
 
 
 

 
 

 

 

Structural insight into TNF-α inhibitors through combining 

Pharmacophore-based virtual screening and Molecular Dynamic 

Simulation 
 

Hina Qaisera,b, Maria Saeeda, Dmitry Nerukhb, and Zaheer Ul-Haqa,* 

 

aDr. Panjwani Center for Molecular Medicine and Drug Research, International Center for 

Chemical and Biological Sciences, bDepartment of Mathematics, Aston University, Birmingham 

B4 7ET, United Kingdom. 

 

 

*Corresponding author: Zaheer Ul-Haq, Email: zaheer.qasmi@iccs.edu 

 

 

 

 

 

 

 

 

 

 

mailto:zaheer.qasmi@iccs.edu


 
 
 

 
 

 

Abstract  

 

Tumor Necrosis Factor-alpha (TNF-α), a multifunctional cytokine responsible for providing 

resistance against infections, inflammation, and cancers. TNF-α has emerged as a promising drug 

target against several autoimmune and inflammatory disorders. Several synthetic antibodies 

(Infliximab, Etanercept, and Adalimumab) are available, but their potential to cause severe side 

effects has prompted them to develop alternative small molecules-based therapies for inhibition 

of TNF-α. In the present study, combined in silico approaches based on pharmacophore modeling, 

virtual screening, molecular docking, and molecular dynamics studies were employed to 

understand significant direct interactions between TNF-α protein and small molecule inhibitors. 

Initially, four different small molecule libraries (~17.5 million molecules) were virtually screened 

against the selected pharmacophore model. The identified hits were further subjected to molecular 

docking studies. The three potent lead compounds (ZINC05848961, ZINC09402309, 

ZINC04502991) were further subjected to 100 ns molecular dynamic studies to examine their 

stability. Our docking and molecular dynamic analysis revealed that the selected lead compounds 

target the TNF receptor (TNFR) and efficiently block the production of TNF. Moreover, in silico 

ADMET (Absorption, Distribution, Metabolism, Excretion and Toxicity) analysis revealed that all 

the predicted compounds have good pharmacokinetic properties with high gastrointestinal 

absorption and a decent bioavailability score. Furthermore, toxicity profiles further evidenced that 

these compounds have no risk of being mutagenic, tumorigenic, reproductive and irritant except 

ZINC11915498. In conclusion, the present study could serve as the starting point to develop new 

therapeutic regimens to treat various TNF- related diseases. 
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1. Introduction 

TNF-α is an important proinflammatory cytokine responsible for several physiological and 

pathological conditions including Rheumatoid arthritis (McInnes, Buckley & Isaacs, 2015), 

Inflammatory bowel diseases (IBD) (Sticherling, 2016), Ankylosing spondylitis (Maxwell et al., 

2015), Psoriasis (Adegbola, Sahnan, Warusavitarne, Hart & Tozer, 2018) and gastric-carcinoma 

(Jang et al., 2009). It is chiefly produced by macrophages/ monocytes, mast cells, fibroblast, and 

natural killer cells during the acute phase reaction. TNF-α is involved in various signaling events 

inside the cells, leading to necrosis or apoptosis (Idriss & Naismith, 2000).  It exists in two 

biological forms; membrane-bound TNF (m-TNF) and secreted TNF(s-TNF) released after 

proteolytic cleavage of the membrane bound iso-form. s-TNF is present in blood plasma and 

circulate in the body to perform its endocrine function. Both forms of TNF-α (m-TNF & s-TNF) 

are biologically active having different functions (Wajant, Pfizenmaier & Scheurich, 2003, 

Palladino, Bahjat, Theodorakis & Moldawer, 2003). The signaling of TNF begins when TNF-α 

binds to its cognate receptors (TNFRs) such as TNFR1 (Tumor Necrosis Factor Receptor 1) and 

TNFR2 (Tumor Necrosis Factor Receptor 2) (Liang et al., 2013). TNFR1 is found in many types 

of cells, while TNFR2 is expressed only on the immune cells. The two receptor types; TNFR1 and 

TNFR2, tend to bind soluble and membrane-bound forms of TNF α, respectively (Chan, Siegel & 

Lenardo, 2000, Sedger & McDermott, 2014).  

TNF inhibition has been achieved by blocking TNF binding to its receptors to avoid the adverse 

effects (Papadakis & Targan, 2000). The pleiotropy of TNF validates it as a therapeutic target for 

the treatment of various autoimmune and inflammatory disorders. Some FDA approved synthetic 

biologics (antibodies) including Infliximab, Adalimumab, Etanercept, Certolizumab and 



 
 
 

 
 

Golimumab (Bongartz, Matteson & Orenstein, 2005, Jacobi, Mahler, Schuler & Hertl, 2006, 

Monaco, Nanchahal, Taylor & Feldmann, 2014) inhibits TNF-α directly and successfully used for 

the treatment of some inflammatory diseases including Crohn’s disease, Rheumatoid arthritis and 

Ulcerative colitis (Mesaik et al., 2012). However, these therapeutic biologics have several side 

effects including the weakening of body defensive system by eliciting antigen-antibody response 

against self-antigens, high cost and painful administration (Hochberg, Lebwohl, Plevy, Hobbs & 

Yocum, 2005, Sfikakis & Tsokos, 2011, Lis, Kuzawińska & Bałkowiec-Iskra, 2014). The dilemma 

has made researchers pay more attention towards designing small molecule inhibitors against 

TNF-α. Currently, small molecule-based therapies are the most promising alternative approach to 

develop potent TNF-α inhibitors because they are low cost, easy to manufacture and deliver to the 

target tissue (Davis & Colangelo, 2013). Unfortunately, very few small-molecule inhibitors are 

available, but none of them has reached clinical trials. It is very challenging to find a low molecular 

weight compound that interacts directly with protein to block its function (Buchwald, 2010). To 

date, most small molecules interact with TNF-α indirectly by downregulating its expression and 

some inhibitors promote direct disassembly of TNF-α with its receptors (Berg, 2003). Suramin and 

SPD307 promote disassembly of TNF with its receptor by disrupting the binding of TNF-α trimer 

complex but not considered as potent TNF inhibitors due to their low potency and toxicity 

(Mancini et al., 1999, He, 2005).  

Even after such extensive work, due to lower potency and higher cytotoxicity profiles of small 

molecular inhibitors researchers still target TNF-α to find more potent inhibitors to reduce the 

higher cost and side effects of currently available treatments. Therefore, in the present study, we 

used ligand-based pharmacophore modeling, virtual screening, molecular docking studies to 

identify the novel TNF-α inhibitors. In this connection, we further performed the MD simulation 



 
 
 

 
 

of selected hits to gain insight into the real dynamic behavior and binding mechanism of TNF-

alpha with its inhibitors. Moreover, pharmacokinetic and drug-likeness properties of selected hits 

were also determined to evaluate their potential to act as a drug candidate for TNF-α. 

 

2. Material and methods 

2.1 Data set 

A set of 27 TNF-α inhibitors was collected from literature based on their experimental inhibitory 

activity (IC50 values) ranging from 0.004 μM to 60 μM (Fujita, 2002, Cheng & et al., 2004, 

Laufersweiler & et al., 2004, Sabat & et al., 2006,  Dhuru et al., 2011, Mouchlis, et al., 2012, Shah 

et al., 2012, Guirado et al., 2013, Kim et al., 2014). The 3D structure of these compounds was 

sketched by using ChemDraw Ultra 11.0 software (Li et al., 2004) followed by atom typing 

correction and geometry optimization by Sybyl Tripos 7.3. (SYBYL7.3, 2007). Energy 

minimization of the dataset was performed by the Tripos molecular mechanics force field through 

Powell's conjugate gradient method (Clark, Cramer, and Van Opdenbosch, 1989) with one 

thousand steps and 0.5 kcal/mol Å threshold. To calculate partial atomic charges Gasteiger-Huckel 

charges (Gasteiger, 2005) were applied to all the ligands by AutoDock 4.2 software (Morris et al., 

2009) and hydrogen atoms were added to the whole dataset. These 27 reported inhibitors belong 

to the diverse classes of inhibitors and they were used for the ligand-based pharmacophore 

generation. The 2D structures and inhibitory activity of these compounds are present in Table 1. 

 

 

 

 



 
 
 

 
 

 

Table 1: List of reported active compounds and their corresponding IC50 values in μM collected from the literature. 

 

 

 



 
 
 

 
 

 

 

 

2.2 Receptor preparation 

To get initial coordinates of TNF-α, the crystal structure of human tumor necrosis factor-alpha 

with reported inhibitor (307) measured at 2.1 resolution was downloaded from RCSB Protein Data 

Bank under the accession code 2AZ5 (Berman, 2000, He, 2005). TNF-α is a homotrimer, 

containing three chains (A, B, C) but chain C was removed due to its similarity with chains A and 

B (Tang, Hung & Klostergaard, 1996). Therefore, chains A and B were selected because the 

binding pocket of TNF-α lies at the interface of these two chains (He, 2005). Protein preparation  



 
 
 

 
 

 

started from the modeling of missing residues via Modeller9.23 software (Šali & Blundell, 1993) 

and the quality of model was assessed using PROCHECK (Laskowski, MacArthur, Moss & 

Thornton, 1993), ERRAT (Colovos & Yeates, 1993) and Verify3D (Bowie, Luthy & Eisenberg, 

1991, Lüthy, Bowie & Eisenberg, 1992) online servers, followed the addition of missing bonds 

and atoms, removal of heteroatoms, and water molecules using the protein preparation module in 

MOE2019.01 software (Vilar et al., 2008). Further Hydrogen atomes were added by using the 

protonate 3D algorithm, while partial charges were assigned via AMBER99 Force Field 

implemented in MOE2019.01. 

 

 

Figure 1. represents the graphical summary of the workflow. 

 



 
 
 

 
 

2.3 Ligand-Based pharmacophore modelling 

In our study, a single crystallized complex structure (PDB ID: 2AZ5) was available. As a 

compensation, we employed the coordinates of the ligand protein complexes, obtained after 

docking the reported inhibitors with PDB: 2AZ5, to generate structure-based pharmacophore 

models. However, the models failed to produce significant features for pharmacophore generation. 

Therefore, ligand-based pharmacophore modeling has been implemented in this study. All the 

ligand-based pharmacophore modeling studies were performed using Ligandscout4.2 (Wolber & 

Langer, 2005). The ligand-based approach requires the active conformation of reported inhibitors 

to develop a model. In this study, information extracted from 27 reported TNF inhibitors was used 

to create pharmacophores, which were used in different combinations for modeling 

pharmacophores with either merged or shared features, or combination of both. The generated 

models were further with the help of active, decoys and random datasets of compounds.  

 

2.4 Validation of Generated Pharmacophore Model 

The developed pharmacophores were analyzed to validate their ability to extract active molecules 

from a large data set of unknown molecules. In the present study, three datasets such as actives, 

random, and decoys were used for the validation of constructed pharmacophore model. The test 

set of active compounds contained 27 reported TNF-α inhibitors retrieved from the literature based 

on their good inhibitory activity (0.004μM to 0.323μM) (Table 1). The random dataset comprised 

80 compounds (Table S2) that were collected randomly from various commercial databases and 

have not been tested against TNF protein. The third dataset was created by using DUDE (Directory 

of useful decoys enhanced) web server (Mysinger, Carchia, Irwin & Shoichet, 2012). The DUDE 

server use the information of known active compounds to generate the unique dataset for the 



 
 
 

 
 

validation of our generated pharmacophore model. Twenty-seven active compounds were 

submitted in smile format to this web server that generated 50 decoys for every compound, hence 

it provided us with a total of 1350 compounds that have similar physical and chemical properties 

to the active compounds illustrated in (Table S3). All the datasets (test, decoys, and random) were 

converted from mol2 to ldb (ligands out database) format with the help of the idbgen module of 

LigandScout4.2 software. These datasets were then ready to use for the validation process of our 

generated pharmacophore models. This validation protocol is important because it ensures that our 

generated model is reliable, and it can detect the known active molecules correctly from the large 

data of unknown molecules.  

      

2.5 Virtual screening 

The main goal of screening the virtual database is to find those potential lead compounds which 

slightly vary in their chemical structure but with strong inhibitory activity against the target 

receptor. All the dataset of screening compounds was downloaded from 4 commercially available 

compounds libraries including Chembridge (Eugene et al., 2010) (~50,000 compounds), 

Maybridge (ScrGuide, 2004) (~10,6,478 compounds), NCI (Stinson et al., 1992)  

(~2,65,242compounds) and ZINC (Irwin and Shoichet, 2005)  (~17,000000 compounds). Initially, 

~17.5 million compounds from all the four databases were checked for their drug-likeness 

properties by using the Lipinski rules (Lipinski, 2004). Moreover, obtained hits were passed 

through the second filter based on their similarity (2D features) with the reported TNF-α inhibitors 

(Table S1). Furthermore, these compounds were subjected to the third filter by using the Tanimoto 

coefficient (Willett, Barnard & Downs, 1998) analysis. In Tanimoto coefficient analysis many 

conformations have been generated against query molecule then overlapping of both molecules 



 
 
 

 
 

takes place and it assigns the similarity index (ranges 0-1) to the test compound which shows 

similarity with the query compound. After creating a virtual database, it has been converted into 

the Tripos multimol2 files and subjected to the minimization step to achieved most stable and 

lowest energy conformation by using omega module of OpenEye software (OpenEye scientific 

software), then gasteiger charges were applied, and hydrogens were added to all compounds. 

Finally, the ligand dataset is prepared for the assessment of the docking procedure against the 

selected TNF protein. 

 

2.6 Statistical Analysis (Enrichment factor (EF) & ROC curve) 

The virtual screening results were evaluated by their enrichment factor (Bender & Glen, 2005) and 

Receiver operating curve analysis (Truchon & Bayly, 2007, Triballeau, Acher, Brabet, Pin & 

Bertrand, 2005). Enrichment factor is defined as the concentration of active compounds in a set of 

virtual screening results for assessment. It can be calculated by the following formula: 

Enrichment Factor =   Actives (in subset) / Actives (in total dataset)                                                         

No. of compounds( subset) / No. of compounds (in the total dataset) 

ROC curve is another powerful method that provides accuracy of virtual screening result’s and it 

has the potency to differentiate actives from the in-actives and create a boundary between them 

(Empereur-mot et al., 2015). It is created by plotting the true positive rate against the false-positive 

rate at several threshold settings. The area under the curve (AUC) is used to access the performance 

of the overall method and its values range from 0 to 1.  

 

 

 



 
 
 

 
 

 

2.7 Molecular Docking 

Molecular docking simulation was performed using Auto Dock 4.2 (Morris et al., 2009) software 

due to its reproducible results in our redocking experiment (RMSD 1.3 Å). It is an automated 

docking software including a rigid receptor along with its flexible side chains and ligands that 

results in the best ligand binding pose with minimal binding energy (Morris et al., 2009). Auto 

Dock needs a pre-calculated grid map of each ligand atom and this grid must surround the active 

site of the protein. Koll man’s charges (Singh & Kollman, 1984) were applied to protein and 

Gasteiger charges (Gasteiger, 2005)   were applied to the ligands due to their non-peptide nature. 

Auto grid 4.2 (Morris et al., 2009) was used to create a grid box of 38 Å x 36 Å x 38 Å around the 

protein, it provides a rigid body cavity during docking simulations. The Lamarckian genetic 

algorithm (Fuhrmann, Rurainski, Lenhof & Neumann, 2010) was used to search for the best-fit 

ligand conformers. The grid spacing of 0.375 Å was suitable for docking and 1000000 times 

energy evaluation was performed for every ligand. Ten conformers were generated for every 

ligand and best-ranked ligand binding poses were selected for further evaluation. 

 

2.8 Re-docking 

Re-docking experiments were performed to check the software’s ability to reproduce the crystal 

pose of the cognate ligand. For this purpose, the performance of five software packages (Auto 

Dock4.2, MOE2019.1, GOLD, FRED and Surflex Dock.) were evaluated based on root mean 

square deviation (RMSD). RMSD serves as a gold standard to evaluate the reliability of the 

docking protocol (Ajmal Shah, Khalil, Ul-Haq & Panichayupakaranant, 2017). For a reliable 

redocking experiment, RMSD value between the cartesian coordinate of redock and original 



 
 
 

 
 

crystal binding pose must be less than 3 Å. The ligand and receptor were prepared for re-docking 

experiments according to the software’s requirement. 

 

2.9 Molecular Dynamic (MD) Simulation 

To explore the structural and dynamic behavior in protein-ligand complexes 100 nano-second MD 

simulation was performed by utilizing the top three virtual hits and reference compounds as initial 

structures. Gromacs 5.1.4 software package (Abraham et al., 2015) was used to performed MD 

simulation. pdb2gmx tool was used to generate the coordinate topological file for target protein 

using the “GROMOS96 54a7” force field (Scott et al., 1999). The ligands topological files were 

generated by the ATB server (Malde et al., 2011) it converts coordinates of small molecules into 

pdb format. Each system was solvated in a cubic box with the protein placed at 10 Å distance from 

the box wall and SPC216 (Mark & Nilsson, 2001) (simple point charge) solvent model was used 

within the periodic boundary condition (PBC). All the systems were neutralized by the addition of 

counterions followed by the energy minimization of all the complexes in 50,000 steps to get rid of 

steric clashes. After the minimization step, all the systems were equilibrated to 300 K temperature 

for 100ps under NVT condition (constant temperature and volume) which further followed by NPT 

i.e. (temperature 300K and 1.0 atmospheric pressure) ensemble for 100ps along with periodic 

boundary condition. The temperature and pressure were coupled to the Berendsen thermostat and 

barostat (Berendsen, Postma, van Gunsteren, DiNola & Haak, 1984) with a coupling time of 0.1 

ps. The LINCS algorithm (Hess, Bekker, Berendsen & Fraaije, 1997) was used to fix the bond 

lengths and Coulomb and Vander Waals interactions were treated with a single cut off 10Å. 

Particle Mesh Ewald (PME) (Darden, York & Pedersen, 1993, Essmann et al., 1995) was used for 

treating long-range electrostatic interaction. Finally, production MD run of 100ns was carried out 



 
 
 

 
 

and snaps shots were generated after every 2 femtoseconds to observe the real-time dynamics and 

stability of each complex. The results of MD Simulations were examined by using different 

modules of Gromacs software and graphs were plotted via the XMGrace tool. 

 

2.10 In silico Absorption, Distribution, Metabolism, Excretion and Toxicity (ADMET) 

prediction 

To predict the pharmacokinetics and drug-likeness properties of selected hits compounds were 

submitted in the canonical smiles format to the SwissADME online server (Daina, Michielin & 

Zoete, 2017). This analysis was performed to predict the pharmacokinetic properties of hits such 

as Gastrointestinal absorption, P-glycoprotein (p-gp), Blood-brain Barrier permeability and 

inhibition of Cytochrome P450 isoforms. Moreover, drug-likeness and bioavailability score 

prediction was also conducted according to Lipinski (Lipinski, Lombardo, Dominy & Feeney, 

2001), Ghose (Ghose, Viswanadhan & Wendoloski, 1999), Veber (Veber et al., 2002), Egan 

(Egan, Merz, & Baldwin, 2000), Muegee (Muegge, 2003) rules. The drug-likeness rules by 

Lipinski, Ghose, and Weber were applied to predict drug-likeness of the molecules based on some 

important parameters such as MW (Molecular Weight), Slogp, logS and number of HBD and 

HBA. Egan rules provide a prediction of drug absorption properties based on the membrane 

permeability, while Muegee rules provide a prediction of pharmacophore points that differentiate 

between drug-like and non-drug-like molecules. The SwissADME online server utilizes a support 

vector machine algorithm (Cortes & Vapnik, 1995) with large datasets of known and non-

inhibitors along with substrates and non-substrates. The Toxicity profiles of hits compounds were 

analyzed by using Osiris DatawarriorV.5.0.0 (Sander, Freyss, von Korff & Rufener, 2015). 

 



 
 
 

 
 

 

3. Results and discussion 

Successful hits to lead optimization campaigns discovered few potent TNF-α inhibitors. For 

example, Chan et al identified two potent molecules (quinuclidine 1 and indoloquinolizidine 2) by 

ligand-based virtual screening and their experimental findings suggested that quinuclidine 1 has 

better efficacy than indoloquinolizidine 2 with the inhibitory concentration of 5µM and more 

compared to 30µM, respectively (Chan et al., 2010). Chio et al identified a potent compound 

(Oxole-1) using structure-based virtual screening that showed good inhibition of TNF at 10µm. 

(Choi, Lee, Park & Oh, 2010). A novel metal-based TNF inhibitor was also reported by Leung et 

al (Leung et al., 2012). Mouhsine et al. used combined in silico and in vitro screening methods to 

discover orally available TNF inhibitors (Mouhsine et al., 2017). Liang et. al, performed screening 

of bi-cyclic peptides libraries for protein-protein interaction inhibitors which lead to the discovery 

of TNF-α antagonist (Liang et al., 2013). Other works were also reported to discover TNF-α 

inhibitors. (Leung et al., 2011; Hanumanthappa et al, 2012; Mouchlis et al, 2012; Ma et al., 2014; 

Alexiou et al., 2014; Kang et al., 2016). Despite these efforts, the search for TNF-inhibitors is 

taking ground in drug discovery campaigns. For this reason, our ligand-based virtual screening 

campaign was designed to explore the vital interactions between TNF and its receptors that further 

used to develop novel and potent TNF-inhibitors. 

 

3.1 Protein Modelling 

Modeling of missing residues of TNF-α protein was performed via Modeller9.23 software (Šali & 

Blundell, 1993) (Figure 2). Some residues were missing in the crystallized structure of TNF-α 



 
 
 

 
 

(PDB ID: 2AZ5) as in chain A, 16 residues were missing: Arg31, Arg32, Ala33, Asp34, Ala35, 

Gln102, Arg103, Glu104, Thr105, Pro106, Glu107, Gly108, Ala109, Glu110, Ala111, and 

Lys112. In chain B, 8 residues were missing Glu104, Thr105, Pro106, Glu107, Gly108, Ala109, 

Glu110, and Ala111. After modeling the residues PROCHECK was run to check the 

stereochemical quality of the modelled protein structure and Ramachandran plot (Ramachandran, 

Ramakrishnan & Sasisekharan, 1963) was obtained.  Ramachandran plot provides information on 

torsional or dihedral angles (phi and psi) of amino acid residues in protein structure. It consists of 

allowed and disallowed regions. The allowed region is low energy regions that are sterically 

favorable while the disallowed region is sterically unfavorable regions. The Ramachandran plot of 

our modeled structure shows 98.9% of residues were lying in favorable and allowed region only 

1.2% (3 residues) in the disallowed region indicating the reliability of the modeled structure as 

depicted in Figure 3. 

 

 

Figure 2. a) Unmodeled Structure of TNF protein. b) Modeled Structure of TNF protein. c) Alignment of modeled 

and unmodeled TNF protein structure. 



 
 
 

 
 

 

 

 

Figure 3. Ramachandran plot of modeled TNF-α protein showing the correlation of phi (Φ) and psi (Ψ) angles. The 

most favorable regions are shown in red color, additionally allowed, generously allowed and disallowed regions are 

shown in brown, yellow and light-yellow color respectively. 

 

3.1.1 ERRAT model validation 

ERRAT is an online server used to examine non-bonding interactions between atom pairs in the 

modelled protein’s structure. The overall ERRAT quality factor score was 85.606 depicted in 

Figure 4 indicating good quality of constructed model. 

 



 
 
 

 
 

 

 

 

Figure 4. Validation of modelled protein structure via ERRAT tool showing good ERRAT quality factor score. 

 

3.1.2 Verify3D model validation 

Verify3D analyzes protein structures based on their three-dimensional profiles. It examines the 

correlation of protein models (3D) and sequences of amino acids in 1-dimensional manner and 

assigns different structural classes to every residue according to their local environment. The 

Verify3D plot of our modelled structure shows that 80.7% residues have scored >= 0.2 in the 

3D/1D profile suggesting the reliability of the constructed model (Figure 5). 

 

 

 

 



 
 
 

 
 

 

 

 

Figure 5. Verify3D analysis of Modelled protein structure showing average 3D-1D score of all residues >= 0.2 

which is acceptable for modelled protein structure. 

 

3.2 Ligand-based Pharmacophore Generation 

Pharmacophore is defined as a molecular architecture that contains important features necessary 

for the biological activity of the drug (Gao, Yang & Zhu, 2010). In the current study, ligand-based 

pharmacophore modeling was used to generate a reliable pharmacophore model using 

LigandScout 4.2. For this purpose, 27 experimentally reported compounds that had good inhibitory 

activity against TNF-α were used to generate several shared or merge ligand-based 

pharmacophoric models. These generated pharmacophore models were used for virtual screening 

which leads to the identification of novel and potent lead compounds. In order to generate the 

model, ligands were aligned, and common features were extracted to find out the good 

pharmacophore model. Therefore, twelve pharmacophores models were generated by the 

alignment of three different pharmacophores with various combinations of shared and merge 



 
 
 

 
 

features from experimentally reported inhibitors. The selection of these compounds based on their 

potency and structural diversity. The selected pharmacophore is derived from three potent 

inhibitors such as Compound 5 (IC50 0.004 μM), Compound 6 (IC50 0.004 μM) and compound 11 

(IC50 2 μM). Compounds 5 and 11 were presented with sixteen pharmacophoric features including 

four aromatic rings, six HBA (hydrogen bond acceptors), six hydrophobic and one HBD (hydrogen 

bond donor). Similarly, compounds 6 contained thirteen pharmacophoric features such as six 

HBA, four hydrophobic and three aromatic ring features as shown in Figure 6. Six HBA, three 

hydrophobic and three aromatic rings are found to be common in all three ligand-based 

pharmacophore models generated by these ligands. However, one HBD feature is restricted only 

for compounds 5 and 11.  

 

 

Figure 6. Pharmacophore representations of compound 11 (a) compound 5 (b) and Compound 6 (c) Pharmacophore 

models generated by LigandScout4.2. Green and red arrows represent H-bond donors and H-bond acceptors and 

Yellow spheres represent hydrophobic, Blue sphere represents aromatic ring feature respectively. 



 
 
 

 
 

 

 

Table 2 summarizes the generated pharmacophore models with their statistical parameters. All the 

generated models comprise of either four or five pharmacophore features (HBA, HBD, Hyd, Ar); 

all the models were varying in their composition, orientation, and vector directions. The 

combination of compounds used for the construction of pharmacophore models are shown in 

Table 2 and here we discussed only the selected pharmacophore model. Model 7 considered as 

the best pharmacophore model consists of two HBA, one hydrophobic and one aromatic feature 

as shown in Figure 7. These features were common among all the three active compounds and 

were necessary for inhibiting TNF-α at the nanomolar level. All the generated pharmacophore 

models were ranked based on the pharmacophore fit score, a default scoring function implemented 

in LigandScout software. This scoring function measures the best geometric fit of the features of 

a compound to the three-dimensional ligand-based pharmacophore model. A high pharmacophore 

fit score indicates the best fit for the model and those compounds that nicely fit the pharmacophore 

model should also show good activity at TNF-α. In our case, the pharmacophore fit score of all the 

virtual hits was higher (48.08-46.25) indicating that their chemical feature best aligned to the 

features of selected pharmacophore model 7 as depicted in Figure 7. 

 

 

 

 

 

 

 



 
 
 

 
 

 

 

 

Figure 7. Alignment of selected pharmacophore model 7 with compound 11 (a) compound 5 (b) and Compound 6 

(c) Pharmacophore models generated by LigandScout4.1. Green and red arrows represent H-bond donors and H-

bond acceptors and Yellow spheres represent hydrophobic areas; Blue sphere represents aromatic ring feature 

respectively. 

 

1.2 Validation of Generated Pharmacophore Model 

Prediction of active, inactive, random and decoys data set, was the initial step in the validation of 

the constructed pharmacophore model. The developed pharmacophore models were utilized for 

the estimation of hit rates of test datasets. Model 7 showed good hit rates other than developed 

models. The best pharmacophore model and its hits rates against active, inactive, random and 

decoys compounds summarize in Table 2. The selected model consisted of one hydrophobic, one 



 
 
 

 
 

aromatic and two HBA features. The selected pharmacophore showed 80% active identifying hit 

rate. In general, it predicted 22 highly active compounds out of 27 correctly indicating that this 

pharmacophore could pick compounds with high experimental activity against TNF-α. Moreover, 

the best pharmacophore model was further evaluated by decoys, inactive and random datasets. 9 

% decoys (125 out of 1350), 25% inactive (1 out of 4) and 2 % (2 from 80 compounds) random 

compounds were picked by the selected model 7 showing its good predictive ability to discriminate 

between active, inactive and decoys dataset. The pharmacophore models having a low picking rate 

of active compounds were not discussed here. The pharmacophore model (1, 3, 5 and 9) also 

showed higher picking rate of actives but they also picked decoys and inactive compounds in 

higher percentages and they cannot be considered as a good pharmacophoric model. 

 

Table 2. Generated Pharmacophore Models (Shared Feature) and their validation results. 

S.no Combination

s of 

Compounds 

Pharmaco

p-hore 

model 

Shared Features of 

Pharmacophores 

Actives 

(%) 

Inactive 

(%) 

Random 

(%) 

Decoys 

(%) 

 

1 

 

11, 16 

 

Model 1 

 

Hyd, HBA, HBA, HBA, HBA, 

HBD 

 

73 

 

50 

 

15 

 

10 

2 2, 3, 13 Model 2 Hyd, Ar, Ar, Ar, HBA, HBA 10 0 5 0 

3 9, 15 Model 3 Hyd, hyd, HBA, HBA 66 75 8 39 

4 8, 9 Model 4 Hyd, Hyd, HBA, HBA, HBA, 

HBD 

54 25 5 0 

5 24, 27 Model 5 Hyd, Hyd, Hyd, HBA 60 50 7 31 

6 4,13 Model 6 Hyd, Hyd, HBA, HBD 20 0 13 30 

7 5, 6, 11 Model 7 Hyd, Ar, HBA, HBA 80 25 2 9 

8 4, 5 Model 8 Hyd, Hyd, Hyd Ar, HBA, HBA, 

HBA, HBA, HBD 

7 0 3 0 

9 15, 20 Model 9 Hyd, HBA, HBA, HBA 83 50 15 36 

10 16, 22 Model 10 Hyd, Hyd, HBA, HBA, HBA, 

HBA 

23 0 3 6 

11 6, 23 Model 11 Hyd, Hyd, HBD, HBA, HBA 43 50 0 8 

12 10, 12 Model 12 Hyd, HBA, HBA, HBD 30 0 8 0 

 

 

 



 
 
 

 
 

 

1.2 Virtual Screening 

Virtual screening (VS) is an effective method, used for finding novel and potent active molecules 

(i.e. hits) as starting points for medicinal chemistry (Lavecchia & Giovanni, 2013). In our study, 

sequential filtration was performed prior to virtual screening. In order to find out the druggability 

of ~17 million compounds (compounds from all four databases; Chembridge, Maybridge, NCI and 

ZINC) all compounds were filtered as per Lipinski's rules. This rule states that molecules which 

possess drug-like properties must contain molecular weight ˂ 500, log P ˂ 5, hydrogen bond 

acceptor ˂ 5 and hydrogen bond donor ˂ 10 otherwise these molecules have poor absorption or 

permeation (Lipinski, 2004).  After Lipinski filtration, 12 million compounds were retrieved and 

subjected to active descriptors-based filtering. For this purpose, 2D descriptors of experimentally 

reported inhibitors such as MW (365-500 a.m.u), topological polar surface area (36-123), HBD 

(0-3), HBA (1-7), Slog P (2-7), formal charge (0-1) and number of rotatable bonds (2-11) were 

calculated by MOE2019.01 software (Table S1). The descriptor-based filtration provided 5 

million compounds which were further subjected to pharmacophore-based virtual screening. The 

validated pharmacophore model was used for this screening and yielded 42,000 hits. Moreover, 

these hits were evaluated for statistical analysis via calculation of the Enrichment Factor (EF) and 

ROC (AUC) curve. 

 

1.2 Statistical Analysis (Enrichment factor and ROC CURVE) 

The receiver operating curve is defined as a graphical plot of rate of true positives (sensitivity) 

versus the rate of false-positive (1-specificity) (Empereur-mot et al., 2015) as shown in Figure 8, 

it is an effective method for the evaluation of virtual screening results. It is capable of retrieving 



 
 
 

 
 

both the information related to active and inactive and independent on the number of actives. The 

Area under curve (AUC) value of the best pharmacophore model is 0.67 indicating the reliability 

of the generated pharmacophore model. 

Enrichment factor (EF) is another statistical method commonly used for the assessment of virtual 

screening results (Bender & Glen, 2005). The efficiency of docking and scoring function can also 

be estimated through the calculation of enrichment factors at a different percentage of databases. 

EF used to access the discriminatory power of the constructed pharmacophore model to rank 

known active ligands in the top of the list. In this study, according to EF calculation, most of the 

known actives lie in 50 % of the database which contained approx. 21,000 hits that were further 

evaluated for the Tanimoto coefficient analysis. 

 

 

Figure 8. Receiver Operating Curve (ROC), a graphical plot between sensitivity (rate of true positive) versus 1-

Specificity (rate of a false negative). 

 

 



 
 
 

 
 

 

 

1.2 Tanimoto Coefficient Analysis  

The 21,000 hits obtained after statistical analysis (EF and ROC Curve) were subjected to Similarity 

index calculation.  The most potent inhibitors (Compound 5, 6, 11) which were previously used in 

the generation of pharmacophore models were used as a query molecule for Tanimoto similarity 

searching at different cuts off range 0.6-0.8. Initially, several conformations against the query 

compounds were generated then shape-based overlapping takes place with respect to the query 

compound. Subsequently, 0.6-0.8 cut off was set to filter the obtained hits (21,000) and finally, 

4000 compounds were present in the predefined cut off the range. These 4000 compounds were 

further evaluated by molecular docking studies. 

 

1.3 Molecular Docking  

Molecular docking studies were performed to explore the binding modes of screened virtual hits. 

To evaluate the accuracy of docking software’s redocking experiments were performed. The 

redocking results revealed that the top-ranked poses predicted by Auto Dock 4.2 were like the 

crystal binding pose of reference ligand. The root means square deviation (RMSD) of regenerated 

crystal pose by AutoDock was 1.3 Å indicating the reliability of our docking protocol. Re-docked 

results were summarized in Table 3 and Figure 9. Therefore, AutoDock 4.2 was used for 

predicting the binding mode of shortlisted virtual hits and PDB ID: 2AZ5 was used as a molecular 

model in docking studies. 

 

 

 



 
 
 

 
 

 

 

 

Table 3.  Re-docking experiments of a complex structure of TNF-α with bound inhibitor SPD307 on different 

software. 

 

S.no 

 

Docking Method 

 

RMSD 

 

1 

 

Auto Dock 4.2 

 

1.3Å 

2 GOLD 11.9Å 

3 MOE-Dock 9.6Å 

4 Open Eyes Fred 4.9Å 

5 Surflex-Dock 10.3Å 

 

 

 

Figure 9.  The redocked pose of 307 (bound inhibitor of TNF-α PDB I.D: 2AZ5). The magenta color shows the 

extracted pose of SPD307 while cyan is the best re-docking posed obtained by Auto Dock 4.2. 

 

A total of 4,000 compounds were docked into the binding pocket of TNF-α protein. Top-ranked 

480 compounds were selected based on their good docking score and further subjected to visual 

inspection. All the compounds were then analyzed visually for interactions and their binding 

strengths via MOE2019.01 using the crystal bound ligand’s interactions as reference. After visual 



 
 
 

 
 

analysis 48 virtual hits showed good binding interaction with the hotspot residues of TNF-α. All 

the selected compounds belonged to the ZINC database. The criteria for selecting the most 

promising leads were based on their good pharmacophore fit score, dock score and strong binding 

interaction with the hotspot residues of TNF-α protein. Out of 48 hits, only 6 compounds were 

fulfilling the above-mentioned criteria and considered as promising leads compounds (Table 4). 

The pharmacophore mapping, docking score and visual inspection of these predicted lead 

candidates showed that they might act as novel and potent inhibitors of TNF-α. 

 

Table 4. Dock and pharmacophore fit score of selected virtual leads. 

 

S.

no 

 

Structure of Compound 

 

Compound Name 

 

Docking Score 

 

Pharmacophore Fit 

Score 

 

 

1 

 

 
  

 

 

ZINC05848961 

 

 

-8.45 

 

 

48.17 

 

 

2 

 
  

 

 

ZINC09402309 

 

 

-7.50 

 

 

48.08 

 

3 

 
 

  

 

 

ZINC04502991 

 

 

-7.45 

 

 

47.85 

 

4 

 
 

  

 

 

ZINC29558932 

 

 

-7.10 

 

 

47.65 

 

 

5 
 

 

  

 

 

 

ZINC11915498 

 

 

 

-6.92 

 

 

 

46.40 



 
 
 

 
 

 

 

6 

 

 

 

ZINC73690990 

 

 

-6.73 

 

 

46.25 

 

 

 

The visual analysis showed that the all the selected leads showing significant binding pattern with 

the crucial active site residues of TNF-α such as the top-ranked pose of compound 1 with high 

dock score -8.45 kcal/mol  (ZINC058418961) showed that it stabilizes itself by mediating two 

strong hydrogen bonds with oxygen atom of Gly121A and another hydrogen bond with the amide 

nitrogen of Leu120A respectively. Compound 1 further stabilizes in the TNF binding pocket by 

showing some hydrophobic interaction with Leu57A, Leu57B, Tyr59A, Tyr59B and Gln61 of 

chain A. Quinoline ring of compound 1 showing pie-stacking interaction with the benzene ring of 

Tyr59 of chain B. Therefore, compound 1 accommodating itself with the simultaneous 

establishment of hydrogen bonds and hydrophobic interactions with hot spot residues proving its 

ability to inhibit TNF-α. 

The active site of TNF-α consists of many tyrosine residues and compound 2 (dock score -7.50 

kcal/mol) (ZINC09402309) established itself by interacting with these tyrosine residues. The top-

ranked pose of this compound showed several hydrophobic interactions with tyrosine residues of 

both chains A and B; Tyr59, Tyr119, and Tyr151 respectively. Additionally, compound 2 also 

involved in hydrophobic interaction with Leu57 and Gln61 of chain B. Moreover, this compound 

exhibit two hydrogen bonds with amide nitrogen and the oxygen atom of Gly121 of chain A. 

Furthermore, the hydroxyl group of the Tyr151A is involved in hydrophobic as well as hydrogen 

bonding interaction.  

Compound 3 (ZINC04502991) has shown good dock score (-7.45 kcal/mol) and resided in the 

binding pocket of TNF protein by establishing several hydrogen bonds and few hydrophobic 



 
 
 

 
 

contacts. As the binding site of TNF-α is largely hydrophobic due to the presence of many tyrosine 

residues such as Tyr59, Tyr119 and Tyr 151. These tyrosine residues of both the chains are 

involved in hydrophobic interaction with the ligand molecule. Besides these interactions, this 

compound stabilizes itself inside the binding pocket by mediating four hydrogen-bonding 

interactions with Ser60A, Gln61B, Tyr119A, and Leu120A. The two hydrogen bonds were 

observed between the oxygen atom of the ligand molecule that is attached to Sulphur and with the 

backbone amide nitrogen of Ser60A and Leu120A. Thiadiazol ring of ligand molecule mediates 

two hydrogen bonds in bidentate fashion with the carbonyl group of Tyr119A and with the 

backbone amide nitrogen of Gln61 of chain B. The strong hydrogen bonding with crucial residues 

provides stability to the protein and makes this compound as a strong lead candidate to inhibit 

TNF-α.  

Another lead compound 4 (ZINC29558932) with docks core of -7.10 kcal/mol mainly interacts 

with the protein’s binding site by hydrophobic interaction. Benzene ring of ligand molecules 

showed intermolecular interaction with the methyl group of Tyr59A and the aliphatic chain of 

Leu57A. Moreover, this benzene ring also mediates  stacking interactions with the benzene ring 

of Tyr59B. Pyridine ring of compound 4 showed hydrophobic interaction with Tyr119 residue of 

chains A and B respectively. Furthermore, the pyrrolidine ring of compound exhibiting 

hydrophobic interaction with Tyr151 and Gln61 of chain A. Dioxin ring of ligand also interacts 

hydrophobically with the tyrosine (Tyr59 and Tyr151) residues of chain B. 

Previously, it was reported that hydrophobic interaction plays an important role in accommodating 

ligands within the active site of TNF-α (He, 2005).  Compound 2 and compound 6 share a similar 

binding mode of hydrophobic interactions with the several tyrosine residues in the binding pocket 



 
 
 

 
 

of TNF-α. Similarly, compound 5 (ZINC73690990) (dock score -6.92 kcal/mol) interacts with the 

TNF-α via hydrophobic as well as hydrogen bonding interaction. Fluorobenzene ring of ligand  

 

interacts hydrophobically by Tyr59, Gln61, Tyr119, and Tyr151 of chain A. Leu57A, Tyr119B, 

and Tyr59 of chain B also involved in hydrophobic interactions with this compound. The oxygen 

atom of ligand molecule forming a hydrogen bond with the backbone amide nitrogen of Gly121 

of chain A. Another hydrogen bonding has been observed between the isoxazole ring of ligand 

molecule with the backbone amide nitrogen of Gly121 of chain B. 

In the case of compound 6 (ZINC11915498) with dock score -6.73 kcal/mol, it stabilizes itself by 

mediating the number of hydrophobic interactions. The Chlorobenzene ring of the compound 

interacts hydrophobically with Tyr59B and Gln61B. Similarly, the Cyclohexane ring of ligand 

showed hydrophobic interaction with the aromatic ring of Tyr119A. Additionally, Tyr119 is 

making pie stacking interaction with the isoxazole ring of the ligand molecule. The oxygen atom 

in ligand molecule exhibiting a hydrogen bonding interaction with backbone amide nitrogen of 

Gly121 of chain A. From the docking analysis of lead compounds, it was revealed that all the 

compounds showed good binding pattern and interaction within the binding pocket by mediating 

several hydrogen bonding and hydrophobic interactions (Figure 10) showing their ability to inhibit 

TNF-α at nanomolar level. 

 

 

 

 

 



 
 
 

 
 

 

 

 

 

 

Figure 10. Dock poses of virtual hits: ZINC058418961, ZINC09402309, ZINC04502991, ZINC29558932, 

ZINC73690990, ZINC11915498 are shown in panel (a-f) in alphabetical order. TNF-α hotspot residues are 

represented as thick khaki sticks (chain A), thick green sticks (Chain B) and cyan color represented the ligand’s 

structure. The dash red lines show the hydrogen bonding interaction. 

 

3.8 Molecular Dynamic Simulation 

Molecular dynamics simulation is an important tool for the validation of experimentally well-

defined biological activities through finding the binding interactions between protein and its 

inhibitor (Durrant & McCammon, 2011).  The method’s distinctive feature in a drug design context 



 
 
 

 
 

is its ability to analyze protein-ligand systems in aqueous solution at physiological conditions, thus 

maximizing resemblance of the computational model to real physical-chemical conditions of the  

 

environment realized in an experiment.  Also, the dynamics of the system at molecular scales can 

be investigated, the property that is impossible to obtain in all other computational approaches in 

drug design.  It is known that water and ions play a crucial role in the structure and, especially, the 

dynamics of proteins.  It is, therefore, possible that the results obtained in virtual screening and 

docking could be corrected by the presence of water and ions at room temperature.   

We have examined the structural or conformational changes in the active site of TNF-α protein 

against its respective inhibitors. MD Simulation was performed for the five complexes including 

apo-protein, reference compound, and three lead molecules. It represents the overall stability of 

each complex during the 100 nanoseconds simulation run. The stability of all the complexes was 

studied by Root mean square deviation (RMSD), Root-mean-square fluctuation (RMSF), Radius 

of gyration (Rg) and the number of hydrogen bonds. 

 

3.9 Root mean square deviation (RMSD) 

To rationalize the reliability of our sampling protocol and to determine the stability of protein 

structure during the 100 ns simulation, the RMSD curves of the backbone atoms of protein were 

calculated and compared with its initial coordinates. All the five complexes showed variable 

deviations during simulation in the backbone of TNF-α. The RMSD of all complexes was 

calculated by using the g_rms tool of Gromacs software. After the equilibration phase, the 

Simulation system of reference compound rose continuously from 0.34-0.42 nm and finally, after 

40ns the system was stable at 0.39nm throughout the simulation. RMSD value of virtual hit 



 
 
 

 
 

compound 1 rose continuously in the first 35ns, increasing from 0.37-0.39 nm and after 40ns 

attained stability with an average of 0.37nm during the entire simulation. In all simulation systems,  

 

compound 2 and 3 reach equilibrium early and show less fluctuation during 100ns simulation. A 

small fluctuation was observed in compound 3 between 12-33ns that was slightly increased in 

rmsd 0.37nm, then slowly decreased and stabilized at 0.36nm. In the light of above analysis, the 

simulated confirmation of all the system has small deviation from their initial conformation, and 

RMSD values of apo, reference and compound 1,2,3 were in a stable range after MD simulation 

such as 0.44 nm, 0.4 nm, 0.37 nm,0.34nm, and 0.36 nm respectively (Figure 11).  

 

Figure 11. a) The Root Mean Square Deviation (RMSD) plots all complexes over the course of 100ns simulation. 

 

3.10 Root Mean Square Fluctuation (RMSF) 

In order to determine the ligand-binding effect on the stability of protein structure RMSF analysis 

was carried out of every system over the 100ns MD simulation depicted in Figure 12. The RMSF 



 
 
 

 
 

of backbone atoms was calculated by the g_rmsf tool implemented in Gromacs software. The 

RMSF of backbone atoms (N, Cα, and C) of TNF-α in each system were examined and calculated  

 

by MD trajectories. The active site residues (Leu57 A& B, Tyr59 A & B, Ser60 A & B, Glu61 

A & B, Tyr119 A & B, Leu120 A & B, Gly121-122 A & B, Tyr151 A & B) in all ligand-protein 

complexes were showing stability by maintaining the average RMSF value of 0.1 + 0.15 nm 

indicating that residues seem to be more rigid in the presence of ligands. The average fluctuation 

of all complexes was found to be 0.015nm (reference), 0.016nm (compound 1), 0.023nm 

(compound 2), and 0.016nm (compound 3) respectively.  Most of the higher fluctuations were 

observed in loop regions of chain A (residue no. 21-26, 32-40,104-112) and chain B (residue 

no.168-174, 232-236) because these loops are a most flexible part of the protein.  

 

 

Figure 12. Comparative backbone RMSF of all the complexes. The visual depicts a significant difference in the 

RMSF profile of each complex. 



 
 
 

 
 

 

 

 

 

3.11 Radius of gyration (Rg) 

The radius of gyration measures the compactness level of protein structure and lower Rg values 

show that the structure is more compact and stable showing lower conformational entropy 

(Lobanov, Bogatyreva & Galzitskaya, 2008). We performed the Rg analysis of all complexes and 

apoprotein by using the g_rms tool implemented in Gromacs software. Figure 13 demonstrates 

the major fluctuation of apoprotein starting from 2.07A and slightly fluctuating 2.04 to 2.03 after 

6.5ns attained stability at 2.03 Å for the entire 100ns simulation. In contrast, the Rg values of the 

reference compound, compound 1, 2, 3 were showed structural stability at 2.02A, 2.01 A, 2.02 A 

and 2.0 A respectively. The values of Rg for reference, compound 2 and 3 tended to be stable and 

fluctuated constantly till 5 ns and converged throughout the simulation, but compound 1 showed 

high fluctuations till 8ns and then became stable during the entire simulation. In comparison to 

apoprotein, the TNF complex with its inhibitors showed low Rg values indicating less 

entropy/disorders in the TNF receptor when bound with the ligand complexes. 



 
 
 

 
 

 

Figure 13. showing Rg of every complex throughout the 100ns simulation. 

 

3.12 Hydrogen bond Analysis 

Hydrogen bonds play a significant role in protein stability and it helps in increasing the stability 

of protein-ligand complexes (Fu, Zhao & Chen, 2018). The number of hydrogen bonds was 

determined by using the g_hbond tool in Gromacs. The predicted binding pattern of all lead 

compounds was well correlated in docking as well as in MD analysis. As TNF-α has a largely 

hydrophobic pocket, in case of reference compound no hydrogen bonding was observed and it 

resides within the TNF binding pocket by interacting hydrophobically with the hot spot residues. 

Moreover, we identified three lead compounds ZINC05848961 (Compound 1), ZINC09402309 

(Compound 2), ZINC04502991 (Compound 3), that were showing several hydrophobic as well as 

good hydrogen bonding interaction within the TNF-α binding pocket.  The compound 1 forming 

two strong hydrogen-bonding interactions with the oxygen atom of Gly121A and one with the 

backbone amide nitrogen of Leu120A. However, the first hydrogen bond formed between  



 
 
 

 
 

 

Gly121A was stable after 12ns while the second hydrogen bond with this residue was not stable 

and fluctuated continuously throughout the simulation, and the third hydrogen bond with Leu120A 

was lost during the entire simulation.  

In the case of Compound 2, it forms two hydrogen bonds with amide nitrogen of Gly121 of chain 

A and a third one with the hydroxyl moiety of the Tyr151A. Among these three hydrogen bonds, 

only one with Gly121A is stable after 5ns and fluctuated substantially throughout the simulation, 

while the second hydrogen bond (Gly121A) was lost after 40ns simulation and again re-appeared 

at 90ns of simulation. The third hydrogen bond between Tyr151A and compound 2 was completely 

lost during the 100ns simulation. The compound 3 stabilizes itself by forming five hydrogen bonds 

with Ser60A, Gln61B, Tyr119A, and Leu120A and Tyr151A, but only Ser60A and Leu120 were 

stable during the later stages of molecular dynamics simulation. The hydrogen bonds between 

Gln61B, Tyr119A, Tyr151A were not stable and fluctuated continuously during the entire 

simulation. The hydrogen bonding interaction of all compounds was depicted in Figure 14. 

Moreover, all the compounds showed good hydrophobic interactions with crucial tyrosine residues 

of chain A & B (Tyr59, Tyr119, and Tyr151) and Leu57 of chain A and were well correlated with 

docking results. The detailed structural understandings and knowledge of these predicted virtual 

hits proved that it can be effective in autoimmune therapies. Moreover, in vivo or in vitro 

experimental assays are required to check the inhibitory activities of these lead compounds. 

 

 

 

 



 
 
 

 
 

 

 

 

Figure 14. Stability interpretation of all complexes using intermolecular hydrogen bonding pattern as a function of 

time. 

3.13 Pharmacological Prediction of Selected Hits 

All the selected hits were evaluated for their physicochemical and pharmacokinetic properties 

using the Swiss ADME online server and results were shown in Figure 15 and Table 5 & 6. The 

prediction of drug-likeness was also calculated based on the Lipinski, Ghose, Veber, Egan, 

Mugguae rules and bioavailability scores. According to Lipinski rules the good absorption or 

permeation of a molecule is more likely when MW <5 g/mol, LogP <5, HBD <5 and < 10 HBA 

atoms. Veber rules state that a molecule is considered to be drug-like if they contain <10 rotatable  



 
 
 

 
 

 

bonds and TPSA < 140 A2. The Ghose filter characterizes the molecules based on their 

physicochemical properties such as log P (between -0.4 and 5.6), Molar refractivity (between 30 

and 130), and a total number of atoms (between 20 and 70). Egan filter provides a prediction of 

drug absorption properties based on the membrane permeability. The Muegee model refers to some 

functional groups as pharmacophoric points (amide, amine, alcohol, sulfone, ketone sulfonamide, 

carbamate, carboxylic acid, guanidine, amidine, ester, and urea) to classify drug-like and non-

drug-like molecules. These pharmacophoric points provide significant interactions with the target 

receptor. Considering above mentioned filters, all the predicted hits are compatible with all drug-

likeness parameters and have good oral bioavailability profiles (0.55) according to Egan et al. 

(Egan, Merz, & Baldwin, 2000) as shown in Table 6 & 7. It indicated that all the compounds were 

suitable and well absorbed in the human body.  

Moreover, logP and logS values were also determined by the Swiss ADME online server. 

According to the calculated logP values, it can be concluded that all the compounds have good 

lipid solubility which will facilitate the drug interaction with the biological membranes and to be 

used for bioactivity generation. The ZINC04502991 was considered as least lipophilic due to its 

low log P-value. (iLOGP =   -1.66). The compounds water solubility was predicted via the ESOL 

method and log S values were in the range of -5.31-3.71 indicating that all compounds were 

moderately water-soluble. Furthermore, the synthetic accessibility score (SA) refers to the 

estimation of ease of synthesis of compounds and the SA score of all the compounds (3.77-2.48) 

was in the range of easy synthetic accessibility. PAINS (Pan-assay interference compounds) are 

those chemical compounds that give false-positive results in high-throughput screening and 

capable of interacting with various biological targets instead of interacting with one specific target  



 
 
 

 
 

 

(Baell, Ferrins, Falk & Nikolakopoulos, 2013). In Swiss ADME evaluation, no PAINS alert was 

observed representing the specific nature of compounds. 

 

Table 5. Predicted Physiochemical properties of the selected virtual hits compounds by Swiss ADME. 

Physiochemical Properties of Hits 

 

Ligands Molecular 

Formula 

Molec

ular 

Weigh

t 

Hea

vy 

Ato

ms 

Aromat

ic 

Heavy 

Atoms 

Frac

tion 

Csp

3 

Rotata

ble 

bonds 

Hydrog

en bond 

Accepto

r 

Hydro

gen 

bond 

Donor 

Molecular 

refractivit

y 

TPSA 

ZINC05848961 

 

C19H15BrN2O3 399.24 25 16 0.11 6 4 1 99.52 68.29 

ZINC09402309 C19H15BrN4O3S 459.32 28 15 0.21 6 5 0 113.14 111.71 

ZINC04502991 C14H17N3O3S2 339.43 22 11 0.36 7 5 1 86.38 125.64 

ZINC11915498 C17H19ClN2O3 334.8 23 11 0.41 5 4 1 89.04 64.36 

ZINC29558932 C20H23N3O3 353.41 26 12 0.4 5 4 1 101.66 63.69 

ZINC73690990 C18H15FN4O3S 386.4 27 18 0.22 6 7 1 100 118.38 

 

 

Table 6. Predicted Drug-likeness properties of the selected hits compounds by Swiss ADME. 

Ligands 

 

Lipinski 

Violatio

n 

Ghose 

Violati

on 

Veber 

Violatio

n 

Egan 

Violatio

n 

Muegge 

Violatio

n 

Bioavail

ability 

Score 

Synthetic 

accessibil

ity 

PAI

NS 

Alert 

Log 

P 

Log 

S 

 

ZINC05848961 

 

0 

 

0 

 

0 

 

0 

 

0 

 

0.55 

 

2.48 

 

0 

 

3.07 

 

-5.13 

ZINC09402309 0 0 0 0 0 0.55 2.94 0 2.56 -4.06 

ZINC04502991 0 0 0 0 0 0.55 3.29 0 1.66 -3.71 

ZINC29558932 0 0 0 0 0 0.55 3.7 0 2.63 -3.82 

ZINC11915498 0 0 0 0 0 0.55 3.77 0 2.54 -4.49 

ZINC73690990 0 0 0 0 0 0.55 3.5 0 3.03 -4.83 

 

Human gastrointestinal absorption (GI), blood-brain barrier permeability and permeation of skin 

are important pharmacokinetic properties that indicate the ability of the human body to absorb the  

 



 
 
 

 
 

 

molecules (Berben et al., 2018). The boiled egg analysis of SwissADME was used to predict the 

bioavailability properties of all compounds.  

 

 

Figure 15. Boiled Egg Analysis (water partition coefficient (WlogP) vs. Topological polar surface area (TPSA) of 

selected lead compounds by SwissADME server. 

 

The results of boiled egg analysis revealed that all the predicted compounds showed high GI 

absorption indicated that they are suitable for oral administration and ZINC05848961, 

ZINC11915498, ZINC29558932 were able to cross the blood-brain barrier due to their high 

lipophilic nature. ZINC09402309 (-7.45 cm/s), ZINC29558932 (-6.45 cm/s) and ZINC04502991(-

6.24 cm/s) were predicted to have less skin permeability while ZINC11915498 have high skin 

permeability (-5.47 cm/s). P-glycoproteins (p-gp) are ATP driven efflux pumps involved in the 

transport of drugs in various organs and often responsible for drug resistance for anti-cancer drugs 

(Lin & Yamazaki, 2003). All the predicted hits were non-substrate to P-gp except ZINC29558932.  



 
 
 

 
 

 

This proposed that the predicted have a lower chance of efflux out of the cell that will help in 

producing the maximal effect of the drug. 

The cytochrome P450 enzymes family plays a vital role in the biotransformation of drugs. These 

enzymes are important determinants of drug metabolism which can lead to decrease 

pharmacological effects and drug toxicities (Jana & Paliwal, 2007). The compound 

ZINC05848961, ZINC11915498, ZINC73690990 were acting as an inhibitor of all the isoforms 

of the CYP family (CYP1A2, CYP2C19, CYP2C9, CYP2D6, CYP3A4). ZINC09402309, 

ZINC04502991 is the inhibitor of all isoforms except CYP2D6, CYP3A4, CYP1A2, and 

CYP2C9). Most of the drugs are activated or inactivated by these enzymes, therefore, some 

biological assays will be needed to explore the activation and deactivation mechanism of these 

compounds by CYP isoforms (Table 7). 

 

Table 7. Predicted Pharmacokinetic properties of the selected virtual hits compound by Swiss ADME. 

Ligands GI 

absorptio

n 

BBB 

perm

eabilit

y 

P-gp 

Subst

rate 

CYP1A2 

inhibitor 

CYP2C19 

inhibitor 

CYP2C9 

Inhibitor 

CYP2D6 

Inhibitor 

CYP3A4 

Inhibitor 

Log Kp 

Skin 

permeati

on (cm/s) 

 

ZINC05848961 High Yes No Yes Yes Yes Yes Yes -5.65 

ZINC09402309 High No No Yes Yes Yes No Yes -7.56 

ZINC04502991 High No No Yes Yes Yes No No -6.28 

ZINC05848961 High Yes No No Yes No Yes Yes -6.45 

ZINC09402309 High Yes Yes Yes Yes Yes Yes Yes -5.47 

ZINC04502991 High No No Yes Yes Yes Yes Yes -5.84 

 

 

The selected hits were also analyzed for the toxicity profiles using Osiris DatawarriorV.5.0.0 

software (Sander, Freyss, von Korff & Rufener, 2015). According to the toxicity prediction (Table 

8), there is no risk of being mutagenic, tumorigenic, reproductive and irritant for all compounds  



 
 
 

 
 

 

except ZINC11915498, which is highly mutagenic, tumorigenic, reproductive effect and low 

irritant. This compound can cross the BBB but did not violate the drug-likeness rules, also have 

high GIT absorption and skin permeation therefore due to high toxic properties it cannot be 

considered as TNF-inhibitor. 

 

Table 8. Predicted Toxicity properties of the selected hits compounds by Osiris DataWorriers. 

 

 

Conclusion 

TNF-α is a multifunctional proinflammatory cytokine responsible for various pathological 

conditions and acts as a potential drug target to combat autoimmune and inflammatory disorders. 

In this study, we employed exhaustive computational drug design protocol including ligand-based 

pharmacophore mapping, virtual screening, docking, and MD simulation to develop potent small-

molecule TNF inhibitors. In this connection, the validated pharmacophore model was used as a 

three-dimensional query in the screening of four small molecules libraries (Chembridge, 

Maybridge, NCI, and ZINC). The subsequent validation and statistical analysis suggested that the 

generated pharmacophore model has a good ability to differentiate between active and decoys  

 

Toxicity Profiles of Selected Hits 

 

Ligands Mutagenic Tumorigenic Reproductive effect Irritant 

 

ZINC05848961 

 

None 

 

None 

 

None 

 

None 

ZINC09402309 None None None None 

ZINC04502991 None None None None 

ZINC29558932 None None None None 

ZINC11915498 High High High Low 

ZINC73690990 None None None None 



 
 
 

 
 

 

datasets. The pharmacophore screen hits were subjected to molecular docking studies to find out 

their binding modes with the target receptor. Molecular docking results suggested that the selected 

inhibitors have the potential to inactivate the TNF-α dimer by interacting with crucial residues by 

the formation of hydrogen bonds and hydrophobic interactions in a simultaneous fashion. Finally, 

six hits with diverse scaffolds were considered as lead candidates based on their highest binding 

affinity and good binding interaction with the target receptor. Moreover, in silico ADMET analysis 

suggested that all five leads possess good ADMET properties except ZINC11915498 due to its 

high predicted toxicity. Furthermore, MD simulation studies revealed that all three leads 

(ZINC05848961, ZINC09402309, ZINC04502991) showed good stability and remain in the 

binding pocket throughout the simulation. In conclusion, these leads have diverse scaffolds and 

can possibly act as starting points in further designing of potent small molecular inhibitors, but 

further experimental validation is required to prove their inhibitory activities. 
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