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Abstract  

Cholesterol (Chol) and oxysterol sulfates are important regulators of lipid metabolism, 

inflammation, cell apoptosis, and cell survival. Among the sulfate-based lipids, cholesterol 

sulfate (CS) is the most studied lipid both quantitatively and functionally. Despite the 

importance, very few studies have analysed and linked the actions of oxysterol sulfates to their 

physiological and pathophysiological roles. Overexpression of sulfotransferases confirmed the 

formation of a range of oxysterol sulfates and their antagonistic effects on liver X receptors 

(LXRs) prompting further investigations how are the changes to oxysterol/oxysterol sulfate 

homeostasis can contribute to LXR activity in the physiological milieu. Here, we aim to bring 

together for novel roles of oxysterol sulfates, the available techniques and the challenges 

associated with their analysis. Understanding the oxysterol/oxysterol sulfate levels and their 

pathophysiological mechanisms could lead to new therapeutic targets for metabolic diseases.  

https://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=89
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Introduction 

Sulfate-based lipids (SL) represents a wide range of lipid classes spanning across low to high 

molecular weight compounds (Dias, Ferreira, et al., 2019) with key functions d in many aspects 

of human health and disease (Hu et al., 2007; Merten, 2001; Suzuki et al., 2003). The 

biotransformation of lipids by sulfation and desulfation reactions are fundamental to many 

cellular pathways. SL represent a diverse class of lipids including sulfate-, sulfonate- and thiol- 

or thioether- based lipids (Dias, Ferreira, et al., 2019). In humans, steroid sulfates represent a 

highly abundant and mostly studied lipid class among the other glycerol-, sphingosine- or 

taurine-derived lipids (Mueller et al., 2015). Steroid sulfates were traditionally viewed as 

inactive precursors as they require active transport into cells via organic anion transporters. 

However, recent research suggests that these derivatives have active roles. For example, 

cholesterol sulfate (CS) act as a signalling molecule (Shi et al., 2014), pregnenolone sulfate 

(PregS) and dehydroepiandrosterone sulfate (DHEAS) are neuroactive and more membrane 

transporters are uncovered for cellular uptake of sulfated sterols (Fietz et al., 2013). Among 

other sulfated sterols, CS is the most reported and ubiquitously distributed sterol in mammalian 

tissues (Strott & Higashi, 2003). In addition to sulfation by sulfotransferases, cholesterol (Chol) 

and its precursors undergo enzymatic or free radical driven oxidations, resulting in oxidised 

derivatives (oxysterols).  

Recent research in to oxysterols has identified many biological targets (Griffiths & Wang, 

2019) despite their abundance being ∼10–1000 fold lower when compared to cholesterol in 

cells and biological fluids (Dias, Borah, et al., 2019; van Meer, Voelker, & Feigenson, 2008). 

Some of these oxysterols have been reported to be sulfated and new biological functions of 

oxysterol sulfates are emerging. In fact, research groups who have focused their attention on 

oxysterol sulfates found that these molecules are key mediators in the cellular processes, such 

as attenuation of the inflammatory response (L. Xu et al., 2012), and the regulation of lipid 

metabolism via SREBP (Sterol Regulatory Element-Binding Protein-1) (Bai et al., 2012; Ma 

et al., 2008; Ren et al., 2007). Oxysterol sulfates show dynamic ways of activating, inhibiting 

or shuttling of Chol in biological systems. This review brings together current understanding 

of sulfated Chol and oxysterols and analytical challenges in measuring their biological levels.  
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Biosynthesis of sterol sulfates 

The biological activities of sterol sulfates are regulated by the balanced activity between steroid 

sulfotransferases and steroid sulfatases that catalyse the formation and hydrolysis of steroid 

sulfates, respectively (Purohit, Potter, Parker, & Reed, 1998). The biosynthesis of sulfated 

lipids is mediated by a large family of sulfotransferases (SULTs) that catalyse the transfer of 

sulfate groups from a 3´-phosphoadenosine-5´-phosphosulfate (PAPS) donor compound to an 

acceptor molecule with aromatic or aliphatic hydroxyls functional groups (Falany, 1997). The 

transfer of the sulfate group by SULTs at 3-position of the main sterols results into mono-

sulfated sterols such as CS, PregS and DHEAS (Figure 1). The cytochrome P450 (CYP) 

enzymes catalyse the addition of hydroxyl group to the side chain of Chol generating oxysterols 

which can be further sulfated at 3-position resulting in 24(S)-hydroxycholesterol-3-sulfate 

(24HC3S), 25-hydroxycholesterol-3-sulfate (25HC3S), (25R)-26-hydroxycholesterol-3-

sulfate (26HC3S), 20(S)-hydroxycholesterol-3-sulfate (20HC3S) and 22(R)-

hydroxycholesterol-3-sulfate (22HC3S) (Cook, Duniec-Dmuchowski, Kocarek, Runge-

Morris, & Falany, 2009; Javitt, Lee, Shimizu, Fuda, & Strott, 2001). The additional hydroxyl 

group acquired by these oxysterols allows the formation of disulfated derivatives, such as 

24(S)-hydroxycholesterol-3,24-disulfate (24HCDS), 25-hydroxycholesterol-3,25-sulfate 

(25HCDS) and (25R)-26-hydroxycholesterol-3,26-disulfate (26HCDS). Oxysterols that are 

formed by free radical attack, namely 7α-hydroxycholesterol (7αHC), 7β-hydroxycholesterol 

(7βHC), 7-ketocholesterol (7KC), epoxy cholesterols [5β,6β-epoxycholesterol (5,6βEC) and 

5α,6α-epoxy cholesterol (5,6αEC)], which can then be converted into the corresponding 

sulfated derivatives (Figure 1). 

The family of SULTs consist of membrane-related enzymes, mainly localised in the Golgi 

apparatus, and cytosolic enzymes (Falany, 1997). The SULTs cytosolic enzymes have been 

associated with the metabolism of endo- and xenobiotics while the membrane-bound enzymes 

are primarily involved in sulfation of tyrosyl protein residues (Nowell & Falany, 2006). So far, 

four families of human cytosolic SULTs have been identified: SULT1, SULT2, SULT4, and 

SULT6. As enzymes of the SULT2 family have been associated with the sulfation of 

oxysterols, and this review will focus on the members of this group (Lindsay, Wang, Li, & 

Zhou, 2008). Members of the SULT2 family are divided into two subfamilies, SULT2A and 

SULT2B, based on their amino acid sequence and encoded by the two corresponding genes, 

SULT2A1 and SULT2B1 (Gamage et al., 2006).  

https://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=242&familyType=ENZYME
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SULT2A1 

In humans, SULT2A1 has been primarily linked to sulfation of DHEA; however, it is also 

responsible for the sulfation of other steroid substrates such as pregnenolone (Preg), androgens 

and bile acids (Gamage et al., 2006; Kong, Yang, Ma, Tao, & Bjornsson, 1992; Otterness et 

al., 1992). The SULT2A1 isoform is highly expressed in human liver, foetal adrenal glands, 

adult adrenal cortex and small intestine (Nowell & Falany, 2006; Thomae, Eckloff, Freimuth, 

Wieben, & Weinshilboum, 2002). As a result, endogenous and orally administered steroids 

undergo sulfation by SULT2A1 as part of their metabolism. In particular, DHEAS obtained 

from DHEA by SULT2A1, serves as a precursor in the synthesis of androgens and oestrogens 

in human peripheral tissues (Mortola & Yen, 1990). The circulating endogenous levels of 

DHEAS is known to decrease with age and therefore associated with age-related diseases such 

as osteoporosis, muscle loss, vaginal atrophy, fat accumulation, hot flashes, skin atrophy, type 

2 diabetes and cognitive deficits (Orentreich, Brind, Vogelman, Andres, & Baldwin, 1992). In 

2002, observations by Thomae et al. suggested an ethnic-specific variation in the expression 

and activity of SULT2A1 among Caucasian and African American individuals (Thomae et al., 

2002), that likely contributes to the high inter-individual variability of DHEAS.  

SULT2B1a and SULT2B1b 

The subfamily of SULT2B, including its two splice variants, namely SULT2B1a and 

SULT2B1b, are widely distributed in human tissues and are able to metabolise sterol-like 

structures (Javitt et al., 2001). Both isoforms originate from the alternative splicing of the 

SULT2B1 gene localised to chromosome band 19q13.3, approximately 500 kb telomeric to the 

location of SULT2A1 (Her et al., 1998). In the gene for SULT2B1, exon 1A encodes a unique 

amino-terminal end for the B1a isoform and additional 48 amino acids, compared to the B1b 

spliced variant (H. Fuda, Lee, Shimizu, Javitt, & Strott, 2002). In 2001, Javitt et al. reported 

that SULT2B1b is expressed in tissues responsive to hormones in a higher fashion than 

SULT2B1a (Javitt et al., 2001). In fact, the B1b isoform preferentially acts on Chol, whereas 

the B1a isoform catalyses the sulfation of Preg, but not Chol (H. Fuda et al., 2002). The 

expression of the isoform B1b is usually several-fold higher than the isoform B1a (Falany, He, 

Dumas, Frost, & Falany, 2006) and widely distributed in many tissues including human liver, 

trace amounts in brain, prostate, placenta, breast, lungs, platelets and kidney (Falany et al., 

2006; Geese & Raftogianis, 2001; He, Meloche, Dumas, Frost, & Falany, 2004). Double 

knockout Sult2b1−/− mice models are viable and show significant decrease in their CS/Chol 
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ratio compared with their wild-type counterparts (Wang, Beck-García, Zorzin, Schamel, & 

Davis, 2016), suggesting that low level of CS may form by other SULTs. CS-deficient mice 

displayed a heightened sensitivity to a self-antigens (Wang et al., 2016). Systemic upregulation 

of SULT2B1b inhibited lipogenesis by sulfonating and deactivating the LXR-activating 

oxysterols in LDLR-/- mice (Bai et al., 2012) and overexpression of hepatic SULT2B1b 

sensitized the mice to drug-induced liver damage (An et al., 2019) and inhibition of 

gluconeogenesis (Shi et al., 2014). 

Metabolism of sterol sulfates 

The cleavage of the sulfate moiety of 3β-hydroxysteroid sulfate is catalysed by membrane-

bound microsomal steroid sulfatase (STS) (Conary, Nauerth, Burns, Hasilik, & von Figura, 

1986). The gene encoding human STS is located on the distal short arm of the X-chromosome 

(Yen et al., 1988) and ubiquitously expressed in many human tissues including placenta, breast, 

skin, lungs, ovaries, adrenal glands and brain (Reed, Purohit, Woo, Newman, & Potter, 2005). 

STS have been associated with high intra-tumoral oestrogen and androgen levels and therefore, 

linked to steroid hormone-dependent tumour growth (Nardi et al., 2009). Studies by Zaichuk 

et al. in 2007 showed that oestrogen regulates the transcription of STSs in breast carcinoma 

(Zaichuk, Ivancic, Scholtens, Schiller, & Khan, 2007). 

X-linked ichthyosis, a disease clinically characterised by skin peeling localised in the anterior 

and posterior areas of upper and lower extremities is caused by a mutation in the enzyme STS. 

Patients with recessive x-linked ichthyosis not only display a significant increase in CS in 

squamous keratinizing epithelia, but also exhibit implications in overall lipid metabolism and 

mental retardation (Elias, Williams, Choi, & Feingold, 2014). In healthy epidermis, CS is 

produced by the action of SULT2B1b and desulfated in the outer epidermis thus contributing 

to epidermal differentiation, maintenance of barrier function and desquamation. As a 

consequence of STS deficiency, CS levels could exceed 10% of the total lipid mass in 

epidermal cells (Rizner, 2016).   

 

Cholesterol-3-sulfate  

Besides being the most abundant steroidal sulfoconjugate present in human plasma, with an 

average concentration of 2 μM (Meng, Griffiths, Nazer, Yang, & Sjövall, 1997), CS also 

detected in other biological fluids such as urine, bile, seminal plasma and many tissues as 
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described previously (Castellanos, Hernandez, Tomic-Canic, Jozic, & Fernandez-Lima, 2020; 

Drayer & Lieberman, 1967; Lopalco et al., 2019; Strott & Higashi, 2003).  Even though CS is 

typically considered the hydrophilic excretion form of Chol, CS also represents a biosynthetic 

precursor of several bioactive steroids. In this scenario, the sulfoconjugation reaction may 

represent a key step in the formation of a readily available hydrophilic form of Chol. CS has 

shown to regulate the Chol homeostasis by negative regulation of the key enzyme in Chol 

synthesis pathway, 3-hydroxy 3-methylglutaryl-CoA reductase (HMG-CoA reductase) 

indirectly (Williams, Hughes-Fulford, & Elias, 1985) and block the esterification of cholesterol 

directly by inhibiting the activity of lecithin-cholesterol acyltransferase enzyme (Nakagawa & 

Kojima, 1976). Indeed, CS can be subjected to several enzymatic transformations carried out 

by microsomal cytochromes (e.g. CYP11A1, also referred to as cholesterol side-chain cleavage 

enzyme) in order to obtain sulfated precursors of sex hormones. During the last decades, the 

role of CS as a signalling molecule has been investigated (Sakurai et al., 2018; Shi et al., 2014; 

Wang et al., 2016), although many questions remain unanswered. For example, the complete 

understanding of the nature of CS interactions, CS trafficking and the signalling pathways in 

which it could be involved is still elusive.  

 

Intra- and extra-cellular trafficking of CS is one of the most unexplored characteristics except 

for sex hormones sulfates (e.g. PregS and DHEAS). Indeed, the latter compounds were found 

to be suitable substrates of the plasma membrane transporter, sodium-dependent organic anion 

transporter SOAT (SCL10A6) (Grosser et al., 2018). Interestingly, Liou et al. demonstrated the 

binding of CS to the lysosomal cholesterol transporter Niemann-Pick disease type C2 protein 

(NPC2), a key protein involved in cholesterol transport from the lysosomal compart after the 

endocytic uptake of low-density lipoproteins  (Liou et al., 2006). The interaction between 

NPC2 and CS was demonstrated both by a chromatographic shift assay and by competition 

assay. It is noteworthy to mention that CS was unable to interact with the functional analogue 

Niemann-Pick disease type C1 protein (NPC1) according to a scintillation counting binding 

assay (Infante et al., 2008). 

 

Cholesterol-3-sulfate and its receptors 

As described above, recessive X-linked ichthyosis has been related to a deficiency in 

cholesterol sulfatase expression with subsequent accumulation of CS. In 1998, Sato et al. 

correlated this pathologic condition with the ability of CS to inhibit serine proteases involved 

https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=639
https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1358
https://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=182#961
https://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=182#961
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in cell dissociation, a key feature in skin development (Sato, Denda, Nakanishi, Nomura, & 

Koyama, 1998). As a matter of fact, Ito et al. demonstrated the direct inhibition of several 

hydrolytic enzymes by CS (e.g. pancreatic elastase, trypsin, chymotrypsin, thrombin, plasmin 

and DNAse I) in the late nineties (Ito, Iwamori, Hanaoka, & Iwamori, 1998; Iwamori, Iwamori, 

& Ito, 1997; Iwamori, Suzuki, Kimura, & Iwamori, 2000). The inhibitory behaviour of CS 

towards these pancreatic enzymes has been related to its protective role at the gastrointestinal 

mucosa level. In addition, it is noteworthy to underline that the inhibition of these enzymes 

occurred in a non-specific fashion. In other words, the interaction between the two molecular 

partners is based only on the physico-chemical properties of CS and the presence of an anion 

binding region on the tertiary structure of the target protein.  

In 1999, the ability of CS to inhibit serine proteases was extended by Iwamori et al. to thrombin 

and plasmin (Iwamori, Iwamori, & Ito, 1999). As these two proteases are involved in blood 

clotting and fibrinolysis, respectively, CS can be considered an endogenous modulator of 

homeostasis of the blood clotting system within the vascular network by a presumably non-

specific irreversible mechanism. Moreover, CS has been found to promote divalent cation-

independent adhesion of both activated and inactivated platelets, although the mechanisms by 

which CS exert these prothrombotic activities are not clear (Merten, 2001).  

 

Role of CS in inflammation and the immune system 

Recent research found that CS play a significant role in the control of inflammation by 

modulating key targets (Aleksandrov et al., 2006). Inflammation is a complex multistep 

biological response of body tissues to harmful stimulations which stereotypically involves a 

multitude of mediators and many different cell types. 5-Lipoxygenase (5-LO) is involved in 

the production of leukotrienes, soluble mediators of the inflammatory state and immune system 

functionality. In particular, leukotrienes play a pivotal role in asthma and bronchitis. When a 

Ca2+ influx takes place, 5-LO binds the nuclear membrane where it can convert arachidonic 

acid into the bioactive leukotrienes. As a constituent of cell membranes, CS can modulate the 

function of several proteins, including 5-LO, directly interacting at the membrane level. 

Aleksandrov et al. (Aleksandrov et al., 2006), demonstrated the inhibitory behaviour of CS 

towards 5-LO in a cell-free assay. Here, CS has been found to decrease 5-LO interaction with 

the nuclear membrane in a cell-based assay upon stimulation, thus decreasing leukotriene 

biosynthesis.  

In 2016, Wang et al. demonstrated the relevance of CS as a modulator of T-cell receptor (TCR) 

functionality (Wang et al., 2016). The TCR is a multisubunit membrane receptor which 

https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1385
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includes an antigen-recognition domain composed of the TCRα and β (or γ and δ) heterodimer 

and a signalling domain, typically three CD3 dimers. Although TCR binds its corresponding 

peptide-MHC ligands with extremely weak affinity, it is well-known that a single molecule of 

its ligand is able to activate the T cell. The low affinity and the high sensitivity of this receptor 

has been related to the nanoclustering of several TCRs. Chol is able to interact with TCRβ thus 

promoting TCR nanoclustering. Conversely, CS can disrupt TCR clusters by interfering in the 

Chol-TCRβ interaction. Interestingly, the Chol /CS ratio is a variable parameter during T cell 

development and differentiation (Wang et al., 2016).  

Dedicator of cytokinesis protein 2 (DOCK2) is a guanine nucleotide exchange factor which 

plays a key role in immune surveillance and immune responses by regulating the chemotaxis 

and the activation of leukocytes. In 2018, Sakurai et al. demonstrated that CS is highly 

expressed in Harderian gland, an orbital gland that produces the lipids that form the oily layer 

of the tear film in the eye of Sult2b1+/+ mice was able to inhibit the action of DOCK2 (Sakurai 

et al., 2018).  In particular, the direct interaction between CS and DOCK2 has been confirmed 

by a cell-free surface plasmon resonance binding assay (Sakurai et al., 2018). Human tear film 

also contains a high level of CS (Lam et al., 2014), and it is possible that CS limit ocular surface 

inflammation by inhibiting DOCK2.  

 

CS has been also reported as an endogenous ligand of macrophage inducible Ca2+-dependent 

lectin receptor (Mincle), an innate immune receptor involved in skin allergic inflammation 

(Kostarnoy et al., 2017). In the studies reported above, the specific interaction of CS with the 

corresponding target protein was not proven, and in most cases, the observed activity of CS 

was attributed to its amphiphilic nature without identifying a proper binding pocket/site on the 

polipeptidic counterpart.  

 

Role of CS as a ligand in signalling pathways 

In 2004, Kallen et al. reported the crystal structure of CS with the nuclear receptor retinoic 

acid-related orphan receptor α (RORα) (Kallen, Schlaeppi, Bitsch, Delhon, & Fournier, 2004). 

Since RORα could be implicated in the control of Chol homeostasis, the Authors set up 

crystallization trials both with Chol and CS. Both lipids co-crystallized with the ligand-binding 

domain of the receptor-interacting at the same level. Remarkably, CS showed an increased 

affinity due to the interaction of the sulphate group with key polar residues of the ligand-

binding pocket (Gln289, Tyr290 and Arg370) with the consequent displacement of several water 

molecules which were instead present in the interaction with Chol. Even though the crystal 

https://www.guidetopharmacology.org/GRAC/FamilyIntroductionForward?familyId=88
https://www.guidetopharmacology.org/GRAC/FamilyIntroductionForward?familyId=88
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studies unambiguously pointed out the interaction of this orphan nuclear receptor with CS, 

evidence of this interaction in vivo is still lacking. Indeed, even if the activation of this nuclear 

receptor occurs upon stimulation with CS, the latter is considered so far only a putative RORα 

endogenous ligand (Han et al., 2014; Kim et al., 2008; Zenri et al., 2012).  

CS has been also found to have an important role in the substrate specificity of 

phosphatidylinositol 3-kinase (PtdIns-3K) (Woscholski, Kodaki, Palmer, Waterfield, & Parker, 

1995) Phosphatidylinositol (3,4,5)-trisphosphate (PIP3), produced by PtdIns-3K’ s activity, is 

associated with the signalling pathway of several growth factors and it is considered a 

secondary messenger. Phosphatidyinositol diphosphate (PIP2) is the preferred substrate of 

PtdIns-3K in vivo, inside the cell. Conversely, phosphatidyinositol monophosphate and 

phosphatidylinositol are the preferred substrates of PtdIns-3K in cell-free systems. In 1995, 

Woscholski et al. demonstrated that the characteristic substrate specificity of this enzyme in 

vivo could be restored in the presence of CS pointing out its potential relevance as an interacting 

partner inside the cell (Woscholski et al., 1995).  

Oxysterols sulfates and their receptors 

Oxysterols are bioactive lipids which share the 27-carbons skeleton with Chol and differ from 

the latter by the presence of extra oxygenated functional groups apart from the 3β-hydroxyl 

group. In addition to being biosynthetic precursors of bile acids and sex hormones, they serve 

as selective ligands towards several targets (e.g. G protein-coupled receptors, enzymes, nuclear 

receptors and other membrane and cytosolic proteins). Similarly, their sulfoconjugates have 

been found to act as modulators of different targets. Traditionally, oxysterol sulfates have been 

viewed as detoxification derivatives of oxysterols that are synthesized for excretion. However, 

recent work proposed that oxysterol sulfates were bioactive molecules that acted as selective 

ligands with biological outcomes. Table 1 lists oxysterols sulfates with reported cellular 

activities, but not all oxysterol sulfates detected by analytical techniques are investigated for 

their biological action showing a gap in the oxysterol research field. 

 

Oxysterol sulfoconjugation occurs mainly by the cytosolic PAPS-dependent enzyme 

SULT2B1b, also referred to as hydroxysteroid sulfotransferase. This metabolic transformation 

is generally reversible as the enzymatic activity of STS is able to afford the parent oxysterol in 

its active form. In 2001, Song et al. demonstrated that 5α,6α-epoxycholesterol-3-sulfate 

(5,6αECS) and 7-ketocholesterol-3-sulfate (7KCS) were able to bind both nuclear receptors 

https://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=672
https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2353
https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2387
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LXRα and LXRβ inhibiting their activation acting as antagonists. It is noteworthy that in 

addition to a cell-based gene transactivation assay, the authors also performed a cell-free 

coactivator peptide recruitment binding assay in order to demonstrate the direct interaction of 

5,6α-ECS and 7KCS with the receptors. Moreover, a structure-dependant ligand recognition 

mechanism was sought out by testing two closely related sulfated oxysterols, 5β,6β-

epoxycholesterol-3-sulfate (5,6βECS) and 6-ketocholestanol-3-sulfate, in the same assays.  As 

both of the latter compounds failed in modulating LXRs activation, the authors speculated that 

the antagonistic behaviour of 5,6α-ECS and 7KCS towards LXRs was independent of their 

physiochemical properties (e.g. amphiphilicity) (Song et al., 2001).  

In 2009, Cook et al. reported that the endogenous LXRs agonist 24(S)-hydroxycholesterol 

(24HC) could be sulfated by three different sulfotransferases, namely SULT1E1, SULT2A1 

and SULT2B1b at the 3-OH or 24-OH positions with different rates and affinities affording 

24HC3S, 24(S)-hydroxycholesterol-24-sulfate and 24HCDS. Surprisingly, 24HC3S and 

25HC24S showed a remarkable antagonistic behaviour in a time-resolved fluorescence energy 

transfer (TR-FRET) LXRα coactivator recruitment assay suggesting a dramatic switching in 

ligand properties as the sulfate moiety was introduced in the structure of the parent compounds. 

Interestingly, SULT2B1b is a LXRs target gene whose expression increases in the presence of 

agonists. Accordingly, the sulfation of LXRs endogenous agonists can be considered a negative 

feedback mechanism able to control LXRs activation (Cook et al., 2009).  

Also 25-hydroxycholesterol (25HC), another endogenous LXRs agonist, can be converted into 

an antagonist when sulfated at 3β-OH. 25HC3S was identified by Ren et al. in 2007 first in 

hepatocytes nuclei. 25HC3S has been found to decrease the expression of SREBP-1 target 

genes (e.g. HMG-CoA reductase) with a consequent overall decrease of Chol levels. Moreover, 

its administration to human hepatocytes resulted in reduced SREBPs, in particular SREBP-1, 

expression and maturation. Hence, 25HC3S was found to decrease NF-κB nuclear levels by 

increasing cytosolic levels of its inhibitor IκBα, thus repressing TNFα-induced inflammatory 

response in HepG2 cells. Interestingly, its parent compound, namely 25HC, elicited the 

opposite activity (Leyuan Xu et al., 2010). In the same paper, the antagonistic behaviour of 

25HC3S towards LXRs was demonstrated. Indeed, 25HC3S was able to decrease the 

expression of LXR target genes involved in Chol biosynthesis and lipogenesis (e.g. Fatty acid 

synthase and Acetyl-CoA carboxylase-1) (Leyuan Xu et al., 2010). By contrast, Zhang et al. 

demonstrated that 25HC3S up-regulated several genes involved in hepatic cells proliferation 

(Zhang et al., 2012). In a LDLR-/- mouse model overexpressing SULT2B1b with 25OHC 
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supplementation increased 25OHCS levels and it was demonstrated that endogenous 25HC3S 

is a crucial regulator of lipid biosynthesis mediating inhibitory effects to the LXR-SREBP-1c 

signalling pathway (Bai et al., 2012). 

According to its biological profile, acting as an inhibitor of LXR and SREBP-1c signalling 

pathways (Bai et al., 2012) as well as to its anti-inflammatory properties (Leyuan Xu et al., 

2010; L. Xu et al., 2012), 25HC3S is currently evaluated in phase II clinical trial for its potential 

application in liver diseases (e.g. NAFLD) by Durect corporation. In 2012, 25HC3S has been 

also found to act as a PPARγ agonist in THP-1 macrophages, where it can suppress 

inflammatory responses by increasing IκBα transcriptionally. Indeed, IκBα bears a PPAR 

response element (PPRE) sequence on its promoter (L. Xu et al., 2012). Although no co-

crystallized structures are available, recently the binding mechanism of 25HC3S to PPARγ was 

simulated in silico by Yang et al., showing the selection of a partial-agonistic conformation of 

the receptor by the ligand (Yang et al., 2019).  

One of Ren’s group discoveries has been the identification of the sulfolipid 25HCDS in rat 

hepatocytes. Like 25HC3S, 25HCDS was able to reduce Chol levels and to negatively regulate 

immune responses at transcriptional level probably interfering with LXRs, SREBPs and 

PPARγ (Ren et al., 2014). However, since no proof of concept regarding the exact mechanism 

of action of 25HCDS has been reported yet, the latter hypothesis remains elusive.  

 

 

Analytical strategies in the analysis of plasma oxysterol sulfates: current challenges 

Most of the findings reported on oxysterol sulfates in cells and tissues have been carried out 

using the commercially available 25HC3S standards (Bai et al., 2012; Ma et al., 2008; Ren et 

al., 2007; Leyuan Xu et al., 2010; L. Xu et al., 2012; Y. Xu et al., 2013) but exploratory studies 

have shown that the panel of oxysterol sulfates in circulation may in fact be broader (Meng et 

al., 1997; Ren et al., 2014; Sánchez-Guijo et al., 2015a). 

One of the first studies focused on the screening of oxysterol sulfates in biological fluids 

described the presence of elevated levels of a compound compatible with the presence of a 

glucuronidated cholestenediol sulfate in serum and urine samples of children with severe 

cholestatic liver disease (Meng et al., 1997). The authors were able, after extensive sample 

handling and derivatisation steps, to identify and characterize it as the glucuronidated form of 
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the 24HC3S by fast atom bombardment mass spectrometry using glycerol as a matrix 

compound (Meng et al., 1997). The authors also reported the occurrence of oxysterol glycine 

and taurine conjugates, though sulfation seemed to be the main detoxification route in 

cholestatic liver disease and with potential prognostic value during clinical evaluation (Meng 

et al., 1997). Later, Acimovic et al. suggested that sulfation could act as a protective mechanism 

against the accumulation of oxysterols in circulation (Acimovic et al., 2013). A glimpse into 

the panel of oxysterol sulfates was expanded by Sanchez-Guijo et al. 2015a who reported the 

presence of the 27-hydroxycholesterol sulfate (27HCS, otherwise known as  (25R)-26-

hydroxycholesterol-3-sulfate) and found that 27HCS was not the only sulfated steroid 

derivative that was consistently elevated in serum samples of RLXI patients (Sánchez-Guijo et 

al., 2015a). This compound was among a wider panel of oxysterol sulfates (Figure 2) including 

isomers containing the hydroxyl group at the 25-, 4-, and 7-position of cholesterol moiety and 

even disulfated compounds. 

Despite the evidence for a wider panel of oxysterol sulfates in circulation provided by these 

exploratory studies (Meng et al., 1997; Sánchez-Guijo et al., 2015a), very little is known about 

the predominant oxysterol sulfates circulating in fluids and accumulated in cells/tissues, their 

basal levels, and any variations introduced with age, gender and ethnicity in health and disease 

despite the common knowledge that SL gather at the surface of lipid-raft domains 

(Weerachatyanukul, Probodh, Kongmanas, Tanphaichitr, & Johnston, 2007) and contribute to 

cell-cell communication processes (Honke, 2017; Strott & Higashi, 2003). On the other hand, 

structurally-related compounds such as oxysterols, are widely studied and knowledge on the 

oxysterol signature in normolipidemia and normoglycemia conditions and their basal levels is 

known (Dias et al., 2018; Grayaa et al., 2018; McDonald, Smith, Stiles, & Russell, 2012; 

Murakami, Tamasawa, Matsui, Yasujima, & Suda, 2000; Narayanaswamy et al., 2015). 

Oxysterols are predominantly found esterified to fatty acids (Dzeletovic, Breuer, Lund, & 

Diczfalusy, 1995) and are thought to be substrates for sulfotransferases (Hirotoshi Fuda et al., 

2007) leading up to the formation of oxysterol sulfates.  

The concentration values reported in the literature for oxysterol sulfates are still scarce and 

require corroboration as levels reported for 24-hydroxycholesterol-3-sulfate-24-glucuronide 

ranges 2-18 μM measured in cholestatic liver disease by FAB-MS (Meng et al., 1997), whereas 

the levels of 27HC3S in patients with steroid sulfatase deficiency range between 22.5-46 

ng/mL (~46.7-95.4 nM) when compared to levels below 2.5ng/mL (<LOQ) in healthy male 

donors (Sánchez-Guijo et al., 2015a). The disparity of values found could be attributed to 



 

 
This article is protected by copyright. All rights reserved. 

differences in the characteristics of the individuals included in the study groups as well as to 

experimental and methodological conditions adopted, supporting the need for further 

investigation. Accurate knowledge on the basal levels of oxysterol sulfates in health and 

disease are intimately related to the experimental conditions chosen during the analysis pipeline 

including sample collection, storage, extraction, fractionation, separation, detection and 

quantification steps. For instance, sample pre-treatment strategies are paramount in the 

discovery and validation of lipid-based markers in biological samples. Sample collection tubes, 

freeze-thaw cycles and storage conditions are often a major source of variability that affect not 

only the stability of samples but also the overall recovery and fingerprint of plasma lipids 

(Gonzalez-Covarrubias, 2013; Hammad et al., 2010; Lee, Kind, Yoon, Fiehn, & Liu, 2014; 

Sarafian et al., 2014). Work conducted on the analysis of structurally related-compounds such 

as CS and oxysterols (Table 2) reveals a diversity of sample pre-treatment strategies (e.g. 

anticoagulant), extraction solvent system used and analytical methodology has been largely 

overlooked. 

 

As shown in Table 2, several different anticoagulants are typically used in the collection of 

blood samples. Even though there is a lack of studies on the effect of sample pre-treatment 

strategies in the levels of oxysterol sulfates, published results with oxysterols, reveal that 

plasma oxysterol levels collected with K2-EDTA and citrate collection tubes differed from 

those observed in serum samples (Hautajärvi, Hukkanen, Turpeinen, Mattila, & Tolonen, 2018; 

Reinicke, Schröter, Müller-Klieser, Helmschrodt, & Ceglarek, 2018) supporting the use of 

EDTA-collection tubes over citrate or heparin tubes, due to the complete and non-reversible 

chelation of Ca2+ and Mg2+ ions which suppressed oxidative reactions (Reinicke et al., 2018). 

In case serum samples were used, Helmschrodt et al. suggested the addition of antioxidant, 

butylated hydroxytoluene (0.05%) to increase the stability of oxysterols. Another aspects that 

are often ignored include the freeze-thaw cycles, often required for biochemical and chemical 

analysis appear not to affect the levels CS (Sánchez-Guijo, Oji, Hartmann, Traupe, & Wudy, 

2015b). Storage up to 3 months led to the same conclusions (Hautajärvi et al., 2018; 

Helmschrodt et al., 2013; Sánchez-Guijo et al., 2015b). However, the number of freeze-thaw 

cycles has shown to decrease the level of oxysterols (Helmschrodt et al., 2013).  

One other aspect that has been largely overlooked is the method of extraction. Extraction of 

steroid-related compounds is typically conducted by liquid-liquid extraction (LLE) protocols 
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followed by fractionation in solid-phase extraction (SPE) cartridges (Table 1). In fact, LLE 

protocols remain the most popular method of choice due to their simplicity, cost, sample 

volume required, extraction efficiency, reproducibility, repeatability, lipidome coverage, and 

potential for automation, where the overall performance of LLE protocols is very similar in the 

extraction of predominant lipid classes (Reis et al., 2013). In the case of structurally similar 

compounds, the extraction performance of Chol and CS in two of the most popular LLE solvent 

mixtures is similar, though solvent systems with a higher dielectric constant () extracted 

higher amounts of CS compared to Chol (MeOH:CHCl3 (2:1, v/v)), whereas solvent mixtures 

of lower  with more hydrophobic character were more efficient towards the extraction of Chol 

but not of CS [MeOH:CHCl3 (1:2, v/v)] (data not shown). 

Based on our previous experience on the extraction of lipids from biological samples, it is clear 

that organic solvent mixtures have a major impact on the extraction performance (Reis et al., 

2013), particularly on the less abundant lipids. Remarkably, the influence of the solvent system 

in the extraction performance of oxysterol sulfates by LLE protocols has not yet been 

addressed. Despite this lack of knowledge, the sulfate group confers increased polarity to the 

oxysterol, though the position of the hydroxy group may also be responsible for changes in 

hydrophobicity to the oxysterol sulfate moiety and hence potentially have a strong influence 

on the extractability of oxysterol sulfates in organic solvents. To support this, it was previously 

shown that the elution of underivatized oxysterol positional isomers under reverse-phase HPLC 

conditions was very distinct. The 24HC and 25HC isomers eluted prior to the 7-ketocholesterol 

(7KC) and 4β-hydroxycholesterol oxysterols (Dias et al., 2018; Grayaa et al., 2018; 

Narayanaswamy et al., 2015; Reinicke et al., 2018) confirming the distinct hydrophobicity of 

oxysterol positional isomers. These slight differences in polarity facilitate the chromatographic 

separation under reverse-phase conditions but could also impact the extraction efficiency of 

oxysterol sulfates from aqueous biological matrices during the LLE when polar solvent 

mixtures are used. In the case of oxysterols sulfates, extraction by protein precipitation with 

ACN-ZnSO4 (4:1, v/v) followed by C18 SPE fractionation (Sánchez-Guijo et al., 2015a) 

resulted in complete recovery (100.6%).  

While the presence hydroxy group affects the hydrophobicity of the oxysterol moiety and may 

impact on the performance during the extraction step, the presence of the sulfate and hydroxy 

groups in oxysterols sulfates also impacts on the detection approaches that can be used to detect 

and quantify oxysterol sulfates. Unlike oxysterols that are usually detected in the positive ion 
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detection mode (Dias et al., 2018; Hautajärvi et al., 2018; Helmschrodt et al., 2013; Mendiara 

et al., 2018; Murakami et al., 2000) the presence of the sulfate group facilitates the detection 

of oxysterol sulfates in the negative ion mode through mass spectrometry-based approaches. 

Because oxysterols sulfates occur in residual levels in biological samples, detection of 

oxysterols sulfates is often achieved by targeted detection approaches such as MRM. Due to 

the specificity of the transitions in MRM approaches, these display an increased sensitivity in 

the detection step with the advantage of eliminating the contribution of the other sulfated 

metabolites that may contribute to the overall plasma sulfometabolome and already observed 

by targeted approaches (Dias, Ferreira, et al., 2019). Previous work by Sanchez-Guijo and 

colleagues established 1ng/mL as the limit of detection of oxysterol sulfates in MRM detection 

approaches (Sánchez-Guijo et al., 2015a).  

Contrarily, the presence of the hydroxy group has no influence on the efficacy of ionisation 

and hence on the detection step. As ionisation of oxysterol sulfate occurs by removal of 

hydrogen atom at the sulfate group, the ionisation efficiency of oxysterol sulfates is similar to 

that of CS. This was confirmed by the injection of an equimolar mixture of oxysterol sulfates 

and CS and detection under reverse-phase elution conditions in the negative ion mode 

(unpublished results).   

Regardless of the collection, extraction, and analytical strategy adopted in the analysis of 

oxysterol sulfate, the values reported (Acimovic et al., 2013; Meng et al., 1997; Sánchez-Guijo 

et al., 2015a) show that these are well below the micromolar range generally used in the 

biological assessment of oxysterol sulfates in cells and tissue (Ren et al., 2007; Leyuan Xu et 

al., 2010; L. Xu et al., 2012). Based on the literature reported, oxysterols which are structurally 

related compounds of oxysterol sulfates account for less than 1% of total Chol in 

hyperlipidemia (Björkhem et al., 2001; Dias et al., 2018; Reinicke et al., 2018) while oxysterol 

sulfates (24HC3S and 26HC3S) account for less than 15% of total oxysterols (Acimovic et al., 

2013). This could explain why oxysterol sulfates have been largely overlooked by the scientific 

community. 

 

Concluding Remarks 

In summary, it is clear that CS and oxysterol sulfates act as key players of many 

biological pathways influencing human health and disease. While CS has been extensively 
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studied, only a handful of research focused on oxysterol sulfates. The lack of a more complete 

panel of oxysterol sulfate standards commercially available and the poor knowledge on the 

optimal conditions for the extraction, detection and quantification of oxysterol sulfates from 

biological matrices has hampered the complete understanding on the role of oxysterol sulfates. 

The development of mass spectrometry-based approaches designed for the sensitive detection 

of oxysterol sulfates are crucial to improve our understanding of the molecular interplay 

between oxysterols and oxysterol sulfates at cell and tissue levels that are of the utmost 

importance for cholesterol/oxysterol homeostasis (Figure 3). This in turn relies on increased 

investment of time and resources by synthetic organic chemists to promote the commercial 

availability of novel oxysterol sulfates to be used as standards.  
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Abbreviations 

24HC: 24(S)-hydroxycholesterol 

24HC3S: 24(S)-hydroxycholesterol-3-sulfate  

24HCDS: 24(S)-hydroxycholesterol-3,24-disulfate  

25HC: 25-hydroxycholesterol 

25HC3S: 25-hydroxycholesterol-3-sulfate  

25HCDS: 25-hydroxycholesterol-3,25-disulfate  

26HC: (25R)-26-hydroxycholesterol 

26HC26S: (25R)-26-hydroxycholesterol-26-sulfate 

26HC3S: (25R)-26-hydroxycholesterol-3-sulfate 

27HC: 27-hydroxycholesterol 

5,6αECS: 5α,6α-epoxycholesterol-3-sulfate  

5-LO: 5-Lipoxigenase  

7KC: 7-ketocholesterol 

7KCS: 7-ketocholesterol-3-sulfate 
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ACN: Acetonitrile 

CS: Cholesterol sulfate  

DHEA: Dehydroepiandrosterone  

DHEAS: Dehydroepiandrosterone sulfate  

DOCK2: Dedicator of cytokinesis protein 2  

EDTA: Ethylenediaminetetraacetic acid  

HMG-CoA reductase: 3-hydroxy 3-methylglutaryl-CoA reductase  

HPLC: High Performance Liquid Chromatography  

IκBα: NF-κB inhibitor  

LLE: Liquid-liquid extraction 

LXRα: Liver X receptor alpha  

LXRβ: Liver X receptor beta  

Mincle: Macrophage inducible Ca2+-dependent lectin receptor  

MRM: Multiple Reaction Monitoring  

NF-κB: Nuclear Factor-κB  

PAPS: 3’-phosphoadenosine 5’-phosphosulfate  

PIP2: Phosphatidyinositol diphosphate  

PIP3: Phosphatidylinositol (3,4,5)-trisphosphate  

PPARγ: Peroxisome proliferator-activated receptor gamma  

Preg: Pregnenolone 

PregS: Pregnenolone sulfate  

PtdIns-3K: Phosphatidylinositol 3-kinase  

RLXI: Recessive X- linked ichthyosis  

RORα: Retinoic acid-related orphan receptor α  

SL: Sufate-based lipids 

SPE: Solid Phase Extraction 

SREBP-1: Sterol Regulatory Element-Binding Protein-1  

STS: Steroid Sulfatases  

SULTs: Sulfotransferases  

TCR: T-cell receptor  

TNFα: Tumor Necrosis Factor alpha  
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Figure 1: Structures of sterol and oxysterol sulfates 
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Figure 2: Chromatographic separation of oxysterol sulfates in serum samples from RLXI 

patient (A) and healthy control subject (B) using targeted multiple reaction monitoring 

(MRM) detection mode. This data was originally published in the Journal of Lipid Research. 

Sánchez-Guijo A, et. al. High levels of oxysterol sulfates in serum of patients with steroid 

sulfatase deficiency. J Lipid Res. 2015;56(2):403–412. © the American Society for 

Biochemistry and Molecular Biology. 
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Figure 3: Overview of cholesterol sulfate and oxysterol sulfate analysis 
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Table 1: Cellular activities and tested concentration ranges of oxysterol sulfates in human 

cell models. 

Oxysterol Cell type Outcome 

Tested 

Concentration 

range 

References 

5,6αECS 

Colorectal 

Cancer cell line, 

Caco-2 

Accumulation sensitise 

cells to apoptosis 
0.6 -100 µM 

(Segala et 

al.2013) (Warns, 

Marwarha, 

Freking, & 

Ghribi, 2018) 

 

Neuroblastoma 

cell line, SHSY-

5Y cells 

No effect on cell viability 10 µM 

(Marwarha, Rhen, 

Schommer, & 

Ghribi, 2011) 

Human 

embryonic 

kidney 293 cells 

 

Attenuates the 26HC-

induced increase in α-

synuclein expression 

 

Inhibit transactivation of 

reporter genes by LXR 

4-20 µM 
(Song, Hiipakka, 

& Liao, 2001) 

7KCS 

Human 

embryonic 

kidney 293 cells 

Reduce cytotoxicity 

induced by 7ketoC 

 

5 nM 

(Hirotoshi Fuda, 

Javitt, Mitamura, 

Ikegawa, & Strott, 

2007) 

 

Human retinal 

pigment 

epithelial cell 

line, ARPE-19 

Attenuates ABCA1 and 

VEGF inductions by 

7ketoC 

0-20 µM 

(Moreira, 

Larrayoz, Lee, & 

Rodríguez, 2009) 

Human 

embryonic 

kidney 293 cells 

Inhibit transactivation of 

reporter genes by LXR 
4-20 µM (Song et al., 2001) 

24HC3S/ 

24HCDS 

 

Hepatocytes LXR antagonists 20 µM (Cook et al. 2009) 

 

 

25OHC3S 

 

 

 

Hepatocytes 

Inhibits the LXR/SREBP 

signalling pathway, 

regulates lipid 

metabolism, 

inflammatory responses, 

and cell proliferation 

0-25 µM 

(Ren et al., 2014; 

Ren et al., 2007), 

(Ren & Ning, 

2014) 

 

 

https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=756
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Human 

monocytic cell 

line, THP-1 

Attenuates inflammatory 

response via PPARγ 

signalling 

0-50 µM 

(Ma et al., 2008) 

(L. Xu et al., 

2012), 

 

  

https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=595
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Table 2. Analytical strategies employed in the collection, extraction, and analytical approach 

in the detection and quantification of cholesterol sulfate and oxysterols in human plasma 

samples. 

 

 

Biological 

matrix 

(collection 

tube) 

Extraction approach  

(method and solvent system) 

Analytical 

approach and 

method 

performance 

Ref. 

C
h
o
le

st
er

o
l 

su
lf

at
e
 

Plasma  

(EDTA tube) 

LLE with MeOH followed by 

purification on Baker-10 

quartenary amine column 

GC-FID (TMS 

derivatives),  

n.s. 

Muskiet et 

al., 1983 

Sodium  

(citrate) 

LLE with MeOH (80%) HPTLC coupled 

to densitometry, 

n.s. 

Przybylska 

et al., 1995 

- LLE with acetone/ethanol (1:1, 

v/v), followed by purification in 

silica column and elution with 

CHCl3/MeOH (1:1, v/v) 

GC-MS (TMS 

derivatives), 

n.s. 

Tamasawa 

et al., 1993 

serum LLE with acetone/ethanol (1:1, 

v/v), followed by purification in 

acidified NH2 Bond Elut 

cartridge and elution with 

CHCl3/MeOH (1:1, v/v) 

GC-MS 

(acetylated 

derivatives), 

n.s. 

Delfino et 

al., 1998 

Plasma  

(lithium 

heparin) 

LLE with MeOH, followed by 

purification by C18 SPE and 

elution with CHCl3:MeOH (2:1, 

v/v) 

LC-APCI-

MS/MS 

detection 

(underivatized) 

and 

quantification 

by MRM in 

QTRAP 3200, 

LLOD 

(mol/L): 0.02 

Fong et al., 

2013 
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Serum/plasma Protein ppt ACN-ZnSO4 

followed by fractionation by SPE 

(SepPak cartridge) 

LC-MS/MS, 

LOQ (ng/mL): 

80 

Sanchez-

Guijo et al., 

2015b 

Serum 

(-) 

SPE extraction with MeOH in 

Strata-X (33m) cartridges 

LC-(ESI)MS 

detection and 

quantification 

by SIM in QqQ, 

LOQ (ng/mL): 

5 

Lee et al., 

2016 

O
x
y
st

er
o
ls

 

Plasma 

(K2EDTA) 

Saponification in ethanolic 

solution, followed by LLE with 

CHCl3 and purification in silica 

SPE and elution with 30% iso-

propanol in hexane 

GC-MS of TMS 

derivatives, 

LOD (ng): 0.3-5 

Dzeletovic 

et al., 1995 

Plasma  

(heparin) 

LLE with CHCl3:MeOH (2:1, 

v/v) followed by fractionation in 

a packed silica column and eluted 

in ethyl acetate 

GC-MS of TMS 

derivatives, 

LOD (ng/mL): 

0.02 

Murakami et 

al., 2000 

Plasma  

(-) 

LLE with CH2Cl2:MeOH (1:1, 

v/v) aided by ultrasonic bath 

homogenization (10min).  

LC-(APCI)MS 

detection and 

quantification 

by MRM in 

QTrap, 

LLOQ (ng/mL): 

1 

McDonald 

et al., 2012 

Plasma  

(EDTA) 

LLE with MeOH:iso-propanol 

(1:1, v/v) 

LC-(APCI)MS 

detection and 

quantification 

by MRM in 

QqQ, 

LLOQ (ng/mL): 

0.5 

Helmschrodt 

et al., 2013 

Plasma  

(EDTA) 

LLE with ethanol, followed by 

alkaline hydrolysis and extraction 

with CHCl3:MeOH (2:1, v/v) and 

GC-MS of TMS 

derivatives, 

n.s. 

Graya et al., 

2018 
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SPE fractionation in a silica 

column 

Plasma  

(EDTA) 

LLE with MeOH followed by 

fractionation by SPE in a HLB 

Oasis PRIME column 

LC-(ESI)MS 

detection and 

quantification 

by MRM in 

QTRAP 5500,  

LLOQ (pg/mL): 

18-253 

Dias et al., 

2018 

Plasma  

(K2EDTA) 

Saponification of plasma in 

ethanolic solution, followed by 

protein precipitation in ACN 

(1.5% formic acid) and 

purification by SPE 96-well 

plates 

LC/ESI-HR-MS 

detection and 

quantification 

against cal 

curves built 

with deuterated 

standards, 

LLOQ (ng/mL): 

0.5-2 

Hautajärvi 

et al., 2018 

n.s. not stated 

 


