditioned
on a finite-dimensional parameter Θ ∈ Θ and explanatory
variables in ψ ∈ ψ. Let the pd of the parameter Θ under
the knowledge K be P(Θ|K) = P(Θ|K,ψ), cf. (6). Let
F(δ) = F(δ|external knowledge) be an externally supplied pd
describing data δ. Then, the description of unknown parameter
respecting this information is the pd

P(Θ|F,K) =
P(Θ|K) exp[µ

∫
δ

F(δ) ln(M(δ|Θ, ψ))dδ]∫
Θ

P(Θ|K) exp[µ
∫
δ

F(δ) ln(M(δ|Θ, ψ))dδ]dΘ
,

(18)
where the optional scalar µ > 0 informally expresses amount
of informative data items used for creating the pd F(δ).

Specialisation of (18) to is straightforward and appealing.
Proposition 3 (How Data Pd Modifies Pd of Parameter in

EF): Let us consider the parametric model in EF, M(δ|Θ, ψ) =
exp 〈A(Ψ),B(Θ)〉, and the conjugate pd,

P(Θ|K) = P(Θ|V ) = exp 〈V,B(Θ)〉 /J(V )

J(V ) =

∫
Θ

exp 〈V,B(Θ)〉 dΘ.

Then, the pd P(Θ|F,K) = P(Θ|F, V ) (18) is also conjugate

P(Θ|F, V ) = P(Θ|V̄ ) =
exp

〈
V̄ ,B(Θ)

〉
J(V̄ )

V̄ = V + µĀ(ψ) with Ā(ψ) =

∫
δ

A(δ, ψ)F(δ) dδ

J(V̄ ) =

∫
Θ

exp
〈
V̄ ,B(Θ)

〉
dΘ. (19)

Remarks 3:

• The proposed sharing of knowledge is directly applicable
to any node pair at any time moment.

• The operation (19) behaves similarly as updating by ob-
served data but takes into account its uncertainty assigned
by the pd F(δ). The processed information is corrupted by
errors caused by approximate nature of shared predictors
F(δ). Thus, the use of stabilised forgetting (11) with the
optimised factor (12), after its application is a must.

• Processing of the predictive pd corresponds to infor-
mation updated by single data item, which hints to
choosing µ = 1. The choice can be varied when the
information about the number of processed data since
the last predictor sharing is available. Any finite choice
µ ≥ 1 is acceptable as the subsequent forgetting tailors it.

C. Message Passing within the Supported Networks

The presented concept of control nodes interacting with
their neighbours is extremely flexible: i) topologically – neigh-
bours are simply those nodes, which share some external
variables; the contemporary information technology makes
spatial relations of secondary importance; ii) in acting – each
node acts almost as being alone using its measurement and its
input-selection time schedules; iii) design – individual nodes
can be designed and implemented at various time moments.

These features follow from the fact that a node α deals with:

ut;α, system input, which is chosen solely by the node α – this
is the only strict network-induced constraint, which has
to be respected.

yt;α, system output, which is optimised by the node α, typi-
cally solely, but possibly by other nodes β, γ, . . . Con-
flicts may arise in the latter case and it is useful to avoid it
again by respecting potential neighbours in the network.

xt;α, external variables, consisting of the node-dependent se-
lection of the following variables

xt;αs, external variables originating in the system with
which node α interacts,

δt;ρ, which is a part of inputs of ut;ρ generated by
neighbouring nodes ρ = β, γ, . . . or a part
of the outputs yt;ρ optimised by them or a
part of external variables xt;ρ predicted by them.
This signal can be complemented by a predictor
Fρ(δt;ρ|Kt−1;ρ), which is exploited according to
Proposition 2. Whenever δt;ρ is modelled by the node
α within exponential family Mα(δt;ρ|Θα, ψt;α) =
exp 〈Aα(δt;ρ, ψt;α),Bα(Θα)〉 learnt within conjugate
family, it suffices to pass the predictive moment
Āα(ψt;α) ≡

∫
δt;ρ

Aα(δt;ρ, ψt;α)Fρ(δδt;ρ) dδδt;ρ, cf.
Proposition 3. Here, the abundant use of indices α, ρ
stresses the node-related origin of treated entities.
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IV. APPLICATION TO LINEAR GAUSSIAN CASE

In this section, the general methodology is applied to
linear Gaussian system model and Gaussian ideal pd. This
case is: i) the FPD counterpart of the widely used classical
linear-quadratic control design (including its model predictive
version [36]), which forms the firm basis in solving more
complex problems by relying on linearisation; ii) solvable
without additional approximations.

Hereafter, domains yt, ut, xt coincide with multivariate
real spaces but this fact is not stressed by notation. For clarity,
yt, ut, xt are treated as column vectors, i.e. wt = [y′t, x

′
t]
′.

A. FPD with Observed External Variables

The assumed system model (1) has the next first factor5

M(yt|ut, wt−1) = Nyt(Awt−1 + But,RR′) (20)
A = [Ay,Ax] while with ||z||2 = z′z

Ny(ŷ,RR′) = |2πRR′|−0.5 exp
[
− 0.5||R−1(y − ŷ)||2

]
,

where the matrices A, B and the regular square-root R of
covariance matrix are appropriately sized.

The second factor in (1), modelling external variables xt, is

M(xt|xt−1) = Nxt(Cxt−1,RxR′x). (21)

It is given by the matrix C, and the square-root Rx of
covariance matrix. The factors of the ideal pd (2) are

MI(yt|ut, wt−1) = MI(yt|wt−1) = Nyt(AIwt−1 + BIut,RR′)
SI(ut|wt−1) = Nut(DIwt−1,RIuR′Iu) with |RIu| 6= 0

AI = [AIy,AIx], DI = [DIy,DIx]. (22)

Remarks 4:
• The involved matrices are known in the design phase due

to the use of the certainty-equivalence approximation.
• The matrices in the discussed pds are assumed to meet

an algebraic condition guaranteeing existence and unique-
ness of the optimal control laws, cf. Lemma 1.

• AIwt−1 defines the expected value of an externally gen-
erated set point yt;s of yt. The set point yt;s does not
depend on ut, wt−1 and it is included into the vector
xt of external variables. Its expectation, however, may
depend on wt−1, especially, when the construction (16)
of this ideal factor is used.

• The use of RR′ from the system model (20) as the ideal
covariance follows from the recommended choice (16).
The matrices DI and |RIu| 6= 0 are chosen so that inputs
pushing the output to its set point yt;s ∈ yt maintain a
high probability within a desired subset of ut.

Application of Proposition 1 to linear-Gaussian case uses:
Lemma 1 (Operations on Quadratic Form):
1) Expected quadratic form: Let δ̂ = E[δ] be expectation

of a vector δ ∈ δ and WW′ its covariance. Then,
expectation of the quadratic form ||Uδ+v||2, determined
by a given matrix U and a vector v, has the form

E
[
||Uδ + v||2

]
= ||Uδ̂ + v||2 + tr[UWW′U′],

5The set subscript at matrices indicates the vector variable by which the
(sub)matrix is multiplied.

where tr[•] is matrix trace.
2) Square-root-based completion of quadratic form:

Let us consider the sum of quadratic forms of `u, `y ,
and `x vectors u ∈ u, y ∈ y, x ∈ x, weighted
by given weighing matrices Fu, Fy, Fx, Gu, Gy, Gx,
Hu, Hy, Hx of appropriate dimensions. Let squares in
u ∈ u and y ∈ y be completed. Then, there is an
orthogonal matrix T guaranteeing the identity

||Fuu+ Fyy + Fxx||2 + ||Guu+ Gyy + Gxx||2

+||Huu+ Hyy + Hxx||2 (23)
= ||Luu+ Lyy + Lxx||2 + ||Eyy + Exx||2

TZ = T

 Fu Fy Fx
Gu Gy Gx
Hu Hy Hx

 =

 Lu Ly Lx
0 Ey Ex
0 0 Ux

 ,
where Lu is square (`u, `u) upper triangular matrix and
Ey is square (`y, `y) matrix. Such T exists if the initial
`u + `y columns of the matrix Z have full rank.

Proof
ad 1. It can be verified by direct evaluations.
ad 2. This square-root completion of squares in u and y
was used for control purposes since the eighties, e.g. [37].
It exploits invariance of quadratic norms to rotations made by
an orthogonal matrix T, (T′ = T−1). Elementary rotations or
QR algorithm [38] are examples of making the efficient matrix
(block) triangularisation represented by (23). �

Proposition 4 (Linear Gaussian FPD with External Variables):
Let us define (`y, `w) matrix [E|t|;y,E|t|;x] = 0 and perform
the following iterations for τ = |t|, |t| − 1, . . . , t consisting
of triangularisations of Zτ = R−1(B− BI) R−1(Ay − AIy) R−1(Ax − AIx)

R−1Iu R−1Iu ( −DIy) R−1Iu ( −DIx)
Eτ ;yB Eτ ;yAy Eτ ;yAx + Eτ ;xC

 (24)

by an orthogonal transformation Tτ giving

TτZτ =

 Lτ ;u Lτ ;y Lτ ;x
0 Eτ−1;y Eτ−1;x
0 0 Uτ−1;x

 . (25)

Then, the optimal strategy in the FPD sense (3), for the
system model (20), (21) and the ideal pd (22) given by known
matrices involved, is determined by the optimal control laws
SO(ut|wt−1) = SO(ut|yt−1, xt−1), t ∈ t,

SO(ut|yt−1, xt−1) (26)
= Nut

(
− L−1t;u(Lt;yyt−1 + Lt;xxt−1), L−1t;u(L−1t;u)′

)
.

Proof By induction for τ = |t|, . . . , t, we shall show that

−2 ln(γ(yτ , xτ )) = ||Eτ ;yyτ + Eτ ;xxτ ||2 + hτ

given by (`y, `y) matrix Eτ ;y , (`y, `x) matrix Eτ ;x and a data-
independent offset hτ . The starting value ln(γ(y|t|, x|t|)) = 0
has this form for E|t|;y = 0, E|t|;x = 0 and h|t| = 0, cf. the
starting value in Proposition 1.

For τ ≤ |t|, the definition of the function ω(uτ , yt−1, xt−1)
(4) and Lemma 1 imply the form of the exponent of the
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optimal control law, which – after completion squares in its
exponent with respect to ut – defines γ(yt−1, xt−1).

−ω(uτ , yτ−1, xτ−1) + ln(SI(uτ |yτ−1, xτ−1))

= 0.5||R−1(B− BI)︸ ︷︷ ︸
Fu

uτ + R−1(Ay − AIy)︸ ︷︷ ︸
Fy

yτ−1

+R−1(Ax − AIx)︸ ︷︷ ︸
Fx

xτ−1||2 + h

+0.5||R−1Iu︸︷︷︸
Gu

uτ − R−1Iu DIy︸ ︷︷ ︸
Gy

yτ−1 − R−1Iu DIx︸ ︷︷ ︸
Gx

xτ−1||2

+0.5||Eτ ;yB︸ ︷︷ ︸
Hτ;u

uτ + Eτ ;yAy︸ ︷︷ ︸
Hτ;y

yτ−1 + (Eτ ;yAx + Eτ ;xC)︸ ︷︷ ︸
Hτ;x

xτ−1||2

= 0.5||Lτ ;uuτ + Lτ ;yyτ−1 + Lτ ;xxτ−1||2 +

0.5||Eτ−1;yyτ−1 + Eτ−1;xxτ−1||2 + 0.5||Uτ−1;xxτ−1||2.

This confirms the form of the optimal control law as well as
of the assumed form of γ(yτ , xτ ). Notice that factors given
by hτ and ||Uτ−1;xxτ−1||2 cancels in the definition of the
optimal control law and does not enter γ(yτ , xτ ). �

Remarks 5:
• From complexity view point, it is important to notice that

– the triangularisation runs on `u + `y columns and
(`y+2× `u) rows of (`y+2× `u)× (`u+ `w) matrix,

– inversions are only needed once and for small-sized
triangular matrices R0.5, R0.5

I and Lt;u,
– square-root form of the covariance of the optimal

control law (26) makes sampling from this pd simple.
• The recursions are equivalent to the Riccati equation

corresponding to linear systems with external variables
and quadratic criterion whose weight are inversions of
covariance matrices of the ideal pd, cf. [11].

• The resulting controller is randomised and specific ac-
tions should be sampled from its pd: the control quality
is slightly worse than using input equal to expected value
as it respects constraints on entropy of the controller [13]
but randomisation makes the controller explorative.

B. Parameter Estimation
In the following, we exploit the possibility to deal with

predicting the scalar variable δt, see (14). Its linear Gaussian
model casts into the EF form as follows

M(δt|Θ, ψt) = (2πr)−0.5 exp[−0.5r−1(δt − θ′ψt)2]

= exp
{

1× (−0.5 ln(2πr))

+ tr

[
ΨtΨ

′
t

(
−0.5r−1

[ −1
θ

][
− 1, θ′

])]}
, (27)

where data vector Ψt = [δt, ψ
′
t]
′ and the unknown parameter

Θ consists of the vector of coefficients θ and noise variance r.
Proposition 5 (Estimation for Linear Gaussian Model): The

form (27) corresponds to (5) with A(Ψt) = (1,ΨtΨ
′
t)

B(Θ) =

(
−0.5 ln(2πr),−0.5r−1

[ −1
θ

][
− 1, θ′

])
Vt = (νt,Vt), νt = νt−1 + 1

Vt = Vt−1 + ΨtΨ
′
t, ν0, V0 chosen a priori.

The conjugate prior pd is Gauss-inverse-gamma pd. It is proper
iff V0 > 0 and ν0 > 0 when takes the next form, with `θ equal
to the number of θ coefficients and t ≥ 0,

P(θ, r|νt,Vt) =
1

r0.5(νt+`θ+2)J(νt,Vt)

× exp

{
−0.5r−1

[
− 1, θ′

]
Vt
[ −1

θ

]}
=

1

r0.5(νt+`θ−2)J(νt,Vt)

× exp
{
−0.5r−1[(θ − θ̂t)′W−1t (θ − θ̂t) + νtr̂t]

}
V =

[
Vδ V′δψ
Vδψ Vψ

]
with scalar Vδ defines

θ̂ = V−1ψ Vδψ, W = V−1ψ , r̂ =
Vδ − V′δψV

−1
ψ V′δψ

ν

J(νt,Vt) = r̂−0.5νtt |Vt;ψ|−0.5 Γ(0.5νt)(0.5νt)
−0.5νt(2π)0.5`ψ

Γ(z) =

∫ ∞
0

vz−1 exp(−v) dv <∞ for z > 0

F(δ|ψ, νt,Vt) is Student distribution with moments

E[δ|ψ, νt,Vt] = θ̂′tψ, variance[δ|ψ, νt,Vt] = r̂t(1 + ζt)

ζt = ψ′Wψ. (28)

Remarks 6:

• The equivalent expression of the sufficient statistic ν,V
via ν, θ̂,W, r̂ connect the discussed estimation with recur-
sive least squares [20]. The algorithm implemented using
factorised version of V makes it numerically robust and
simplifies evaluation of the normalisation factor J needed
for selecting forgetting factor φt (12).

• The form of the normalising factor J can be found in
[20], too. There it is shown that the factorised version of
recursive estimation [20] makes the evaluation of r̂t and
|Vt;ψ| computationally cheap and, as said, robust.

• The statistic values θ̂, r̂ are maximum a posteriori point
estimates of θ, r. They serve for the certainty-equi-
valence-based approximation of the system model (10).

C. Sharing of Knowledge Brought by Predictors

Sharing of knowledge brought by predictors consists of a
simple specialisation of Proposition (3) to linear Gaussian case
with conjugate Gaussian-inverse-gamma posterior pd.

Proposition 6 (Proposition 3 for Linear Gaussian Model):
Let us consider that node β uses the linear Gaussian parametric
model (27) and the conjugate Gaussian-inverse-gamma pd (28)
determined by statistics νβ ,Vβ . Then, this pd corrected by the
predictor offered by node α with moments

δ̂α = Eα[δ], varianceα(δ) = r̂δα

is also conjugate Gaussian-inverse-gamma pd determined by

ν̄β = νβ + µ (29)

V̄β = Vβ + µ

[
δ̂α
ψβ

]
[δ̂α, ψβ ] + µ

[
r̂δα 0
0 0

]
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If the predictor results from learning of the linear Gaussian
system model used by node α then the moments are

δ̂α = θ̂′αψα = V′δψαV
−1
ψαψα

r̂δα =
Vyα − V′δψαV

−1
ψαVδψα

να
(1 + ζα)

ζα = ψ′αV
−1
ψαψα,

where the used symbols are defined in Proposition 5. If the
predictor coincides with the control law (26) (δα = uα) then

δ̂α = −L−1t−1;uαLt;wαwt−1;α, r̂
−1
δα = L′t−1;uαLt−1;uα,

where the coefficients and the covariance are the final values
obtained from iterations described by Proposition 4 and wt−1;α
contain data to be used for generating the predicted δα = uα.

Remarks 7:
• The verification of Proposition 6 is straightforward. The

attention is to be paid for distinguishing data processed
by the predictor α from those used in estimation by node β.

• The formula (29) is intuitively appealing as it replaces the
unavailable δ by its prediction made by the neighbour
α but at the same time it respects precision of this
prediction: if r̂δα is large then the corrected pd gets the
large r̂δβ . It can be interpreted as an addition of data
Ψ′ = [

√
r̂δα, 0] with the predicted variable unrelated to

explanatory variables.
• The application of the stabilised forgetting can lead to a

complete suppression of the correction resulting from the
predictor when it does not improve prediction quality.

V. ON EXPERIMENTS

The first part provides illustrative simulation results indi-
cating the use of the presented theory. The second one just
summarises experience, we gained from extensive (for the
space sake unreported) simulation experiments.

A. Illustrative Example

This section describes simulation of interactions of a pair
interacting nodes controlling a linearised version of coupled
map lattice (CML) with periodic boundary conditions. CML
is disturbed by white zero mean Gaussian noise κt+1 with
covariance matrix 0.001I. Its un-controlled dynamics is de-
scribed by Xt+1 = ASXt + κt+1, where

AS = η


1− 2ε ε 0 . . . ε
ε 1− 2ε ε . . . 0
0 ε 1− 2ε . . . 0
...

...
...

. . .
...

ε 0 0 . . . 1− 2ε

 (30)

is the `X × `X Jacobian matrix, ε is the coupling strength,
η = ∂f(z)

∂z |z=z? , z? = 1 − 1/a is the homogeneous steady
state of the lattice, and f(z) is a logistic local map, a non-
linear function with parameter a that describes the nonlinear
dynamical behavior of CML,

zjt+1 = F (zj−1t , zjt , z
j+1
t )

= f [(1− 2ε)zjt + ε(zj−1t + zj+1
t )] + κjt+1, (31)

where j = 1, 2, . . . , `X label the lattice sites zj , and `X is the
system size. For detailed description of the CML, the readers
are referred to [39] where CML has been used to illustrate
theoretical developments for probabilistic pinning control of
complex dynamical networks.

The reported pair of experiments compares the proposed
adaptive distributed probabilistic control with the global prob-
abilistic pinning control [39]. In these experiments, the lattice
is initiated by X = X0 and the control aim is to keep Xt as
close as possible to the origin. The parameters of the CML
are taken to be a = 3.0, `X = 4, and ε = 0.33, yielding

AS =


−0.34 −0.33 0 −0.33
−0.33 −0.34 −0.33 0

0 −0.33 −0.34 −0.33
−0.33 0 −0.33 −0.34

 . (32)

In the first experiment, the presented theory is applied. The
control of the four-dimensional lattice is treated as a pair of
control tasks, one for each node. Node α takes Xt+1;1 =
yt+1;1α, Xt+1;2 = yt+1;2α and takes Xt+1;3 = xt+1;1α as an
external variable. Hence, the system model (1) of node α has
factors (the simulated system does not imply Cρ-entries),

Mα(yt|ut, wt−1) = Nyt(Aαwt−1 + Bαut,RR′),

Aα =

[
−0.34 −0.33 0
−0.33 −0.34 −0.33

]
, Bα =

[
1
1

]
,

Mα(xt|xt−1) = Nxt(Cαxt−1,RxR′x) (33)
Cα =

[
0 0 c3,3

]
.

Node β is responsible for Xt+1;3 = yt+1;1β and Xt+1;4 =
yt+1;2β . It identifies Xt+1;1 = xt+1;1β , Xt+1;2 = xt+1;2β

and the first input Ut;1 = xt+1;3β , i.e. treats them as external
signals. Hence, model (1) of node β has two factors

Mβ(yt|ut, wt−1) = Nyt(Aβwt−1 + Bβut,RR′),

Aβ =

[
−0.34 −0.33 1 0 −0.33
−0.33 −0.34 1 −0.33 0

]
, Bβ =

[
1
1

]
M(xt|xt−1) = Nxt(Cβxt−1,RxR′x),

Cβ =

 0 0 cu1,u1 cu1,1 cu1,2

0 0 c1,u1 c1,1 c1,2
0 0 c2,u1

c2,1 c2,2

 .
The entries of the matrices Aρ, Bρ Cρ, ρ ∈ {α, β}, are
assumed to be unknown to controllers (except those zero
entries which are enforced by treating some signals as external
variables). They are (on line) recursively estimated using the
Bayesian technique recalled in Section IV-B.

The typical resulting trajectories are in Figures 1, which
confirm that in spite of the crude approximation adopted by the
distributed controllers the global behavior of the overall closed
loop is satisfactory as seen from the comparative experiment.

In a comparative experiment, one controller is designed
using the probabilistic pinning control methodology, where the
length 4 lattice is controlled using two control signals that are
placed next to each other at the sides of the lattice [39], thus
yielding the following controlled version of CML,

Xt+1 = ASXt + BSUt+1 + κt+1, where (34)

AS is given by (32) and BS =

[
1 0 0 0
0 0 0 1

]′
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Fig. 1. Outputs (up) and inputs (bellow) of a non chaotic coupled map lattice
with, `X = 4, a = 3, and ε = 0.33 resulting from the distributed adaptive
fully probabilistic controller.

and where κt+1 is a Gaussian noise with covariance matrix
0.001I, and Ut+1 = [u1,t+1, u1,t+1]′ is the vector of control
inputs. The parameters of the lattice given in (34) are assumed
to be unknown and recursively estimated. The typical resulting
trajectories are in Figures 2. The global solution even achieves
a slightly worse quality than that of the distributed solution.
This can be intuitively expected as the distributed probabilistic
controllers estimate less parameters than the global pinning
controller. The difference diminishes with the diminishing
noise term, κt+1 in (30).

B. Simulation Experience

The experience listed below comes from experiments with:
i) stabilisation of the coupled map lattice (30) for various
`X , a, ε with various noise realisations; ii) another extensively
simulated high-dimensional linear system, referred to as Flock.

Matrices of Flock were chosen to imitate linear, stochasti-
cally disturbed movement of a flock controlled by acceleration
(deceleration) of individual agents among several tens of simu-
lated ones. Each was described by a position and velocity. The
control objective, expressed by individual ideal model, was to
keep the same velocity as the right neighbour while keeping
a distance from it. The most right-hand side agent aimed to
follow externally supplied position. All agents, thus dealt with
two-dimensional output, scalar input and two-dimensional
external variables (neighbour’s position and speed).

The observations we feel worth sharing are:

• The general solution mostly worked very satisfactorily.
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Fig. 2. Outputs (up) and inputs (bellow) of a non chaotic coupled map lattice
with, `X = 4, a = 3, and ε = 0.33 for adaptive controller based on the
single model.

• Stability of whole network is not guaranteed but instabil-
ity was recorded quite rarely. The adaptive specification
of penalties inherent to the proposed methodology (cf.
the discussion near (16)) seems to be responsible for it.

• The data-dependent forgetting worked as expected: its
average values have exponentially approached unity and
individual values stay there even in long runs (several
thousands of simulation steps). This has contributed to
the (mostly) satisfactory behaviour of the whole network.

• Randomised nature of the constructed controller indeed
helped to move parameter estimates into meaningful
areas. This has allowed us to have extremely short open-
loop learning period (at most several tens was sufficient).

• Sharing of probabilistic information did help in the
achieved quality but, for the made simulations, the im-
provements were more minor than we expected (any rea-
sonable statistical test would take them as insignificant).

VI. CONCLUDING REMARKS

Complexity of networks of interacting control nodes in
current society and technology, together with the quest for
improving their behaviour, makes the addressed problem ex-
tremely important. The systematic overall solution for an
important and widely met class of distributed control problems
is the main contribution of the paper. It is achieved by: i)
the adopted use of observed signals as external variables; ii)
the use of local adaptive controllers with built-in forgetting
mechanism; iii) strictly respecting limited evaluation abilities
of local controllers; iv) the novel use of exploiting external
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data predictors for correcting parameter estimation; v) the
full exploitation of probabilistic machinery enhanced by the
adopted fully probabilistic design of controllers.

The proposed solution is directly applicable to controlled
Markov chains (Markov Decision Processes [40]). It is ex-
pected to be feasible for the general cases of mixed discrete
and continuous data. The solution can be used as a building
block of hierarchical, possibly pinning, set point control.

The missing analysis of stability, quality and emergent
network behaviour is the main gap to be filled in. Also,
an explanation of the weaker-than-expected contribution of
predictor-based knowledge sharing is to be inspected. The
optimistic hypothesis that the control was too much successful
even without it has to be tested.

In spite of open problems, the achieved state of development
and available experimental evidence make it worth of putting a
further effort into the control-design direction described in the
paper. The extreme application potential width is the decisive
reason for a further development of our solution. It suits
Industry 4.0 [41], which approaches the production processes
as the complex cyber-physical systems with control networks
organised in the way advocated our paper. Similarly, control of
town traffic via traffic lights [42], energy intelligent buildings
[43], naturally distributed markets, etc. are technically ready
for advantageous use of the presented concept.
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[6] G. Parisi, M. Mézard, and M. Virasoro, Spin Glass Theory and Beyond.
World Scientific, Singapore, 1987.

[7] L. Bakule, “Decentralized control: An overview,” Annual Reviews in
Control, vol. 32, no. 1 (2008), pp. 87–98, 2008.

[8] L. Bakule, “Decentralized control: Status and outlook,” Annual Reviews
in Control, vol. 38, no. 1, pp. 71–80, 2014.
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and Scalability, T. Guy, M. Kárný, and D. Wolpert, Eds. Springer, 2014,
pp. 57–91.
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