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Highlights 1 

- Attention is more efficiently drawn to food stimuli when thinking about food; 2 

- Using imaging we show that holding food-related information in mind is less taxing; 3 

Holding food in memory biases perception to food items. 4 
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Highlights 26 

- Attention is more efficiently drawn to food stimuli when thinking about food; 27 

- Using imaging we show that holding food-related information in mind is less taxing; 28 

- Holding food in memory biases perception to food items.   29 
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Abstract 30 

We investigated the neural correlates of working memory guided attentional selection of food versus 31 

non-food stimuli in young women. Participants were thirty-two women, aged 20.6y (± 0.5) who were 32 

presented with a cue (food or non-food item) to hold in working memory. Subsequently, they had to 33 

search for a target in a 2-item display where target and distractor stimuli were each flanked by a 34 

picture of a food or a non-food item. The behavioural data showed that attention is particularly 35 

efficiently drawn to food stimuli when thinking about food. Using fMRI, we found that holding a non-36 

food versus food stimulus in working memory was associated with increased activity in occipital 37 

gyrus, fusiform, inferior and superior frontal gyrus. In the posterior cingulum, retrosplenial cortex, a 38 

food item that re-appeared in the search array when it was held in memory led to a reduced response, 39 

compared to when it did not re-appear. The reverse effect was found for non-food stimuli. The extent 40 

of the reappearance effect correlated with the attentional capture of food as measured behaviourally.  41 

In conclusion, these results suggest that holding food in mind may bias attention because thinking of 42 

food facilitated neuronal responses to sensory input related to food stimuli and because holding food-43 

related information in mind is less taxing on memory. 44 

 45 

Key words: fMRI, neural correlates, attention, food, memory 46 
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1. Introduction 48 

Food images are everywhere, from vending machines, to cafes and billboards. Food-related stimuli 49 

can promote food intake, as well as enhance our hedonic responses to food when it is eaten [1, 2]. 50 

This ubiquitous nature of food stimuli may explain why some people find it difficult to avoid 51 

overeating in the current food environment. One reason why exposure to food stimuli can stimulate 52 

food intake is because food-related stimuli may capture our attention very easily.  53 

There is now ample evidence that both “bottom-up” reward driven and “top-down” cognitively driven 54 

processes are important in determining the attention we pay to objects in the environment, including 55 

food-related stimuli [3-6]. Soto and colleagues [7, 8] reported that information held in working 56 

memory, caused attention to be drawn to similar stimuli in a search array, even when this information 57 

was irrelevant to the search.  58 

fMRI studies showed that this effect was associated with a change in cortical and sub-cortical 59 

responses reflecting an interaction between working memory and selective attention processes [9]. In 60 

comparison to mere repetition of a stimulus, a stimulus that was held in memory led to two types of 61 

effects when it re-appeared in the search array: 1) an enhanced response related to the re-appearance 62 

of a stimulus in the array that was unrelated to its proximity to the search target (known as the re-63 

appearance effect); 2) a differential response when the stimulus was in proximity to the search target 64 

or the distracter (known as the a validity effect).  65 

These effects were observed in medial orbital frontal cortex, superior frontal cortex, thalamus and 66 

lateral occipital areas [10] and were reduced with increased cognitive load of working memory [11]. 67 

An fMRI study -[11] showed that a working memory load in the context of the above paradigm, was 68 

marked by an increase of the fronto-parietal response when comparing the low to the high memory 69 

load condition. The validity effect (valid > invalid) in the left prefrontal cortex was stronger in low 70 

relative to high memory load. The reappearance effect was observed in posterior cingulum, but was 71 

unaffected by the memory load manipulation.  72 
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Using the same paradigm, an ERP study [12] showed a greater response in early spatial attention 73 

components (N1PC, N2PC) when the item held in memory appeared next to the target and the 74 

reversed pattern when it appeared next to the distracter. We adapted this paradigm to investigate the 75 

impact of food information on top-down biases of selective attention. To experimentally induce an 76 

increase in food-related thoughts, participants were asked to memorise a food (or non-food) item 77 

before completing a search task for a geometrical shape. 78 

Across several behavioural studies, we showed that holding food-related information in working 79 

memory biases attention to food stimuli (e.g. [5, 13]). Participants identified the target faster while 80 

memorising food stimuli compared with non-food stimuli. This suggests that thinking about food is 81 

potentially associated with lower cognitive load than thinking about non-food stimuli [5, 6, 13-15]. 82 

We also showed a stronger validity effect to food items. Holding a food item in memory, led to an 83 

attentional bias towards a food stimulus when it was presented as a flanker in a search array [5, 6, 13-84 

15].  85 

The attentional bias toward food stimuli (when memorized), was larger than for non-food stimuli. 86 

This suggests that top-down guidance of attention to food stimuli is particularly strong [5, 6, 13-15], 87 

which may in turn negatively impact the ability to inhibit food (relative to non-food) thoughts and the 88 

selective biases to food. In a different experiment, we assessed the real life impact of this bias and 89 

showed that the strength of individual’s bias toward food stimuli (when held in memory), positively 90 

predicted weight gained after 12 months [16]. 91 

In a follow up study, we used ERP [6, 14] to study the neural dynamics of the capture of attention by 92 

food, when it is held in working memory. Holding food in memory led to an increased response in 93 

late ERP components (P3 [250 -450ms], LPP [460-660]) [6]. The P3 also showed the re-appearance 94 

effect, with larger responses on neutral than valid and invalid trials. The P3 electrophysiological 95 

measure is reported to be stronger under low, compared to high working memory load [17]. P3 was 96 

shown to be stronger when the selective attention task was completed under a low versus high 97 

cognitive load task [18]. The LPP is typically more positive for emotional relative to non-emotional 98 
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stimuli (e.g.[19]) and is argued to reflect an increase in arousal which is mediated by the amygdala 99 

[20]. Overall, these electrophysiological ERP findings suggest that food may be processed more 100 

efficiently and therefore gain privileged access to working memory, which leads to stronger top-down 101 

bias, when compared with non-food stimuli. Furthermore, the data also suggest that re-appearance of 102 

items held in memory in the search array is associated with reduced cognitive load.  103 

Similar to the behavioural results, the ERP data showed that food modulated the validity effect, i.e. 104 

the interaction between working memory content and search target. For non-food [17], early markers 105 

of spatial attention (N1PC[120-230ms], N2PC[230-330]) replicated previous findings with 106 

geometrical shapes [12]. Both the N1PC and N2PC showed greater negativity during valid than 107 

invalid trials, as typically reported in the literature. In contrast, selective attention toward food stimuli 108 

when held in memory showed a reverse pattern for N1PC and N2PC.  109 

When food item held in memory was flanked by the search target, N1PC showed increased positivity, 110 

followed by N2PC which showed the more common increased negativity. The validity effect was 111 

unrelated to whether participants were asked to hold the food in memory or merely view it prior to the 112 

search task. This led the authors [14] to suggest that modulation of selective attention by food is 113 

driven by bottom rather than top-down up processes. These observations support the enhanced 114 

perception hypothesis for affective stimuli, by which perception and attention are facilitated through 115 

the increase in arousal and vigilance (e.g. [21] ) for food stimuli. 116 

In the present study, we used fMRI to assess the neural correlates of top-down guidance of attention 117 

to food stimuli in young women. Based on our previous behavioural findings [5, 6, 13-15], we 118 

hypothesised that food stimuli would have privileged access to working memory and that this would 119 

be reflected in greater modulation of attentional selection in a visual search task, compared to non-120 

food stimuli. In accordance with earlier studies, we expected to find neural responses that reflect the 121 

low cognitive load of storing food content in memory. We also expected that food would modulate the 122 

interaction between the content of working memory and selective attention.  123 

124 

                  



8 
 

2 Materials and methods 125 

2.1 Participants 126 

Thirty-two healthy, right-handed women from the School of Psychology of the University of 127 

Birmingham, took part for either course credits or cash. The mean age was 20.6 y (± 0.5) and the 128 

mean body mass index (BMI) was 21.3 kg/m
2
 (± 0.5). The mean hunger and fullness scores measured 129 

using 100 mm visual analogue scales (VAS) were 49 ± 5 mm and 32 ± 5 mm at the start of the 130 

experiment, which suggests that participants were neither hungry nor full [22]. Because our previous 131 

study [13] showed that dietary success affects top-down guidance of attention to food stimuli, 132 

participants were pre-screened to be non-dieters. Participants had low Three Factor Eating 133 

Questionnaire (TFEQ) restraint scores (mean score 5.7, range 0-12) and low tendency towards 134 

disinhibition of restraint score (mean score 5.8, range 1-13) [23, 24]. Finally, all participants had 135 

normal or corrected-to-normal-vision. Written informed consent was obtained from all participants. 136 

The study was approved by the Ethics Committee of the University of Birmingham and conformed to 137 

the Declaration of Helsinki. Two participants were excluded, post hoc, from the fMRI analysis due to 138 

artefacts in the images. 139 

2.2 Procedure 140 

The experiment took place in the morning and participants were asked to refrain from eating before 141 

attending the study (overnight fast). Upon arrival, the participants were first asked to report on 142 

demographic characteristics and rated feelings of hunger, fullness and desire to eat, using 100mm 143 

VAS anchored by word descriptions at each end that express two extreme states of the condition (e.g. 144 

''Not Hungry at all'', ''Very Hungry''). Subsequently, participants were scanned during which they 145 

performed a working memory selection task. After the scan, participants completed the VAS once 146 

more and had their height (cm) and weight (kg) measured.  147 

2.3 Working memory task 148 
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A dual task paradigm was used in which the participant had to hold a stimulus in working memory, 149 

while performing a visual search task [5, 6, 13-15, 25]. The stimuli to be held in working memory 150 

were pictures of food stimuli and non-food stimuli (household or stationary items). These pictures 151 

were presented in black and white, sized 480 x 480 pixels, in the middle of the screen on a black 152 

background. Pictures were not presented in colour to prevent attention being drawn due to difference 153 

in colour or colour distribution between the food and non-food stimuli. The search target was a circle 154 

and the task was to indicate its position relative to fixation; a square was used as a distracter and fell 155 

in the opposite field to the target. The search array contained two flanker pictures, one aligned with 156 

the target and one with the distracter. The pictures in the search array were irrelevant to the search 157 

task but, on two thirds of the trials, one of the pictures was the item held in working memory (Figure 158 

1a).   159 

There were three trial types: 1) valid trials in which the target was flanked by the picture held in 160 

working memory and the distracter was flanked by a picture from one of the other stimuli categories, 161 

2) invalid trials, in which the distracter was flanked by the picture held in working memory and the 162 

target was flanked by a picture from one of the other stimuli categories, or 3) neutral trials in which 163 

both the target and distracter were flanked by pictures from categories different from the picture held 164 

in working memory (see Figure 1b for an example of food valid, food neutral, and food invalid trials). 165 

A full factorial experiment design was used with the factors; memory stimuli type (food, non-food) 166 

and trial type (valid, neutral, invalid). The trials occurred randomly with equal probability. 167 

A trial (Figure 1a) started with a red exclamation mark for 600ms, followed by a picture for 500ms 168 

that the participants had to keep in working memory. The search array then appeared. It consisted of a 169 

target (circle) and a distracter (square) falling randomly to the left or right of fixation (7.4° visual 170 

angle from fixation). Participants responded with their right hand using the index or middle finger to 171 

indicate whether the target was on the left or right of fixation with a maximum response time set at 172 

800ms. After the search array, a fixation-cross appeared for 400ms. On 10% of the trials a memory 173 

probe followed the search display to test whether participants were memorizing the stimuli. On these 174 

trials a picture from the same category as the item in working memory appeared for 3000ms, and 175 
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participants indicated whether the picture was the same or different to the working memory stimulus. 176 

Participants then responded with their right hand using the index or middle finger, to indicate whether 177 

the picture in working memory matched the memory probe. Participants were instructed to give equal 178 

priority to the search and memory tasks and to perform as quickly and accurately as possible. The 179 

inter-trial interval was jittered randomly between 700-2700ms. The task consisted of 384 trials 180 

(divided in four blocks), and took 30 minutes to complete. The experiment was implemented using E-181 

prime (Version 1.2 – Psychology Software Tools). 182 

2.4 fMRI data acquisition  183 

Imaging was performed using a Philips 3-T Achieva system (Philips Medical Systems, Eindhoven, the 184 

Netherlands) at the Birmingham University Imaging Centre. Structural images were acquired with a 185 

T1-weighted sequence. Functional images were acquired with a gradient echoplanar T2*-sequence 186 

(36 frontal temporal oblique slices, 3-mm thickness without a gap, acquired in ascending order), with 187 

an in-plane resolution of 2.5 × 2.5 mm, 82º flip angle, 35 msec echo time, and 2200 msec slice 188 

repetition time. Images were acquired using an eight-channel phase array coil with a sense factor of 2. 189 

Data were collected in two waves and we used cohort waves as a covariate in the analyses.  190 

2.5 Behavioural data analysis  191 

For the reaction time (RT) analysis, incorrect responses to the search task, and memory task, as well 192 

as reaction times (RTs) that were +/- 3 standard deviations from the search mean were removed. 193 

There was no evidence of a speed–accuracy trade off and all further RT analyses included only 194 

correct trials. Behavioural response times were analysed using SPSS 22.0 for Windows (Armonk, 195 

NY: IBM Corp). We compared the RTs for correct search responses, using repeated measure 196 

ANOVA.  197 

2.6 fMRI data analysis  198 

Functional imaging data were analysed using SPM12 (Wellcome Department of Cognitive 199 

Neurology, London, UK) run with MATLAB 2015 (Mathworks Inc, Natick, MA) and the WFU 200 
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Pickatlas-tool [26],
  
using standard procedures [27, 28]. After motion-correction and realignment, 201 

high-resolution T1 images were co-registered to the mean image of the EPI series for each participant. 202 

The unified segmentation algorithm was performed to compute a grey matter probability map. These 203 

were used subsequently in Diffeomorphic Anatomical Registration through Exponentiated Lie 204 

Algebra (DARTEL) for inter-participant registration. The registered images were transformed to 205 

Montreal Neurological Institute (MNI) space and then smoothed with a Gaussian kernel (9 mm). 206 

Scans that included head movements exceeding 3 mm in any direction during task performance were 207 

excluded from further analysis. This resulted in excluding two subjects due to extreme movement.     208 

For data analysis, we used a general linear model. We first estimated the effect size for each 209 

participant for each condition across all four fMRI sessions. We modelled the onset of the WM 210 

stimuli on each trial separately for each condition, resulting in: food valid, non-food valid, food 211 

invalid, non-food invalid, food neutral and non-food neutral trials. We also included a regressor for 212 

the onset of error trials. Each event was modelled by a gamma function and convolved with the 213 

canonical hemodynamic response function. Additionally, we included 6 movement parameters and a 214 

set of harmonic regressors to capture low frequency changes (1 - 128 Hz) in the signal. Finally, for 215 

each trial condition we added search RT as a covariate to control for difference in RT. Effects across 216 

participants were tested in a group level (second level) analysis.  217 

Summary statistics were used to test the reliability of effects using the general linear model, treating 218 

subjects as random variable, assuming dependency between condition and unequal variance. The 219 

second level model included the six conditions (averaged across all sessions) and also included a 220 

covariate of the scanner software (reflecting the two waves of recruitment). We tested the following 221 

contrasts: 1) main effect of memory content (cue type): food versus non-food; 2) validity effect 222 

(Interaction-1 between memory and search task, trial type): valid versus invalid; 3) re-appearance 223 

effect (Interaction-2 between memory and search task, trial type): valid + invalid versus neutral; 4) 224 

Interaction between memory content and validity; 5) interaction between memory content and re-225 

appearance effect. 226 
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We report results that survive whole-brain family-wise error (FWE) correction (P < 0.05) at cluster or 227 

peak levels, with voxel significance (p < .001 uncorrected). Anatomical labelling of the results was 228 

carried out using the Anatomical Automatic Labelling toolbox (AAL). The charts and scatters were 229 

created by extracting the Eigen variate of a 6mm sphere centred at the group peak.  230 

231 
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  232 

3. Results 233 

Behavioural data 234 

Overall accuracy was high with 90.2% correct responses on the search task and 84.6% correct 235 

responses on the memory catch trials. A 3×2 repeated-measures ANOVA with the factors memory 236 

stimulus type (food, non-food) and trial type (valid, invalid, neutral) was run with number or error 237 

trials as the dependent variable. There was a main effect of trial type, F (2,62) = 34.35, p < 0.001, ηp
2 238 

= 0.52. Errors for valid trials (mean=3.42 SD=.51) were smaller than errors for neutral (mean=6.78, 239 

SD=.86), which were smaller than errors in invalid trials (9.58, SD=1.1). Error numbers were not 240 

different between food and non-food memory stimulus cues (ηp
2 
= 0.07).  241 

There was a significant interaction between memory stimulus type and trial type, F (2,62) = 6.84 p = 242 

0.002, ηp
2 
= 0.18. To follow up this interaction, we computed the impact of stimulus type in each trial 243 

type. For valid trials, accuracy was higher when a food stimulus was held in working memory, 244 

compared to a non-food stimulus, t(31) = 2.25, p = 0.003. Similarly for neutral trials, accuracy was 245 

higher for food relative to non-food, t(31) = 2.1, p= 0.044. For invalid trials, a tendency for a reversed 246 

pattern was observed with lower accuracy for food compared with non-food trials, t(31) = -1.75, p = 247 

0.09.  248 

A 3×2 repeated-measures ANOVA with the factors memory stimulus type (food vs. non-food) and 249 

trial type (valid vs. invalid vs. neutral) was run with correct trial RT as dependent variable. Mean 250 

reaction times (RT in milliseconds) to food stimuli and non-food stimuli for valid, invalid and neutral 251 

trials are presented in Figure 2. There was a main effect of trial, F (2,62) = 126.6 p < 0.001, ηp
2 
= 0.8, 252 

whereby RTs for valid trials were faster than RTs for neutral and invalid trials, and RTs for neutral 253 

trials were faster than RTs for invalid trials, and a main effect of stimulus type, F (1,31) = 12.0 p = 254 

0.002, ηp
2 
= 0.29, whereby participants had a faster RTs for food memory stimuli than or non-food 255 

memory stimuli. 256 
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There was a significant interaction between stimulus type and trial type F (2,62) = 6.0, p = 0.001, ηp
2 257 

= 0.2. To follow up this interaction, we computed the impact of stimulus type in each trial type. For 258 

valid trials, RTs were faster when a food stimulus was held in working memory, compared to a non-259 

food stimulus, t(31) = -9.277, p < 0.001. For neutral trials, there was no effect of stimulus type, t(31) 260 

= -1.64, p = 0.96. Similarly for invalid trials, there was no significant effect of stimulus type, t(31) = 261 

.049, p = 0.11.  262 

Taken together the results suggest that it is easier to hold food than non-food stimuli in memory; 263 

holding food (relative to non-food) in memory was associated with reduced cognitive load. 264 

Furthermore, attention is captured by information held in memory, an effect that was larger for food 265 

than non-food.  266 

fMRI data 267 

We observed a main effect of stimulus type (Table 1A, Figure 3A): holding a non-food versus food 268 

stimulus in working memory was associated with increased activity in middle superior frontal gyrus 269 

and posterior occipital cortex, extending to ventral (inferior occipital gyrus and fusiform gyrus) and 270 

dorsal (inferior parietal cortex) associative cortex.  The reverse contrast was associated with increased 271 

response in the posterior calcarine sulcus, though this effect only survived FWE correction at peak 272 

level. At a lower threshold we observed regions that are commonly associated with responses to food 273 

stimuli (e.g. middle orbital frontal cortex, insula and amygdala). This pattern of results was observed 274 

even when we consider only the trials in which food pictures were presented in the search.  275 

We also observed a validity effect (effect of trial type), reflecting the interaction between memory and 276 

search that was independent of the working memory content (stimulus type) (see Table 1B, Figure 277 

3B). Specifically, when the item in working memory was flanked by the search distracter (relative to 278 

the search target) an increased response was observed in bilateral inferior parietal sulci extending to 279 

bilateral superior parietal sulcus; bilateral inferior occipital extending to the fusiform gyrus. We did 280 

not find a reverse validity effect (valid > invalid). Neither of the validity effects interacted with the 281 

content of working memory. 282 
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In contrast, the content of memory affected the second type of interaction between memory and 283 

selective attention: aka the re-appearance effect (Figure 4). In comparison to non-food stimuli, we 284 

observed decreased responses to a food item that re-appeared in the search array when it was held in 285 

memory, compared to when it did not re-appear (food > non-food  [valid + invalid] < neutral). This 286 

was observed in the posterior cingulum cortex (MNI: [9 -39 39], z=3.86, cluster size = 113, cluster 287 

level PFWE = .015).  288 

To assess the relevance of the interaction effect observed in posterior cingulum to the observed 289 

behavioural responses, we computed a correlation between neural responses and behaviour; for the 290 

differential impact of holding food and non-food in memory on the selective attention (Figure 4). For 291 

the behavioural data, we computed a differential validity effect: Food(valid – invalid) – non-292 

Food(valid – invalid). For accuracy, higher values reflect stronger capture of attention to food than 293 

non-food, while the reverse pattern is the case for RT. For fMRI, we computed a differential re-294 

appearance effects: (Food(valid+invalid) – neutral*2) – non-food(valid+invalid) – neutral*2). Here 295 

positive values suggest a stronger reactivation for items held in memory that re-appear in the search 296 

array, while a negative response, suggests stronger deactivation when the memory item reappears in 297 

the search array. We observed a reliable correlation for accuracy (Pearson rho = -50, Spearman rho = -298 

.56, p < .005), the correlation with the RT was not reliable but was in the expected direction (Pearson 299 

rho = .14, Spearman rho = .24, p >.21). This association suggests that the capturing of attention by 300 

food (relative to non-food) was large in participants who showed stronger deactivation when food 301 

item re-appeared in the search array.  302 

  303 
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4 Discussion 304 

The current study examined the neural correlates of working memory biases for food related stimuli, 305 

compared to non-food stimuli, in young women. Our behavioural data matched earlier results [5, 6, 306 

13-15], namely that a food stimulus held in working memory modulated the deployment of visual 307 

attention to a search target, benefitting performance on valid trials. In other words, response to a target 308 

was facilitated when it was flanked by a food stimulus that was held in working memory. These 309 

behavioural data provide further evidence that thinking about food enhances attention to food stimuli 310 

in the environment. This top-down bias of attention to food was primarily associated with guidance of 311 

attention (valid trials), rather than interference (invalid trials). 312 

At a neural level, we tested whether top-down guidance of attention relates to reduced memory load 313 

when holding a food item in memory [6, 14, 17, 18]. We found reduced involvement of associative 314 

visual regions in occipital parietal and temporal cortices as well as superior frontal, when holding a 315 

food, relative to non-food stimulus, in working memory. Increased response to food, relative to non-316 

food, was observed in posterior calcarine sulcus and less reliably in other regions associated with 317 

processing of food pictures. The validity effect was not modulated by memory cue, but when a food 318 

re-appeared in the search array independent of its validity to the search task, there was a decreased 319 

response in posterior-cingulum cortex (i.e. retrosplenial region). This latter effect was reversed when 320 

non-food was held in memory. The reappearance effect in this region correlated with the behavioural 321 

results.  322 

Memory for food is suggested to be an important factor in regulating our eating behaviour [29]. It is 323 

therefore, not surprising that holding food items in memory is easier than holding non-food items in 324 

memory, as our brain is potentially well trained in memorising these type of stimuli. This is aligned 325 

with the increase of P3 and LPP ERPs when food stimuli, compared to non-food stimuli were held in 326 

memory [6]. It is surprising that we only observed weak reliability for remembering food in regions 327 

typically reported to be activated when viewing food than non-food pictures [30]. This might be 328 

because in this study visual pictures of food appeared both when remembering food and non-food. It 329 
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may also be because the analysis focused on the search task, in which the food stimuli were irrelevant. 330 

In the search task participants were asked to search for a geometrical shape, and the food stimuli 331 

could be in vicinity to the target, or the distracter. It has been suggested that responses to food stimuli 332 

depends on task requirement and attention [31]. 333 

A novel finding we observed in posterior cingulum (retrosplenial cortex) was that the interaction 334 

between memory and the search display is modulated by the content of memory. When a food item 335 

was held in memory and re-appeared in the search array, it showed a reduced response compared to 336 

when it did not re-appear. The reverse pattern was observed when non-food memory items re-337 

appeared in the search array. Previous studies that used a similar paradigm with simple geometrical 338 

shape, reported a re-appearance effect within the posterior cingulum [7, 8, 10, 11]. The re-appearance 339 

of simple geometrical shape showed a neural pattern that is similar to the one we observed for non-340 

food items. Similar to the results of the N1PC, ERP study [14], the re-appearance effect was reversed 341 

for food relative to non-food.   342 

Posterior cingulate cortex (retrosplenial) is consistently reported to be more involved in processing 343 

food than non-food [30] as well as in memory [32], where reduced responses are associated with more 344 

efficient processing and better memory [33, 34]. In the context of the current paradigm, it has been 345 

suggested that decreased responses to re-appearance reflects implicit sensory priming, while an 346 

increase for re-appearance reflects top-down attentional guidance [10]. Hence in line with the ERP 347 

results [14], we suggest that the impact of food held in memory on selective attention is mediated 348 

through sensory priming processes, supporting the perceptual enhancement hypothesis. Finally, the 349 

relevance of the observed interaction in posterior cingulum to behavioural responses was 350 

demonstrated by the correlation between the extent of the re-appearance effect and the response 351 

accuracy. The correlation showed that with the amount of sensory priming in posterior-cingulate 352 

correlated with larger benefits of the valid food cue.   353 
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Taken together, the results suggest that thinking of food enhances the natural bias toward food stimuli 354 

for two reasons: 1) because thinking of food is less taxing on memory and 2) by facilitation of the 355 

responses to sensory input related to food. 356 

There are some limitations and strengths of the present study to be discussed. First, the homogenous 357 

nature of the participants (young women only, no dieters) reduces variability in responding due to 358 

differences in eating behaviour related to sex and age, but it does not enable us to generalize our 359 

findings to the general population. We have previously reported that participants scoring high in 360 

restraint and low in tendency towards disinhibition (successful dieters) are less susceptible to the 361 

biasing effect of holding food related information in working memory [13], whereas unsuccessful 362 

dieters showed a stronger effect [15]. The present data suggest that this may be because successful 363 

dieters do not privilege working access to food related stimuli working memory, whereas 364 

unsuccessful dieters maintain food stimuli in working memory more easily but this remains to be 365 

tested. Similarly, future research should examine the role of emotional eating in attentional bias to 366 

food stimuli. Second, it is a limitation that we did not control for menstrual cycle phase which may 367 

influence responses to food cues. A final limitation is that we did not control for the impact of finger 368 

movement on the brain responses. However, the impact of finger movement is likely limited as 369 

participants only responded with the index finger or middle of their right hand on two buttons and the 370 

stimuli and trials were randomized. Some strengths are the relatively large sample size studied (>30) 371 

and the use of the established and validated memory paradigm.  372 

In summary, these results suggest that holding food in mind may bias attention because thinking of 373 

food facilitated neuronal responses to sensory input related to food stimuli and because holding food-374 

related information in mind is less taxing on memory. 375 

 376 
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 458 

Figure 1 459 

Figure 1a: Illustration of the Working Memory tasks 460 

Figure 1b: Illustration of trials in the Working Memory task, representing a food valid, food neutral, 461 

and food invalid trial 462 
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Figure 2. Mean reaction times (in milliseconds) to food stimuli  and non-food stimuli for valid, 463 

invalid and neutral trials in 32 women. Values are means ± SEM. * The significant interaction effect; 464 

participants reacted faster in the food valid trials compared to the non-food valid trails.     465 
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Figure 3. Brain regions associated with the main effects of stimulus type or search in working 476 

memory in 30 women. Figure 3A: Comparing holding a non-food versus food stimulus was associated 477 

with increased activity in middle superior frontal gyrus and posterior occipital cortex, extending to 478 

ventral (inferior occipital gyrus and fusiform gyrus) and dorsal (inferior parietal cortex) associative 479 

cortex. Figure 3B: Comparing invalid versus valid search trial was associated with an increased 480 

response in bilateral inferior parietal sulci extending to bilateral superior parietal sulcus; bilateral 481 

inferior occipital extending to the fusiform gyrus. 482 
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 Figure 4. Brain regions associated with the interaction between memory and selective attention in 30 485 

women.  486 
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Figure 4: fMRI Results II: Reappearance interaction 
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