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Abstract: Within a dynamic and complex working environment, fatigue statuses (involving physical and mental fatigue) of workers 27 

on construction sites tend to have a more serious impact on work performance than general workplaces. To improve safety 28 

management on sites, valid fatigue management measures for workers are urgently required. Specifically, there are construction 29 

activities requiring both physical and cognitive effort. As a critical premise for putting forward feasible fatigue management 30 

measures, correlations between physical and mental fatigue on work performance should be identified. This research explored the 31 

effects of physical fatigue on the induction of mental fatigue of construction workers, by adopting a pilot experimental method. 32 

Manual handling tasks of different intensities were firstly designed for stimulating certain expected physical fatigue statuses. A 33 

cognition-required risk identification task was then arranged for inducing mental fatigue, during which a wearable 34 

electroencephalogram (EEG) sensor was utilized for fatigue detection and measurement. Through a comprehensive data analysis 35 

method based on EEG rhythms, it was found that the high physical fatigue can significantly accelerate the induction of mental 36 

fatigue. Considering the resource allotment, more vigilant and attentional resources were required during the intensive manual 37 

handling tasks for the highly controlled limbs and the mind to steps. Thus, additional resources were invested to maintain the same 38 

level of cognitive performance in the risk identification tasks, which led to the increased mental fatigue. In practice, the heavy 39 

physical task can be regarded as one of the factors affecting the development of mental fatigue status, and therefore impairing 40 

cognitive functioning and other mental performances of the brain. The pilot study results provided a reference for fatigue 41 

management of construction workers to promote comprehensive safety management on construction sites. 42 

Keywords: Construction activity; Physical fatigue; Mental fatigue; Correlation and influence; Pilot experiment 43 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



1 Introduction 44 

Construction is a dynamic and complicated process with unique working conditions. Risk events occur 45 

frequently due to various risk factors, which can consequently lead to safety accidents and property loss. 46 

According to statistics from the Ministry of Housing and Urban-Rural Development of China, there were 581 47 

safety accidents with 673 fatalities in the Chinese construction industry in the first three quarters of 2018. To 48 

reduce potential risks and improve safety on construction sites, initiatives for establishing comprehensive 49 

management systems have been encouraged. Regulations on construction worker management have received 50 

greater attention. For example, for special operation personnel in the construction industry, formal 51 

occupational training, compliance certification, and physical examinations are required prior to commencing 52 

work. Further, regulatory compliances aimed at the construction process (e.g., wearing personal protective 53 

equipment and following specific construction procedures) are proposed [1]. In addition to above management 54 

practices, construction workers require constant alertness and attention on their surrounding dynamic 55 

construction site environment to recognize potential risks and prevent accidents and injuries. Resulting from 56 

excessive workload, a worker is prone to carry out construction activities under the fatigue status with a poor 57 

cognitive condition, such as slowed reaction time, reduced vigilance, reduced decision-making ability, task 58 

distraction, and loss of situational awareness [2]. Cognitive failure led by fatigue can lead to unsafe behaviors 59 

of workers. Further, the low work quality and productivity and the increased risk occurrence probability can 60 

be contributed [3-4]. However, existing efforts on the fatigue management of construction worker, which 61 

closely related to several risk-related outcomes, were relatively limited. 62 

Depending on the types of fatigue, the ways it leads to risk-related outcomes can be summarized as two 63 

main categories. (1) “physical fatigue -> cognitive failure -> risk-related outcomes”: Physically-demanding 64 

tasks are typical during the construction phase. Intensive physical work is prone to physical fatigue of workers, 65 

along with poor judgment to the dynamic environment and involved hazards. Overexertion in construction 66 

activities has become one of the leading causes of occupational injuries among building construction workers 67 

[5]. (2) “mental fatigue -> cognitive failure -> risk-related outcomes”: In particular, some construction 68 

workers (e.g., electricians and scaffolders) also experience intensive cognitive demands in practical 69 

construction activities. A clear mental status is required to maximize work performance and ensure 70 

construction safety. Due to perpetual cognitive demands within constrained timeframes, incremented cognitive 71 

load can easily lead to mental fatigue [6]. Mental fatigue is a critical factor leading to cognitive performance 72 

decreasing (e.g., the occurrence of change blindness, inattentiveness, and lapses in vigilance), which 73 

consequently weakens workers’ ability in recognizing potential risk factors in surrounding construction 74 



environments [7-8]. 75 

As construction site is more dynamic and riskier than general workplaces, impacts of workers’ fatigue on 76 

work performance can be more serious. Thus, it is necessary to adopt valid fatigue supervision and 77 

management approaches for measuring, mitigating, and managing workers’ fatigue, which can help to promote 78 

comprehensive safety management on construction sites. As for construction activities executed requiring both 79 

physical and cognitive effort, one of the critical premises is identifying interactions between physical fatigue 80 

and mental fatigue on work performance. This research focused on the development of mental fatigue in a 81 

cognitive task (doesn’t involving intensive cognitive load) under different physical fatigue levels. That is, 82 

weather physical fatigue has effects on the induction of mental fatigue of construction workers was explored. 83 

It was valuable for analyzing and deriving the interaction rules between physical fatigue and mental fatigue 84 

and the mechanisms underlying the development of fatigue. Further, targeted recommendations for fatigue 85 

management can be proposed to promote comprehensive safety management on construction sites. This was 86 

the starting point of this research. 87 

For above research objective, a pilot experiment involving a series of independent trials was conducted in 88 

a laboratory setting. During these trials, manual handling tasks of different intensities were firstly arranged 89 

for stimulating certain expected physical fatigue statuses. Then, a cognition-required risk identification task 90 

was designed to induce mental fatigue statuses. One of the major considerations in the experimental design 91 

was how to measure the physical and mental fatigue intuitively and quantitatively. Borg's Rating of Perceived 92 

Exertion (RPE) was utilized in this research for detecting the level of physical fatigue [9]. A wearable 93 

electroencephalogram (EEG) sensor was utilized to collect the neural information required for the mental 94 

fatigue detection and measurement. Through intra-group comparisons between different independent trials, 95 

effects of physical fatigue on the induction of mental fatigue were identified from the experiment results. 96 

Finally, recommendations for improved fatigue management of construction workers were proposed based on 97 

the research results. 98 

2 Related research 99 

2.1 Fatigue management 100 

Fatigue is a common but noteworthy phenomenon in various workplaces, resulting from intensive manual 101 

labor or mental exertion. Without a universal definition, fatigue is broadly regarded as a complex and 102 

multidimensional outcome from the lassitude/exhaustion of physical or mental strength [10]. The occurrence 103 

of fatigue status, along with decreased motivation and vigilance [11], can consequently become an important 104 



factor contributing to the increased probability of accidents and injuries [12]. Thus, well-rested physical status 105 

and alert mental status are critical for workers in workplaces, to prevent errors and accidents and to maximize 106 

work performance. 107 

Fatigue-related studies have been conducted in a wide variety of domains. For example, Antwi-Afari et al. 108 

(2017) analyzed work-related musculoskeletal disorders of construction workers and summarized 109 

corresponding risk factors in repetitive lifting tasks [13]. Consequently, specific and targeted fatigue 110 

management measures have been proposed for improving workforce physical and mental health in practice. 111 

Dababneh et al. (2001) studied the effect of rest breaks on meat-processing workers, and suggested hourly 112 

breaks of nine minutes for reducing work fatigue [14]; Lerman et al. (2012) highlighted five key defenses 113 

against fatigue errors in workplaces (i.e., balance between workload and staffing; shift and duty scheduling; 114 

employee training and education and sleep disorder management; work environment design; and individual 115 

risk assessment and mitigation) [2]; Merat and Jamson (2013) proposed a series of road-based fatigue 116 

management measures, as engineering treatments, to alleviate driver fatigue symptoms [15]. Xing et al. (2019) 117 

proposed a multicomponent and neurophysiological intervention approach aiming at the mental fatigue status 118 

of high-altitude construction workers [16]. 119 

Construction activities involve a series of workload-intensive and risk-sensitive tasks, for which more 120 

stringent requirements about physical and mental status of construction workers are needed to manage work 121 

performance (e.g., workers’ safety and health, construction quality and productivity). Researchers have 122 

increasingly focused on the physical/mental statuses of construction workers. Parijat et al. (2008) found that 123 

localized muscle fatigue of the quadriceps can increase the risk of slip-induced falls, through a contrast 124 

experiment requiring participants to walk across a vinyl floor surface in a fatigued (or non-fatigued) state [17]. 125 

Chen et al. (2016) studied the method of monitoring mental conditions of construction workers to evaluate 126 

hazards, and validated neural time–frequency analysis as a novel measurement approach [18]. Wang et al. 127 

(2017) proposed a quantitative and automatic method to assess construction workers’ attention level using a 128 

wireless and wearable electroencephalography system [19]. Aryal et al. (2017) developed a physical fatigue 129 

monitoring method by utilizing a series of wearable sensors (i.e. an EEG sensor, a heart rate monitor, and 130 

infrared temperature sensors). Based on the biological data obtained from these sensors, boosted tree 131 

classifiers were trained and utilized for physical fatigue detection [9]. Fang et al. (2015) designed an 132 

experiment to test different categories of errors made by workers in a physically fatigued state, and the 133 

experimental results illustrated the impact of physical fatigue on construction workers’ safety performance 134 

[20]. Based on the literature review, it is noted that prior research has mainly focused on fatigue/mental status 135 

detection and its effects on work performance or safety outcomes. Few efforts have focused on improving the 136 

fatigue management of construction workers. In practice, fatigue management of construction workers is still 137 



a relatively weak area in safety management on sites, with a need for comprehensive, differentiated, clear, and 138 

feasible management regulations and measures. 139 

2.2 Correlations of physical and mental fatigue 140 

Fatigue has been well-accepted as a concept and was usually described as physical fatigue and/or mental 141 

fatigue in existing literature [9]. Physical fatigue is widely described as the reduction in capacity to perform 142 

physical work, resulting from activities requiring physical effort [21]. Mental fatigue is a universal 143 

phenomenon and results from prolonged periods of task-demanding mental activity (e.g., cognitive tasks), 144 

which can be subjectively described as a mental status of feeling tired or inactive [22]. Mental fatigue has 145 

been regarded as a key factor impacting work performance, which is closely linked with low work efficiency, 146 

increased risk of error, and even chronic and life-threatening issues [23]. Based on the literature review in 147 

section 2.1, most of existing fatigue-related studies focused on either physical fatigue or mental fatigue in 148 

certain research fields. Taking physical fatigue and mental fatigue as independent variables, different fatigue 149 

monitoring indicators were proposed and applied. 150 

The construction site is a workplace that has specific requirements in managing workers’ physical and 151 

mental fatigue status. Construction workers are often required to perform physically-intensive tasks in 152 

challenging environmental conditions, and need to stay focused and alert in recognizing risk factors within 153 

surrounding environment to avoid potential risk events. Further, there are many types of construction activities 154 

requiring both intensive physical and cognitive effort (e.g., construction activities involving technical tasks 155 

and requiring specialist skills). Generally, these construction activities not only require workers to perform 156 

physical functions to execute tasks using physical strength, but also perform cognitive functions to plan and 157 

complete tasks at the same time [24]. Thus, the association and interaction between physical and mental fatigue 158 

should be considered in the management of construction worker fatigue. 159 

Recently, the number of studies on the relationships between physical and mental fatigue/performance has 160 

increased in various research domains. For example, focusing on the effects of mental fatigue on physical 161 

fatigue/performance, Mehta and Parasuraman (2014) investigated the contribution of mental fatigue on the 162 

development of voluntary physical fatigue using a neuroergonomic approach [25]. Zhang et al. (2015) studied 163 

the association between fatigue status and performance in physical and cognitive functions by surveying 606 164 

construction workers, suggesting an association between reported fatigue and difficulties with physical and 165 

cognitive functions [26]. Van Cutsem et al. (2017) explored the effects of mental fatigue on the endurance 166 

performance of athletes in heat conditions through a pilot experiment, and reported that no negative effect of 167 

mild mental fatigue was observed on the physiological and perceptional responses to endurance performance 168 



[27]. Pageaux et al. (2015) confirmed the relationships between mental fatigue and the performance of the 169 

vastus lateralis muscle during cycling, reflected in the electromyography root mean square value [28]. Van et 170 

al. (2017) reviewed existing research on the effects of mental fatigue on physical fatigue/performance in a 171 

variety of domains through a systematic review of literature [29]. Focusing on the effects of physical fatigue 172 

on mental fatigue/performance, Moore et al. (2012) confirmed the effects of exercise-induced fatigue on 173 

cognitive function through a series of tests (i.e. visual perceptual discrimination test, memory-based vigilance 174 

test, and visual perceptual discrimination test) [30]. Bullock and Giesbrecht (2014) investigated the influence 175 

of physical activity-induced arousal and fatigue on selective attention and cognitive performance in a 176 

laboratory environment [31]. Loy and O'Connor (2016) confirmed that histamine, acting on brain H1 receptors, 177 

had a role in reducing mental fatigue induced through exercise [32]. Olson et al. (2016) suggested the divergent 178 

effects of aerobic exercise on behavioral performance and cognitive control, by conducting Eriksen flanker 179 

task tests while exercising on a cycle ergometer [33]. DiDomenico and Nussbaum (2011) studied the effects 180 

of various types of physical activity on mental workload and cognitive performance adopting heart rate 181 

variability and visual analog scale [34]. Based on above research, interactions (including the causality) 182 

between two kinds of fatigue in certain conditions were explored and proved, and knowledge on the potential 183 

mechanisms underlying the development of fatigue was extended. 184 

According to above research review, most research focused on the influences of mental fatigue on physical 185 

performance. Targeted fatigue management measures and suggestions have been proposed. For example, 186 

mentally-demanding tasks should be avoided before physical tasks that require endurance to optimize 187 

performance [35]. In the construction industry, a limited number of studies have paid attention to the effects 188 

of physical fatigue on construction workers’ safety performance [20]. This includes the study of monitoring 189 

methods aimed at the fatigue and mental workload of construction workers (e.g., utilizing physiological 190 

measurements) [9][18]. However, it is noted that only a limited number of existing studies focused on the 191 

relationships between physical and mental fatigue/performance in the construction industry. Further, few 192 

attempts have been made to examine the correlation and influence mechanisms between physical fatigue and 193 

mental fatigue of construction workers, considering the specific work characteristics of construction activities. 194 

As such, the effects of physical fatigue on the induction of mental fatigue are still unclear, constraining the 195 

development of comprehensive and differentiated fatigue management measures on construction sites. 196 

2.3 Physical and mental fatigue recognition 197 

The measure and quantification of fatigue is one of the critical issues in fatigue assessment for improving 198 

fatigue management. Questionnaire and interview survey, using assessment scales relied on subjective 199 



evaluation, are the most common approaches applied in fatigue related studies [20]. Considering the 200 

physiological changes and interactions of some local (e.g., muscular) and central factors (e.g., cardiovascular, 201 

metabolic, thermoregulatory changes) of workers during the physically-demanding tasks, physiological 202 

measurements have been gradually applied in physical fatigue measurements [9][36]. For example, surface 203 

electromyography has been used in some studies for monitoring localized muscular fatigue of different 204 

industrial workers, focusing on specific muscle groups [37-38]. Besides, overall physical fatigue has been 205 

explored using comprehensive physiological measurements (e.g., heart rate, blood pressure, oxygen uptake, 206 

and thermoregulatory changes) [9][39-40]. Combined with environmental conditions, location information, 207 

characteristics of specific construction activities, and other related factors, different wearable sensors have 208 

been utilized to detect and warn a worker’s physical fatigue by collecting physiological data [40-41]. 209 

Mental fatigue can be manifested subjectively, behaviorally, and physiologically, which a person can 210 

change to some extent, such as a significant increase in subjective fatigue levels (e.g. feelings of tiredness, 211 

reduced alertness and motivation) [42], acute changes as a physiological response [43], and the decline in 212 

cognitive performance [44]. Many mental fatigue recognition and measurement approaches have been applied 213 

in prior research based on these manifestations. For example, Shahid et al. (2011) proposed the Fatigue 214 

Severity Scale (FSS) with nine items to assess fatigue, which was regarded as a symptom of chronic conditions 215 

and disorders [45]. By investigating the effects of fatigue statuses in different aspects, the degree of fatigue 216 

can be assessed using the FSS. More recently, some studies have examined mental fatigue by considering the 217 

neural mechanisms of the brain. For example, Ishii et al. (2014) proposed a conceptual model using a dual 218 

regulation system to investigate the neural mechanisms of mental fatigue under cognitive tasks [46]. Especially, 219 

electroencephalography (EEG) has been used to quantitatively detect and measure the electrical activity of the 220 

brain, overcoming the subjective bias from traditional survey-based assessment [47]. There are two general 221 

techniques for EEG measurement: the electrocorigram and the electrogram [48]. As the former technique can 222 

collect EEG data directly and noninvasively, based on voltage fluctuations from neurons at the cortical surface, 223 

it is much more commonly used in current EEG studies [49]. There is a growing interest in the role of EEG in 224 

the detection and measurement of mental fatigue. For example, Li et al. (2012) proposed an EEG processing 225 

method to evaluate driver fatigue effect [50]; Duc (2014) utilized functional magnetic resonance imaging 226 

(fMRI) and EEG to investigate the mechanics of mental fatigue regulation in specific brain areas [51]; Yin 227 

and Zhang (2018) presented a mental fatigue classification method by different EEG feature distributions 228 

through various mental tasks [52]. As EEG objectively measures the neural mechanisms, the research results 229 

on mental fatigue can provide a robust theoretical foundation for practical fatigue management. 230 



3 Methods 231 

A pilot experiment, involving a series independent trials, was designed and conducted to investigate the 232 

effects of physical fatigue on the induction of mental fatigue. Expected physical fatigue statuses at different 233 

levels were stimulated in an indoor laboratory. Then, corresponding mental statuses were induced through a 234 

cognition-required task. In this experimental procedure, EEG was adopted to indicate and measure the mental 235 

fatigue statuses of subjects, instead of relying on subjective survey-based self-assessments that have been used 236 

in prior research. After data preprocessing, a comprehensive data analysis method using EEG rhythms was 237 

applied. Effects of different physical fatigue levels on mental fatigue-related mental statuses were explored 238 

through intra-group comparisons of different trials. 239 

3.1 Experiment design 240 

For testing the development of mental fatigue under the influence of physical fatigue at different levels, 241 

an experiment consisting of four mutually independent trials (i.e. trial 1~4) was adopted in this research (Fig. 242 

1). Each trial included three major phases: physical fatigue stimulation (respectively with different physical 243 

task intensities), mental fatigue inducing, and EEG collection. Four trials of a subject were performed in the 244 

same day to reduce interferences of other factors. Adequate breaks were provided between every two trials for 245 

recovering from the generated fatigue. Details of the designed experiment process and involved experimental 246 

tasks were presented as follows. 247 

 248 

 249 

Fig. 1. The entire experiment process designed with four independent trials. 250 

 251 



⚫ Physical fatigue stimulation: For stimulating subjects’ expected physical fatigue statuses, a manual 252 

handling task transporting heavy materials (15 kg), in a squatting posture when lifting up and laying down 253 

the materials, is adopted in this research simulating the actual construction work [9][20]. To replicate the 254 

dynamic and hazardous environment of construction sites (e.g., uneven ground with material and sundry 255 

stacking), subjects are tasked to carry materials up and down stairs, for which vigilance and close attention 256 

is required to carefully mind steps [53]. 257 

⚫ Mental fatigue inducing: Considering the specific characteristics of the construction workplace, risk 258 

perception is important for workers to accurately and rapidly identify hidden risk factors on sites. To test 259 

the development of mental fatigue under different physical fatigue levels, a recognition-required risk 260 

identification task is adopted in this research. This mental fatigue inducing phase is designed based on a 261 

series of pictures of practical construction sites. Twenty percent of the picture sets comprise the targeted 262 

pictures (with particular construction scenes involving potential risks). The trial involved different 263 

pictures appearing, in turn, on a computer screen at a regular interval (4 seconds). Under these mentally 264 

demanding conditions, subjects are required to focus on, identify and judge the targeted pictures from 265 

picture sets one by one. 266 

⚫ EEG collection: After the recognition-required risk identification task of each trial, an EEG sensor is used 267 

to record the subjects’ mental status for one minute. In this research, a wearable EEG device (i.e. the 268 

EMOTIV EPOC+ 14 Channel Mobile EEG), which has 14 electrode channels corresponding to different 269 

locations of the scalp, is utilized (Fig. 2). Raw EEG data can be transferred in real-time via a wireless 270 

receiver, at a 128 Hz sampling frequency. During the EEG collection phase, subjects are required to sit 271 

still restricting body movements and be in a meditative state with eyes closed. In this way, the EEG signals 272 

can be measured and collected without excessive noise due to external signal interference. 273 

 274 

 275 

Fig. 2. Objective electrode channels in four cortical regions (i.e. AF3, F7, F3, FC5, T7, P7, O1, O2, P8, T8, FC6, F4, 276 

F8, and AF4). 277 



 278 

3.2 The pilot study and data collection 279 

3.2.1 Protocol and preliminary training 280 

In this research, nine healthy people aged 25-40, were recruited from the Hong Kong Polytechnic 281 

University to be subjects in the experiment. To ensure the accuracy and credibility of the experiment results, 282 

an experiment protocol was developed in advance with all necessary requirements and preparation instructions. 283 

First, the protocol required all subjects to be in good physical health and free from mental illness (i.e. without 284 

neural diseases history and medicine uptake that might affect brain functions). Second, subjects should have 285 

basic engineering expertise and construction experience on sites (e.g., majoring in civil engineering 286 

construction, engineering management, or other related majors; having internship/working experience on 287 

construction sites). Through a pre-study interview, subjects reported their own conditions and were determined 288 

if meeting all requirements. Considering the learning effects [54-58], all subjects were introduced to a pre-289 

training session before the main experiment. The entire experiment procedure was firstly introduced to 290 

subjects. Besides, instructions regarding which were the targeted pictures in the risk identification tasks and 291 

how to point out the involved potential risk factors were given. During the pre-training session, another four 292 

picture sets of practical construction sites, other than the picture sets used in the main experiment, were 293 

presented to each subject. Behavioral performances and self-reports of subjects in the pre-training session 294 

were collected for optimizing the experimental procedure. 295 

3.2.2 Experiment procedure 296 

The experiment was arranged in an indoor laboratory at the Hong Kong Polytechnic University. In Trial 297 

1, 1min EEG signal (i.e. data 1) was firstly collected before the risk identification task, acting as the experiment 298 

baseline (reflecting a status under no physical or mental fatigue). Then, subjects were requested to conduct 299 

the 15min risk identification task using the computer screen (Fig. 3). During this task, subjects were reminded 300 

to concentrate on the constantly changing pictures. Once targeted pictures appeared, subjects pointed out and 301 

recorded the related potential risk factors (e.g., no protective suit, unqualified edge protection, unqualified 302 

scaffolding works). Then, another 1min EEG signal (i.e. data 2) was recorded. 303 

 304 



 305 

Fig. 3. 15min risk identification task based on picture set. 306 

 307 

In Trial 2/3/4, subjects were first required to conduct the manual handling tasks. In this research, the 308 

manual handling tasks were designed to stimulate the targeted different fatigue levels through various task 309 

intensities. In particular, the physical task intensities (i.e. durations of the manual handling task) of the four 310 

trials should be determined in consideration of individual differences. Thus in this research, during the physical 311 

fatigue stimulating phase, the Borg's Rating of Perceived Exertion (RPE) was adopted for measuring the 312 

perceived fatigue level [9][59]. According to the fatigue descriptions in RPE, exertion levels of “RPE 12~14”, 313 

“RPE 15~16”, and “RPE 17~20” were respectively defined as low fatigue, medium fatigue, and high fatigue. 314 

Correspondingly, they can be described by subjects as subjective perceptions, such as “somewhat hard”, 315 

“hard”, and “extremely hard”. In the physical fatigue stimulating phase, subjects were arranged to complete 316 

the manual handling tasks in a relatively fast, but steady walking pace. For every 2 minutes, they were required 317 

to provide verbal feedback on their physical fatigue level. The profile information of each subject and reported 318 

fatigue levels in defined periods of time were recorded, as shown in Table 1. Taking individual differences 319 

into account, the time thresholds of three fatigue levels of one subject were set as the defined durations of 320 

manual handling tasks in corresponding trials. For example, for subject 1, the durations of the manual handling 321 

task in trial 2~4 were designed to be 6min, 12min, and 18min (i.e. 2min more than the reported time range), 322 

whereby the duration in trial 1 can be regarded as 0 min (i.e. no physical fatigue). 323 

 324 

Table 1. Subjects’ profile information and reported fatigue levels according to RPE. 325 

    Physical fatigue level 

    Low fatigue Medium fatigue High fatigue 

Subject Weight (Kg) Gender Age RPE 12~14 RPE 15~16 RPE 17~20 

1 62 Male 28 0~6 min 6~14 min >16 min 

2 60 Male 30 0~6 min 6~12 min >14 min 

3 65 Male 33 0~6 min 6~16 min >18 min 



4 65 Male 29 0~4 min 4~16 min >18 min 

5 68 Male 27 0~6 min 6~16 min >18 min 

6 55 Male 25 0~4 min 4~10 min >12 min 

7 65 Male 28 0~4 min 4~12 min >14 min 

8 70 Male 32 0~6 min 6~16 min >18 min 

9 65 Male 28 0~4 min 4~16 min >18 min 

 326 

During the physical fatigue stimulating phase, all subjects were required to wear personal protective 327 

equipment and shoes, and pay attention to the height differences of stairs to prevent accidental injuries. Then, 328 

risk identification tasks were arranged with different picture sets to avoid learning effects. At the end of each 329 

trial, 1min EEG signals (i.e. data 3~5) were measured. After the experiment, 36 records of safety performance 330 

from the risk identification task and 45 EEG data segments in total were collected from the nine subjects. 331 

3.3 Data processing and analysis 332 

3.3.1 Data preprocessing 333 

In the EEG collection phase, subjects were asked to take slow and even breaths, with their eyes closed and 334 

without physical distractions. In this way, required signals can be measured without excessive intrinsic and 335 

extrinsic artifacts. Considering the sensitivity of the EEG signal in microvolts (μV) and the accuracy of later 336 

data statistics, data preprocessing through filtering and independent component analysis (ICA) was adopted 337 

to further remove frequency noise [47]. In this research, low-frequency noises (0.5Hz and lower) and high-338 

frequency noises (40Hz and higher) were removed through the hamming windowed sinc FIR filter. Frequency 339 

noise (e.g., normally line noise or white noise) beyond the objective spectrum were filtered [60]. Then, ICA 340 

was employed to retain the valid components and remove the noise components of intrinsic artifacts (e.g., eye 341 

movement and facial muscle activity) (Fig. 4). Considering the physiological significances of different 342 

frequency band powers (i.e., prominent components of EEG signal), researchers have explored the 343 

associations between complex human psychosocial conditions and EEG signals. As supported in prior research 344 

[61-66], early stages of mental fatigue were correlated closely with theta (θ) (4–8 Hz), alpha (α) (8–13 Hz), 345 

and beta (β) (13–30 Hz) frequency bands. A six-layer wavelet packet decomposition and reconstruction were 346 

adopted to filter out these related frequency bands. 347 

 348 



 349 

(a) 350 

 351 

(b) 352 

Fig. 4. ICA for removing noise components of intrinsic artifacts (data 1 of Subject 1): (a) 14 independent components 353 

and corresponding scale maps; (b) noise components of intrinsic artifacts after analyzing. 354 

 355 

3.3.2 Mental fatigue indication and analysis 356 

In this research, a comprehensive data analysis method using EEG rhythms was applied. First, 357 

topographical distributions and evolutions of interested frequency band powers (i.e. theta, alpha, and beta) 358 

were observed. Then, their general trends of a subject in different data segments were shown using grand 359 

average power spectral density (PSD). Considering the mental fatigue regulation in specific brain areas, the 360 

normalized intensities of theta, alpha, and beta in different data segments were analyzed, focusing on the entire 361 

brain and the frontal and temporal cortex. Based on the physiological significances of different frequency band 362 

powers, (theta+alpha)/beta were adopted in this research for detecting the mental fatigue level quantitatively, 363 

which can amplify the differences between single EEG rhythms [61][63-65][67-69]. 364 

Taking Subject 5 as example, the grand average distribution and evolution of theta, alpha, and beta power 365 



in the four trials is presented in the following topology (Fig. 5). Based on this topographical data, there were 366 

intuitive activations and changes of the related powers across the entire brain, throughout the entire experiment. 367 

 368 

 369 

Fig. 5. Topographical distributions and evolutions of theta, alpha, and beta power in grand average of each EEG data 370 

segment (Subject 5) (Note: red-shaded areas indicate high activities, and blue-shaded areas indicate low activities). 371 

 372 

The grand average power spectral density (PSD) of the nine subjects in five data segments is shown in Fig. 373 

6. As shown in the area marked in red gridlines, compared with the data baseline (i.e. data 1), there was a 374 

significant increase of alpha power after the recognition-required risk identification task under a high physical 375 

fatigue level (i.e. data 5). While other data segments, reflecting mental statuses induced under different 376 

physical fatigue levels, didn’t have obvious and abrupt changes in the related frequency domains. 377 

 378 



 379 

Fig. 6. Grand average PSD of nine subjects in five data segments. 380 

 381 

Considering the entire brain and the frontal and temporal cortex, the normalized intensities of theta, alpha, 382 

and beta in five data segments are shown in Fig. 7. Besides, adopting analysis of paired-t tests, effects of 383 

different physical fatigue levels on the induction of mental fatigue were examine (Table 2). That is, mental 384 

fatigue statuses (presented by EEG index and interested frequency bands) of segment 2 ~ 5 were respectively 385 

compared to the baseline status of segment 1. It was observed that there was a marked increase of mental 386 

fatigue ((θ+α)/β) in data segment 5, a mental status induced under high physical fatigue. At the same time, 387 

alpha power increased significantly across the entire brain. As supported in prior research [61-64], mental 388 

statuses in the frontal and temporal cortex were also captured in this research. Data from the frontal and 389 

temporal cortex also showed a marked increase of mental fatigue in data segment 5. No other significant 390 

changes were observed in the experiment. 391 

 392 



 393 

Fig. 7. Normalized intensities of theta, alpha, and beta power in five data segments. 394 

 395 

Table 2. Statistical t-test of interested frequency bands and mental fatigue (i.e. index of (θ+α)/β) 396 

Index Entire brain Frontal and temporal cortex 

Segment 2 Segment 3 Segment 4 Segment 5 Segment 2 Segment 3 Segment 4 Segment 5 

θ ---- 0.001 ---- ---- ---- ---- ---- ---- 

α ---- ---- ---- 0.014 ---- ---- ---- ---- 

β ---- 0.036 ---- ---- ---- 0.010 ---- ---- 

(θ+α)/β ---- ---- ---- 0.030 ---- ---- ---- 0.005 

Note: Values involved in Table 2 are p-values. 397 

 398 

4 Discussion 399 

4.1 Effects of the physical fatigue on the induction of mental fatigue 400 

This research explored the effects of physical fatigue on the induction of mental fatigue through a 401 

neurophysiological approach. An experiment consisting of four independent trials was designed in this 402 

research. For each trial, three phases (i.e. a manual handling task of particular intensity for stimulating an 403 

expected physical fatigue level, a recognition-required risk identification task for inducing mental fatigue, and 404 

EEG collection) were conducted. Considering the challenging conditions experienced in a construction work 405 

environment, it is important for workers to identify hidden risk factors on sites rapidly and accurately. Thus, 406 

in this research, each subject’s performance in the risk identification task was recorded and described based 407 

on the testing accuracy in each trial (Table 3): 408 

Testing accuracy =
Number of identified pictures involving potential risks

Number of targeted pictures involving potential risks
× 100% 409 

where the testing accuracy was defined as the recall rate of targeted pictures. 410 



 411 

Table 3. Subject’s performance in the risk identification task (testing accuracy (%)). 412 

Subject Trial 1 Trial 2 Trial 3 Trial 4 

1 98 92 83 90 

2 88 76 78 90 

3 89 77 78 83 

4 86 79 92 87 

5 87 85 88 93 

6 89 89 89 94 

7 94 95 92 90 

8 88 82 91 88 

9 73 80 83 96 

 413 

In this research, data analysis was based on the method of intra-group comparison, reporting the tendency 414 

of fatigue status of each subject during the four trials. Through statistical analysis based on Table 3, there was 415 

no significant difference in testing accuracy between trial 1 and other trials. These performance results were 416 

mainly due to the limited testing time (15min) and being observed with the reminder to stay focused during 417 

the task procedure. For revealing the variation tendencies of subjects’ mental fatigue under certain physically 418 

and mentally-demanding tasks, EEG data of subjects in five specific points in time (i.e. segment 1~5) was 419 

collected, and differences between the mental fatigue status of segment 2~5 and the baseline mental status of 420 

segment 1 were computed. When comparing EEG data segment 2 to 1, it was noted that the time-limited 421 

cognition-required task itself cannot effectively induce mental fatigue. Further, comparing EEG data segment 422 

3/4 to 1, it was noted that there was still no significant effect of the low and medium physical fatigue levels 423 

on the induction of mental fatigue. However, under the high fatigue level (i.e. data 5), mental fatigue induction 424 

become apparent, even after this relatively simple cognitive task. The significant development can be 425 

demonstrated by the index of (θ+α)/β, reflecting both the entire brain and the frontal and temporal cortex. As 426 

shown in Fig. 8, despite personal differences, it was observed that the cognition-required task under high 427 

physical fatigue can clearly lead to an uptrend in mental fatigue. 428 

 429 



 430 

Fig. 8. Mental fatigue under different physical fatigue intensities. 431 

 432 

In practice, construction activities requiring both physical and cognitive effort are situations that may 433 

require resource allotment [34]. The perception of mental workload of a subject was sensitive to changes in 434 

the conditions of the tasks being performed [70]. After evaluating differences between the demand and the 435 

performance, additional resources can be invested to meeting demands, which can be reflected in the higher 436 

ratings of mental workload [34][71]. During the manual handling tasks of this research, vigilant and attentional 437 

resources were required for the highly controlled elbow and knee and the mind to steps. For the later risk 438 

identification tasks, with subjects being observed with the reminder to stay focused during the task procedure, 439 

there was no significant difference in testing accuracy of four trials. However, additional resources were 440 

invested to maintain the same level of performance (especially under high physical fatigue), which can be the 441 

reason mental fatigue induced apparently. 442 

4.2 Recommendations on fatigue management based on the pilot study results 443 

As construction work involves physically-intensive and risk-sensitive tasks, it is critical for workers to 444 

stay alert with a focused mental state to complete construction activities and achieve high performance. In 445 

particular, workers need to pay close attention to their surrounding environment during work activity to 446 

identify potential safety risks. In practice, there are construction activities that require both physical and 447 

cognitive effort. The pilot study results indicated that high physical fatigue resulting from intensive physical 448 

tasks may accelerate the development of mental fatigue. Even the cognitive intensive construction activities 449 

can be completed as requested under a focused mind and external management constraints, accumulated 450 

mental fatigue can further affect workers’ alertness and attention in responding to the dynamic construction 451 

site environment and other construction tasks [7-8]. 452 

By exploring the effects of physical fatigue on the induction of mental fatigue, the pilot study results 453 

provided a reference for the fatigue management of construction workers to further promote safety 454 



management on construction sites. For example, compared to mental fatigue, the status of physical fatigue 455 

was relatively dominant and quantifiable, which can be managed from the perspective of task intensity and 456 

workload. To safely facilitate the completion of certain construction activities, the physical workload and 457 

intensity need to be examined and managed with respect to fatigue management. According to the research 458 

results, measures proposed for physical fatigue management can play an indirect role in mitigating and 459 

managing mental fatigue on sites. In considering the requirements of workers’ mental status with certain 460 

construction activities, a moderate range of work intensity should be implemented for physically-demanding 461 

tasks. Meanwhile, targeted measures for fatigue management should be proposed in the future, based on 462 

personal differences. 463 

In addition, when subjects were permitted to practice the risk identification task in the preliminary 464 

experiment, the testing performance observed in the later stage was significantly better than that of the initial 465 

stage. A higher testing accuracy was achieved when a relatively relaxed status was reported. This preliminary 466 

testing result can be mainly attributed to the subjects’ familiarity with the cognitive task. In practice, adequate 467 

and feasible pre-job training is valuable for construction workers to become familiar with certain tasks and 468 

reduce unnecessary mental workload. Additionally, from the perspective of fatigue management, there are also 469 

significant positive and practical benefits in conducting site safety training. 470 

4.3 Limitations and future work 471 

There are some limitations in the current research. Firstly, in practice, construction sites experience 472 

dynamic and complex working conditions. The indoor experiment designed and adopted in this research only 473 

simulated one workplace scene, and was far from capturing all external environmental interference factors. In 474 

the future, comprehensive field trials would be useful to validate the research outputs in specific circumstances, 475 

across multiple environmental interference factors. Second, through intra-group comparisons, this research 476 

only focused on the development trend of mental fatigue statuses, under the influence of different physical 477 

task intensities. The thresholds between different mental fatigue levels were not examined in this research. 478 

Besides, physical fatigue levels were recognized and recorded based on self-report measures. In future 479 

research of interactions between physical and mental fatigue, a comprehensive approach (e.g., a measurement 480 

approach utilizing physiological or biomechanical indicators [9][72]) could be explored for the more objective 481 

and real-time physical fatigue recognition and measurement. Further, as a pilot study, the number of subjects 482 

involved in this research were insufficient to capture the breadth potential personal differences that may be 483 

experienced in practice. A larger group of subjects (particularly aiming at specific worker groups) is 484 

recommended for future work to improve the validity of the research outputs. In this way, targeted and 485 



personalized fatigue management measures can be developed to provide practical benefits in the management 486 

of construction safety. 487 

5 Conclusions 488 

This pilot study explored the effects of physical fatigue on the induction of mental fatigue of construction 489 

workers. Under various physical task intensities, different mental fatigue statuses were induced through a 490 

cognition-required task, and were measured utilizing a wearable EEG sensor. Through intra-group 491 

comparisons, the variation tendency of mental fatigue intensity under the effects of physical fatigue was 492 

analyzed. The research results showed that high physical fatigue can contribute to the development of mental 493 

fatigue, even if the cognitive task itself may not involve intensive cognitive load. Therefore, intensive physical 494 

task-induced fatigue can be regarded as one of the factors that impair cognitive functioning and other mental 495 

performances. With more field trials to be conducted in future to build upon the pilot study findings, the 496 

research results provided a base reference for improving fatigue management of construction workers. As such, 497 

targeted recommendations and fatigue countermeasures can be proposed to promote comprehensive safety 498 

management on construction sites. 499 
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