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Abstract: It is widely accepted that the primordial universe experienced a brief period of accelerated
expansion called inflation. This scenario provides a plausible solution to the horizon and flatness
problems. However, the particle physics mechanism responsible for inflation remains speculative
with, in particular, the assumption of a scalar field called inflaton. Furthermore, the comparison with
the most recent data raises new questions that encourage the consideration of alternative hypotheses.
Here, we propose a completely different scenario based on a mechanism whose origins lie in the
nonlinearities of the Einstein field equations. We use the analytical results of weak gravitational wave
turbulence to develop a phenomenological theory of strong gravitational wave turbulence where
the inverse cascade of wave action plays a key role. In this scenario, the space-time metric excitation
triggers an explosive inverse cascade followed by the formation of a condensate in Fourier space
whose growth is interpreted as an expansion of the universe. Contrary to the idea that gravitation can
only produce a decelerating expansion, our study reveals that strong gravitational wave turbulence
could be a source of inflation. The fossil spectrum that emerges from this scenario is shown to be
in agreement with the cosmic microwave background radiation measured by the Planck mission.
Direct numerical simulations can be used to check our predictions and to investigate the question of
non-Gaussianity through the measure of intermittency.
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1. Introduction

Understanding the origin of the universe—before or around the Planck time τP ∼ 10−43 s—is
currently out of reach because it would require using a quantum theory of gravity that remains to be
built. For a time significantly greater than τP, the situation is different because the general relativity
theory [1] provides a theoretical framework for describing the evolution of the universe as a whole [2].
It is believed that around 10−36 s the primordial universe experienced an accelerated expansion
called inflation which led to an increase of the size of the universe by a factor of at least 1028 [3,4].
This superluminal expansion is supposed to have eventually stopped around 10−32 s. The inflation
scenario has met a growing success (see, however, Ref. [5] for an alternative) because it can explain why
the cosmic microwave background (CMB) radiation appears so uniform at large scales and why the
universe is flat [6]. While the inflationary paradigm is widely accepted, the detailed particle physics
mechanism responsible for inflation—like the existence of a scalar field called inflaton—remains
unknown [2]. Furthermore, current experiments (in LHC) can only provide limited information with
conditions corresponding to the age of ∼10−12 s [7].
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Inflation finds its energy from the vacuum and a phase transition associated with the
grand-unified-theory symmetry breaking [3,8]. The inflationary scenario has, however, several tuning
parameters leading to a wide spectrum of speculative models. The most recent data from the
Planck satellite shows, with a high precision, that we live in a remarkably simple universe with,
e.g., a small spatial curvature and a nearly scale-invariant density fluctuation spectrum with
nearly Gaussian statistics [6]. These observations have made it possible to exclude several models,
while raising new questions that could weaken the inflationary paradigm and encourage consideration
of alternatives [9–12].

Here, we propose a plausible alternative based on the nonlinearities of the (non-modified)
general relativity equations which have been neglected so far when considering the primordial
universe. Our approach is, therefore, different from the Starobinsky’s model where an extra R2 term
was introduced in the Hilbert–Einstein action [13]. As the fundamental hypothesis of our study
we will neglect the role of inflaton in the mechanism of inflation and we will focus our attention only
on gravitational wave (GW) turbulence. Since the problem is highly non-trivial, we will examine
a simplified theoretical framework from which analytical results were recently derived for the regime of
weak GW turbulence [14]. We will use these results to develop a theory of strong GW turbulence which
is phenomenological by nature because, unlike for weak turbulence, the problem of strong turbulence
is unsolvable perturbatively. In this way we will follow a very classical approach of turbulence based
on the idea of critical balance (see, e.g., [15–20]).

The mechanism of cascade in GW turbulence requires an initial excitation of the space-time metric
denoted hi. We will assume that it happens at a wavenumber ki (or in a wavenumber window localized
around ki). Since the state of the universe before inflation is inherently unknown, the description
of a source of excitation remains speculative and subject to criticism. However, it is likely that the
primordial universe was in a tumultuous state—as a heritage of the quantum foam [21]—with for
example the creation of primordial black holes (PBH) due to space-time fluctuations [22] (see Ref. [23]
for the PBH formation by bubble collisions). They are expected to disappear quickly by radiation [24],
however, the merger of PBH is possible before and could actually be a potent source of GWs.
Our scenario of GW turbulence may start around 10−36 s or later, which is far enough from the Planck
time to consider the general relativity model as applicable [14] (although inflaton models also use
Einstein’s equations). Therefore, in the context of PBH mergers, the GWs produced will be modeled in
Einstein’s equations by a forcing at ki, however, PBH which require a quantum description, are not
modeled. In doing so, we follow the methodology used for inflaton, the effects of which are introduced
into the energy-stress tensor.

The case hi � 1 is favourable to the development of weak GW turbulence for which a theory
has been recently derived [14]. The theory describes the nonlinear evolution of weak ripples on
the Poincaré–Minkowski flat space-time metric. In this theory, like in the rest of the present paper,
the cosmological constant is neglected (Λ = 0) and a pure vacuum space is considered. Therefore,
the vacuum Einstein model is used, which in terms of the Ricci tensor reads Rµν = 0. The theory
of Ref. [14] is restricted to a 2.5 + 1 diagonal metric tensor which includes only one type (+) of GW
(the × GW being excluded). However, the weak GW turbulence theory is limited because: (i) Initially
weak GW turbulence quickly leads to strongly nonlinear turbulence at large scales (see below) and
(ii) the GW dilution due to the universe global expansion will overpower the nonlinearity of the
GW interactions [25]. The expansion arises because of the space-time ripples which contribute
to the coarse-grained Einstein model through nonlinear wave interactions leading to an effective
energy-momentum tensor typical for usual radiation, e.g., the electromagnetic waves.

As we show in Appendix A, the rate of such an expansion for the statistically homogeneous
and isotropic GW fields is sufficient to produce the GW dilution which overpowers the wave–wave
interactions if the wave phases are random (as is the case for weak GW turbulence theory). However,
if the phases are not random, which usually occurs when the nonlinearities are not weak, then the



Universe 2020, 6, 98 3 of 16

wave–wave interactions are typically as fast as the dilution process and a strong GW turbulence theory
can be applicable.

Thus, for the nonlinear GW interactions to be effective in the statistically homogeneous and
isotropic GW fields these fields must be strongly nonlinear. Note that under some special metrics
the expansion effect may be naturally slow or even suppressed, e.g., if the universe is forced to be
finite as in the anti-de Sitter geometry. However, even taken alone, the fact that the initially weak GW
turbulence quickly becomes strong (as can be theoretically predicted) calls for studying the case of
strong GW turbulence, and this is the main objective of this paper.

The paper is structured as follows: Section 2 is devoted to the Friedmann equations in order to
recall the assumptions of the basic model and notations; in Section 3 we briefly present the analytical
results of weak GW turbulence published recently and then deduce the phenomenological theory
of strong GW turbulence; the formation of a condensate and its interpretation in terms of inflation
is discussed in Section 4; in Section 5 we show that our prediction is in good agreement with the CMB
measured by the Planck mission; in the last section we conclude with a summary and a discussion.
A consideration of the GW dilution in an expanding universe, where the expansion is caused by the
GW themselves is presented in Appendix A.

2. Friedmann Equations

In this section, we recall the Friedmann equations in the simplified case where the cosmological
constant is neglected (Λ = 0) and the metric is flat; they read

H2 =
8πG

3
ρ (1)

ρ̇ + 3H
(

ρ +
P
c2

)
= 0 (2)

with H ≡ ȧ/a the Hubble parameter, ˙ the time derivative, a(t) the cosmic scale factor,
c the speed of light, ρ(t) the density and P(t) the pressure. These equations are derived from the
Friedmann–Lemaître–Robertson–Walker (FLRW) diagonal metric with interval

ds2 = gµνdxµdxν = −c2dt2 + a2(t)dx2 (3)

where x are the co-moving coordinates. The basic assumption behind the FLRW metric is that the
universe is homogeneous and isotropic (assumption only valid at large scale) and thus the density and
pressure are uniform functions (in space) which depend only on t. The Friedmann equations describe,
therefore, the large-scale evolution of the universe.

In a vacuum space (ρ = P = 0) the solution of the Friedmann Equations (1) and (2) is trivially
a static universe. On the other hand, in presence of weak GW turbulence (isotropic and homogeneous
but in the statistical sense) the vacuum universe exhibits rich dynamics with a dual cascade. Note that
inflation models use the Friedmann equations where the density and pressure are substituted with
new quantities arising from assuming existence of an inflaton field [26]. It is known [27], and explicitly
shown in Appendix A, that even in vacuum GW fields (metric disturbances) produce effective density
and pressure terms in the Friedmann equations which have a form typical for radiation. The respective
radiative density and pressure terms correspond to the wave–mean interactions, i.e., the effect of
the small-scale GWs onto the coarse-grained metric evolution. However, the difference with a usual
(e.g., electromagnetic) radiation is that the GW field is nonlinear, which can affect in a substantial way
the character of energy dilution due to the universe expansion. Namely, as we show in Appendix A,
the wave–wave interaction process is typically as fast as the wave–mean interaction if their phases are
not random.
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3. Metric Cascades in GW Turbulence

Let us briefly recap the results concerning weak GW turbulence. It is characterized by
a direct cascade of energy E and an inverse cascade of wave action (or particle number) N [14].
The respective turbulent spectra are defined from the space-time fluctuations hµν which are introduced
as perturbations of the Minkowski metric ηµν,

gµν = ηµν + hµν (4)

with gµν being the metric and |hµν| � 1. We shall give a phenomenological argument to explain why
such a double cascade exists for weak GW turbulence. This argument is similar to the famous Fjørtoft
argument predicting the dual cascade behavior in two-dimensional hydrodynamic turbulence [28].
Hereafter, we assume statistical homogeneity and isotropy of the turbulent state. We define Êk to be
the one-dimensional (1D) spectrum of the total energy density E by the definition E =

∫ ∞
0 Êkdk.

(A similar definition holds for the 1D wave action density spectrum N̂k.) Assume that at wavenumber
ki ∼ 1/λi we have an injection of wave action flux ζi and energy flux εi. For the demonstration,
we will assume the presence of sinks at small and large wavenumbers, k0 and k∞ respectively, such that
0 < k0 < ki < k∞ < ∞. We also define ζ0, ε0, ζ∞ and ε∞ as the flux values at the corresponding sinks.
By virtue of the conservation of the wave action and the energy (in absence of sources and sinks),
the relations

ζi = ζ0 + ζ∞ , εi = ε0 + ε∞ (5)

should be satisfied in the steady state, i.e., the injected fluxes are in balanced with the removal at the
sinks. The energy and the wave action spectral densities are linked through the relation Êk = ωN̂k (with
ω = ck for GWs), which could be interpreted as the usual quantum-mechanical relation, between the
energy and the occupation number k-space density of quasi-particles–in our case gravitons1.

The relationship between the energy and wave action leads to the complementary relationship
between the respective fluxes, ε = ωζ, and to three equations involving k0, ki and k∞. Solving these
equations, for a sufficiently large inertial range (k0 � ki � k∞), we obtain in the limit

ε0

ε∞
=

(
k0

ki

)
1− ki/k∞

1− k0/ki
→ 0 (6)

ζ∞

ζ0
=

(
ki
k∞

)
1− k0/ki
1− ki/k∞

→ 0 (7)

which means that the energy and the wave action fluxes are opposite to each other in the k-space.
Note that this is nothing but a standard argument about the spectral flux directions in weak turbulence
theory with two positive quadratic integrals of motion, e.g., see Ref. [29].

As explained in Ref. [14] and shown numerically in Ref. [30], the inverse cascade is explosive
with in principle the possibility for the wave action spectrum, excited at ki, to reach the wavenumber
k = 0 in a finite time. However, the description fails at scale ks (or λs ∼ 1/ks) where the turbulence
becomes strongly nonlinear. We may evaluate λs by using the weak GW turbulence theory for
which we know the exact power law solutions [31]. We have the following 1D isotropic constant-flux

1 One should not be confused with the reference to quantum mechanics, which is made purely for a simple illustration of the
relation between the energy and the wave action spectra. The system we are considering is purely classical, in a sense that
the occupation numbers at all the momentum states are large. It would be possible to extend our consideration to the cases
of small or moderate occupation numbers via writing a quantum kinetic equation based on, e.g., the Fermi golden rule.
However, these cases can only be relevant to the direct cascade at very high k which is beyond the scope of the present paper.
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stationary solution corresponding to the inverse cascade (see Figure 1 where the metric spectrum is
schematically reported),

N̂k ∼ ζ1/3k−2/3 (8)

Let us denote by h` the typical value of the metric disturbance at length scale `. Under the
assumptions of statistical homogeneity and isotropy we define h` =

√
〈(h(x + `)− h(x))2〉 where 〈·〉

represents the ensemble and spatial average over x, and x and x + ` are two positions separated by an
increment `. Due to statistical homogeneity and isotropy h` only depends on the magnitude of the
increment ` = |`|. By using the scaling relation at scale ` [32], we can show that E>

` =
∫

k<2π/` Êk dk,
the total energy density contained in scales greater than `, scales as

E>
` ∼

c4

32πG
h2
`

`2 (9)

and E>
` ∼ ωN>

` ∼ k2N̂k ∼ k4/3 ∼ `−4/3, we find (with the notation introduced above)

h` ∼ hi

(
`

λi

)1/3
(10)

The GW turbulence becomes strong when h` = hs ∼ 1; with an initial excitation hi ∼ 10−1 it leads
to ` = λs ∼ 103λi. However and as explained above, for statistically isotropic and homogeneous weak
GW turbulence, the wave–wave interaction is overpowered by the wave–mean interaction leading to
the mean expansion and GW dilution. Thus, for the GW interactions to have a significant contribution,
the initial excitation has to be close to ks. Therefore, the weak wave turbulence regime in Figure 1
is illustrated mainly for pedagogical reasons to emphasize the overall wave–kinetic scenario.

k

Ĥk

0 ks ki kP

P
la
n
ck

S
ca
le

Strong wave
turbulence

Weak wave
turbulence

k−1

k−5/3

k−2ζ

ǫ

Figure 1. 1D metric spectrum Ĥk produced by an injection of wave action and energy fluxes at
wavenumber ki. The weak GW turbulence regime is localized in the interval ks < k � kP, where kP

is the Planck wavenumber and ks determines the wavenumber below which GW turbulence is strong.
In this scenario, the inverse cascade leads to the formation of a condensate at k = 0. The growth of the
condensate corresponds to an increase of the cosmic scale factor.

Weak GW turbulence can be seen as a local description for which the assumption of a perturbed
Minkowski space-time metric (4) applies well. For larger scales, however, the metric could be different
with, for example, the presence of a non-zero large-scale curvature. The phenomenological scenario
described hereafter applies to this situation as well. The presence of an inverse cascade in the regime
of weak GW turbulence is an indication that at wavenumber k < ks the inverse cascade continues in
the regime of strong turbulence. Following the classical theory of strong wave turbulence (for different



Universe 2020, 6, 98 6 of 16

applications see, e.g., [15–20]), we conjecture that the turbulence saturation state is determined
by a critical balance (CB) in which the linear wave period τGW = 2π/ω and the nonlinear time
τNL ∼ `/(h`c) are approximately the same over a wide range of scales. The scale-by-scale balance
relation τGW ∼ τNL leads to statistical fluctuations with h` ∼ 1. This result means that strong
turbulence may develop on the background of the Minkowski space-time keeping the fluctuations
finite. Note that the presence of such strong fluctuations may be accompanied by the creation of
structures like PBH, which do not contradict our statistical prediction. The 1D metric spectrum

Ĥk = 4πk2
∫
〈h(x + `)h(x)〉 e−ik·` d` = 2πk2

∫ (
2
〈

h2
〉
− h2

`

)
e−ik·` d` (11)

(where the factor 4πk2 arises from angle integration in Fourier space) for the CB regime can be
determined dimensionally with the relation h2

` ∼ kĤk, leading to the scaling law Ĥk ∼ k−1

(see Figure 1), and thus the wave action spectrum is N̂k ∼ k0. Then, the CB phenomenology of
strong GW turbulence tells us that the spectrum can reach the mode k = 0 in finite time because it is
a finite-capacity turbulence system: namely, the integral

∫ ki
0 N̂k dk converges, which means that the CB

spectrum holds only a finite amount of wave action over the range [0, ki]. This implies that it takes
only a finite amount of time to form the CB spectrum everywhere in the range [0, ki] given that the
forcing pumps wave action at a finite rate and that most of the wave action is transferred upscale of the
forcing scale (which follows from the dual cascade argument given above). This scenario is supported
by the numerical simulations in Galtier et al. [30].

It is important to note that the excitation of the metric from ki > 0 to k = 0 in a finite time does
not violate the causality principle because it does not correspond to the propagation of information
in physical space from a given position to infinity. Instead, the inverse cascade means a continuous
increase of the wavelength of a fluctuation as a consequence of its interaction with other fluctuations of
predominately similar wavelengths. Clearly, this can be done locally in physical space. Then, the mode
k = 0 corresponds to the level of the background over which there are fluctuations of different
wavelengths (see, e.g., Refs. [33–35] where the zero mode plays an important role). Note also that this
description does not require to fix the size (finite or infinite) of the system.

4. Condensate and Inflation

When the spectral front reaches the mode k = 0 a condensate emerges in Fourier space
(see Figure 1). This situation is similar to the formation of non-equilibrium Bose–Einstein condensation
generated by an inverse cascade (see, e.g., Refs. [33,35–39]). In our case, the growth in time of the
condensate is at the expense of the fluctuations which can be maintained as long as the wave action
flux ζ is finite (possibly constant).

For the sake of simplicity, let us consider a perturbed FLRW metric with interval (initially a(0) = 1)

ds2 =− c2dt2 + a2(t)dx2 + hµνdxµdxν (12)

with 〈hµν〉 = 0 where the angle brackets denote the physical space average. We can formally write

ds2 =− c2dt2 + dx2 + h′µνdxµdxν (13)

where h′ij ≡ (a2 − 1)δij + hij, i, j = 1, 2, 3, with h′0,µ = h0,µ, and h′µ,0 = hµ,0 for µ = 0, 1, 2, 3. Therefore,
we see that the level of the background “condensate” metric h′ij(k = 0) ≡ (a2− 1)δij provides a measure
of the cosmic scale factor. In particular, a growth of the condensate means an expansion of the universe
(and a flattening of the space-time). Since this growth occurs via draining the wave action from the
fluctuations, this mechanism is contributing to “ironing out" of small-scale inhomogeneities.

In previous works on the dynamics of the Bose–Einstein condensation, it was shown that the
condensate growth accelerates [35,36] and an explosive evolution (as (tc − t)x with x < 0 and t < tc)
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was not excluded; in the weak turbulence regime a power-law in time was predicted [40]. An analogous
accelerated condensate growth scenario for GW turbulence would mean inflation. Inflation would
not be in contradiction with the causality principle because it would be the result of an amplification
of the background metric. This mechanism would be limited in time because an expansion of the
universe leads also to a dilution of the GW field (see Appendix A and also Ref. [14]). We may expect,
however, that it is only when the source of the wave action flux is depleted that the GW fluctuations
start to decay. This eventually leads to a natural saturation of the condensate and the end of inflation
(because of the weakening of the GW field and hence the nonlinear transfer).

We may estimate the time-scale necessary for the formation of a condensate by using the
turbulence phenomenology, which gives several predictions. First, we can say that the development of
weak GW turbulence happens at the typical time-scale of the four-wave kinetic equation [14]

τWT ∼
τGW

ε4 (14)

where the GW time is that of the linear wave evolution τGW ∼ 1/(kic) and the small parameter
ε is defined as the ratio between the linear and nonlinear time-scales ε ∼ τGW/τNL ∼ hi ∼ 10−1.
We find τWT ∼ 104λi/c. But, as we have already discussed, the GW turbulence quickly ceases to be
weak (because the initial excitation is close to ks), and the characteristic time becomes the one of the
dynamical (rather than the weak turbulence kinetic) equation, namely

τdyn ∼
τGW
ε2 (15)

which is shown in Appendix A to be the same time as for the dilution. Note that expression (15) is also
valid for weak GWs with h� 1 if their phases are not random. Non-random phases could appear, e.g.,
due to presence of coherent structures such as solitons, PBH, or wormholes. With the parameters given
above, we find that τdyn ∼ 100λi/c. In the CB state the nonlinearity parameter ε is of order one, so

τdyn ∼ τGW ∼ τNL ∼
λi
c

(16)

It is important to realize that expressions (14)–(16) arise from the Einstein vacuum model, which is
free of tuning parameters, and their form is dictated solely by the nonlinear properties of this model.

5. Fossil Spectrum and CMB

According to our scenario, phase-transitions in the early universe give rise to GW turbulence
which is fuelling inflation. This is followed by GW dilution and the termination of inflation when the
source of GW is depleted. Then, the fossil gravitational spectrum should be the one we have obtained
for strong GW turbulence but with a much smaller amplitude due to the effects of GW dilution
(it is safe to assume that the nonlinear interactions of the waves are negligible during the majority of
the dilution stage). We may try to compare our prediction with the CMB radiation measured by the
Planck mission [6].

After inflation we are left with a Minkowski metric plus very small fluctuations, therefore we can
simply use the Newtonian law

∇2φ = 4πGρ, (17)

with φ the gravitational potential, to derive the corresponding 1D scalar spectrum

Φ̂k = 2πk2
∫ (

2
〈

φ2
〉
− φ2

`

)
e−ik·` d`. (18)
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Here, φ` =
√
〈(φ(x + `)− φ(x))2〉 is linked to the potential by the relation φ2

` ∼ kΦ̂k.
Expression (17) leads to the scaling relation φ` ∼ ρ``

2. Connexion with our prediction can be
made through the relation ρ`φ` ∼ E>

` ∼ `−2 (relation (9) is used) which is compatible with the
CB phenomenology. Then, we find

Φ̂k ∼ k−1 (19)

which is the Harrison–Zeldovich spectrum (with the classical notation Φ̂k ∼ kns−2, therefore ns = 1).
This solution is scale-invariant in the sense that the fluctuations in the gravitational potential
are independent of length scale [41]. The Planck data are actually compatible with ns ' 0.967
which corresponds to a 1D metric spectrum Ĥk ∼ kns−2 ∼ k−1.033 only slightly steeper than our
prediction. Note that finite-capacity turbulence systems, which are characterized by an explosive
cascade, exhibit anomalous scalings with power laws slightly different from the steady-state
predictions [35,36,42] (for other physical examples see Refs. [31,34,43,44] and for weak GW turbulence
see Ref. [30]). Therefore, the slight discrepancy between our prediction and the Planck data could be
the signature of an anomalous scaling.

Finally, we can show that the tensor-to-scalar ratio r (ratio between the metric and scalar spectra)
is independent of k. Its amplitude is, however, difficult to estimate without numerical simulation
because it requires the knowledge of the Kolmogorov constants.

6. Conclusions

In summary, we propose an alternative scenario for inflation which is driven by strong GW
turbulence. We show that a small-scale excitation of the metric leads to a self-accelerating inverse
cascade that could lead to the formation of a condensate whose growth is interpreted as an expansion
of the universe. The condensate growth is expected to accelerate—possibly explosively—leading to
a phase of inflation. It is shown that the scalar spectrum obtained with this scenario is compatible with
the CMB measured by the Planck mission (without introducing tuning parameters [45]), however, it is
not possible to quantify the expansion (number of e-folds). This new scenario does not preclude the
appearance of a reheating phase of the universe and particle creation after inflation [10]. The nonlinear
mechanism described here does not require the introduction of the cosmological constant and has
no tuning parameters. It also supports the idea of inflation which was recently questioned [11,12].
Note that this scenario is a priori not applicable to the recent cosmic acceleration of the universe for
which the conditions are not favorable for the development of GW turbulence.

The turbulent inflation introduced here is mainly a phenomenological theory, inspired by the
analytical results obtained in weak GW turbulence. At present, an essential part of it remains in
conjecture, specifically the view that the inverse cascade will continue through the strongly turbulent
stage. Indeed, strictly speaking the dual cascade behavior relies on the conservation of the wave action,
which is a property of the four-wave kinetic equation and therefore breaks down when this equation is
no longer applicable. The situation here is similar to the behavior described by the Gross–Pitaevskii
model: when the inverse cascade becomes strong, the energy invariant ceases to be quadratic, and the
dual cascade argument becomes, technically, invalid. However, it is known from numerical simulations
of the Gross–Pitaevskii model [46,47] that the condensation process started at the weakly turbulent
regime as an inverse cascade, continues at the strongly turbulent stage with the appearance of strongly
nonlinear defects which move like hydrodynamic vortices. These tend to continuously annihilate,
so that no defects remain after a finite time, with the correlation length becoming infinite. By this
analogy, we conjecture that in the vacuum Einstein model, the condensation process will also continue
through the strongly turbulent stage, possibly with some singular coherent objects, such as wormholes,
PBH, or solitons appearing in the system at a transient stage (similar to the appearance of the vortices in
the Gross–Pitaevskii model). Obviously substantial work remains to be performed for such a scenario
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to be confirmed by direct numerical simulations (this issue is left for future work) and if possible by
analytical calculations.

To describe strong GW turbulence, we have used the CB hypothesis stating that turbulence
saturates in a state where the linear and the nonlinear time-scales balance each other across a wide
range of spatial scales. The CB theory was originally introduced in the field of astrophysical MHD
turbulence in Ref. [15]. It remains phenomenological in nature due to the fact that strongly nonlinear
turbulence is a notoriously difficult subject, and to date there exist no exact theory of strong turbulence
even in such well-studied systems as the classical Navier–Stokes fluids. However, we should recall that
the CB theory has played an enormously positive role in the field of turbulence, becoming a central
conjecture which has attracted a significant number of authors who are aiming to check its validity,
either theoretically or numerically. In the twenty-five years since its introduction, the CB theory has
received a substantial theoretical and numerical support, and yet it is far from being fully confirmed.
This experience leads us to predict that thorough study of strong GW turbulence will be equally
difficult and time consuming. However, we believe that the CB approach introduced in the present
paper will serve its positive role as a guide for future studies and act as a reference theory for analysing
numerical and observational data, in the same way as it has been serving a positive role in the field of
MHD turbulence.

We should note that there has been several other explanations and interpretations of the measured
CMB spectrum, and the fact that the CB turbulence theory predictions are compatible with it does not,
of course, mean that it is the ultimate valid explanation of it. One particularly interesting approach
was put forward in Ref. [48] who suggested that the scaling of the CMB spectrum should be related
to conformal invariance of the correlation functions in a dark energy dominated universe. In fact,
their suggestion is not contradictory with the turbulent scenario, and one cannot rule out that full
conformal invariance does indeed arise in turbulence of such type of systems. However, invoking dark
energy without clarifying its nature has the same detriment as introducing a hypothetical inflaton field
in the inflation theories. Secondly, assuming the full conformal invariance may be natural based on
the symmetries of the system, but it is not obvious if it should naturally arise dynamically during
the evolution. To this effect, it is worth reminding the reader about the theory of 2D hydrodynamic
turbulence based on a conformal invariance conjecture which was suggested by Polyakov [49]. In spite
of the theory’s immense mathematical beauty, it predicted a turbulence spectrum exponent that has
not as yet been confirmed by numerical simulations.

One of the hottest question in cosmology is about the non-Gaussianity of the CMB [6].
In the framework of turbulence, non-Gaussianity is natural and associated in particular with
intermittency [50], which is traditionally measured via structure functions (two-point measurements).
In our case, we can define the following set of structure functions of order p

Sp
ij(`) ≡ 〈[hij(x + `)− hij(x)]p〉 (20)

Under the assumption of statistical homogeneity and isotropy, they are expected to have scalings
Sp

ij(`) ∼ `ζp with ζp a function that depends on p in a non-trivial way. With direct numerical
simulations of strong wave turbulence it will be possible to measure ζp (this issue is left for future
work) and therefore have an empirical prediction that can be compared directly with the Planck data
(it should be viewed as a new way to analyze and interpret the data). This new prediction can be used
in fine to make a distinction between the different scenarios of inflation, e.g., those based on turbulence
or inflaton.

Finally, it is interesting to note that the effects of small scale fluctuations on the large-scale
dynamics has been studied by [51]: it was shown analytically that the back reaction is much stronger
for GWs than for matter density fluctuations. While, in another study [52], it was suggested that
solitonic GWs of cosmological origin can contribute to the expansion of the universe. Clearly, these few
examples underline the need to better understand the role of nonlinearities in cosmology that have
been underestimated so far.
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Appendix A. Universe Expansion Driven by Nonlinear Gravitational Wave Interactions

We systematically derive a set of mean and fluctuation Equations (A10)–(A12) for nonlinear
gravitational wave evolution in a flat empty universe based on the Einstein vacuum equations.
We show how, for non-weak gravitational wave amplitudes or non-random phases, the leading
nonlinear wave contribution is of the same order as the term corresponding to universe dilation,
implying that consideration of gravitational wave–wave interactions is important for describing
the expansion of the universe. This motivates the use of the critical balance argument for strong
gravitational wave turbulence of the main text.

Consider the Einstein vacuum equations

Rµκ = 0 (A1)

restricted to small perturbations hµκ of metric gµκ about the Friedmann-Lemaître-Robertson-Walker
(FLRW) metric ḡµκ :

gµκ = ḡµκ + hµκ , |hµκ | � |ḡµκ | (A2)

ḡµκ =


−c2 0 0 0

0 a2(t) 0 0
0 0 a2(t) 0
0 0 0 a2(t)


where a(t) is the scale factor for the spatial expansion of the universe and c is the speed of light.

It is worth remarking that in [53] and subsequently in [54], the authors considered weak
gravitational waves in FLRW space without assuming slowness of a(t). This makes sense if matter
or (non-gravitational) radiation produces a fast expansion with ȧ/a = O(1). However, in the
vacuum case considered in this article, the temporal evolution of the scale factor is slow. We will
show a posteriori that ȧ is of the same order as the weak gravitational wave perturbation hµκ ,
i.e., ȧ ∼

√
ä ∼ h ∼ ε� 1 and thus nonlinear gravitational wave interactions cannot be neglected when

describing the expansion of the universe. In our analysis, we will utilize these scalings and perform a
formal expansion on Equation (A1) in ε. The Ricci tensor Rµκ can be expressed in terms of Christoffel
symbols Γλ

µκ via

Rµκ = ∂κΓν
µν − ∂νΓν

µκ + Γα
µνΓν

κα − Γα
µκΓν

να (A3)

where the Christoffel symbol is defined in terms of the metric gµκ and co-metric gµκ as

Γσ
µκ =

1
2

gνσ
[
∂µgκν + ∂κ gµν − ∂νgκµ

]
(A4)
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By substituting (A2) into the expressions (A4) and (A3) we produce a formal ε-expansion of the
vacuum equations, with each order in ε denoted as follows,

Rµκ = R(0)
µκ + εR(1)

µκ + ε2R(2)
µκ + · · · = 0

As the Einstein vacuum equations lead to an over-determined system of equations for the
perturbation hµκ , we can fix the coordinate system without loss of generality. We apply the four
harmonic gauge conditions

Hλ = gµκΓλ
µκ = 0 (A5)

defined up to the linear perturbation of hµκ . The harmonic gauge conditions (A5) still leaves coordinate
freedom with respect to any additional harmonic perturbation. Therefore, we can additionally choose
the space-time coordinates in such a way that

h00 = 0, and hl0 = 0, for l = 1, 2, 3

We find that at order O(ε0), R(0)
µκ = 0, i.e., a pure Minkowski space with hµν = 0 and a = constant.

At order O(ε), we find

R(1)
00 =

1
2a2 ḧjj

R(1)
ll =− 1

2c2 ḧll +
1

2a2 ∂2
llhjj −

1
a2 ∂l∂jhl j +

1
2a2 ∂2

jjhll

R(1)
l0 =

1
2a2 ∂l ḣjj −

1
2a2 ∂j ḣl j

R(1)
lm =

1
2a2 ∂l∂mhjj −

1
2c2 ḧlm −

1
2a2 ∂l∂jhmj −

1
2a2 ∂m∂jhl j +

1
2a2 ∂2

jjhml

where l, m = 1, 2, 3 are fixed and j = 1, 2, 3 is explicitly summed over such that j 6= l 6= m. Here ˙
denotes the temporal derivative. The harmonic gauge conditions (A5) give

H0(1) =
1

2c2a2 ḣjj = 0

Hl(1) =
1

2a4 ∂lhll −
1

2a4 ∂lhjj +
1
a4 ∂jhjl = 0

where l = 1, 2, 3 is fixed and j = 1, 2, 3 is summed over such that j 6= l.
Using the harmonic gauge conditions, we can simplify the Einstein vacuum equations at O(ε) to

wave equations of the form:

R(1)
lm = − 1

2c2 ḧlm +
1

2a2∇
2hlm = 0 (A6)

for l, m = 1, 2, 3. It is important to note that Equation (A6) depends on a time dependent scale factor
a(t) whose evolution can only be described by considering the subsequent order in ε. The term R(2)

µκ

involves a mix of contributions arising from terms quadratic in h (denote them hhR(2)
µκ ) and linear in

h contributions ∼ ȧh (denote them ahR(2)
µκ ), and finally contributions of type (ȧ/a)2 and ä/a (denote

them aR(2)). Then

R(2)
µκ =hhR(2)

µκ + ahR(2)
µκ + aR(2)

µκ
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Using the harmonic gauge, the order O(ε2) contribution to the Einstein vacuum equations
simplify to

aR(2)
00 =

3ȧ2

a2

aR(2)
ll =− aä + 2ȧ2

c2

where l = 1, 2, 3 with no summation, with the rest of the components of aR(2)
µκ being zero. We also

determine that

ahR(2)
lm =

ȧḣlm
2c2a

(A7)

and ahR(2)
0m = ahR(2)

l0 = 0. The form of (A7) is precisely what results from the second term of Equation (8)

in Ref. [54]. The complete expression for hhR(2)
µκ is lengthy and will not be reproduced here. It can be

determined through the use of computational algebra software such as Mathematica. Note that by
considering the Einstein vacuum equations at order O(ε2), it gives rise to two equations: one equation
for the mean and one equation for the fluctuations. Let us introduce the spatial average 〈·〉 :=
limV→∞[(1/V)

∫
V · dx], then up to order O(ε2) we have

〈Rµκ〉 =〈R(0)
µκ + R(1)

µκ + R(2)
µκ 〉 = 〈R(2)

µκ 〉 = 0 (A8)

where we have taken into account that R(0)
µκ = 0, while R(1)

µκ is linear in terms of the perturbation hµκ

and vanishes upon the spatial average. (Actually, this implies that the averaged metric remains of
FLRW form which will be seen from the structure of the final averaged equations.) Now note that
ahR(2)

µκ has zero mean (being linear in hµκ) and that 〈aR(2)
µκ 〉 = aR(2)

µκ .

We evaluate terms 〈hhR(2)
µκ 〉 assuming a distribution of gravitational waves with amplitudes

hµκ = (2π)−3
∫

ĥµκ(k, t) exp(ik · x) dk

where ĥµκ(k, t) are time-dependent wave amplitudes for a wave with wave vector k = (k1, k2, k3).
For the calculation below, it suffices to take the leading order time dependence of ĥk(t) which follows
from the wave Equation (A6), namely ĥµκ(k, t) ∼ exp(−i

∫ t
0 ωk dt′) with ωk = c|k|/a(t′).

In terms of waves with + and × polarizations, we have that

hµκ =(2π)−3
∫ (

λ̂kêλ + µ̂kêµ
)

µκ
exp(ik · x) dk

where êλ = Rê+RT and êµ = Rê×RT are defined through rotations R from z-direction to the direction
of k of the elementary perturbations

ê+ =


0 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 0

 , and ê× =


0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0


We consider the monochromatic wave amplitudes λ̂k and µ̂k of the form

λ̂k =(2π)3[Λ0δ(k− k0) + Λ∗0δ(k + k0)]

µ̂k =(2π)3[M0δ(k− k0) + M∗0 δ(k + k0)]
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which we substitute into the expression for hhR(2)
µκ and apply space averaging, with the aid of the

Mathematica software, to get a rather simple result:

〈hhR(2)
00 〉 =

c2|k0|2
a6 (|Λ0|2 + |M0|2)

〈hhR(2)
0l 〉 =

c|k0|k0l
a5 (|Λ0|2 + |M0|2)

〈hhR(2)
lm 〉 =

k0lk0m

a4 (|Λ0|2 + |M0|2) l, m = 1, 2, 3

One can further consider the case of an homogeneous and isotropic distribution of gravitational
waves by angle-averaging the above formulas. This gives

〈hhR(2)
00 〉 =

2πc2

a6

∫ ∞

0
k4(nλ

k + nµ
k ) dk

〈hhR(2)
0l 〉 =〈hhR(2)

lm 〉 = 0 for l 6= m

〈hhR(2)
ll 〉 =

2π

3a4

∫ ∞

0
k4(nλ

k + nµ
k ) dk

where spectra nλ
k and nµ

k are defined via

〈λ̂kλ̂k′〉 =(2π)3nλ
k δ(k− k′)

〈µ̂kµ̂k′〉 =(2π)3nµ
k δ(k− k′)

where averaging now is over many periods of wave oscillations or, equivalently, wave phases.
By defining the gravitational wave energy density ρ [55] by

ρ =
c2

4Ga6

∫ ∞

0
k4(nλ

k + nµ
k ) dk, (A9)

that acts on the 00 component, the pressure P = c2ρ/3 as the contribution acting on the jj components,
and G as the Einstein constant. Equation (A8) for the 00 and the jj components (j = 1, 2 or 3)
become respectively

3ä
a
+ 8πGρ =0

− (aä + 2ȧ2)

c2 +
8πGa2P

c4 =0

By rearranging and using the fact that P = c2ρ/3 one get the usual expressions of the
Friedmann equations

ä
a
=− 8πGρ

3
= −4πG

3

(
ρ +

3P
c2

)
(A10)

ȧ2

a2 =
4πG

3

(
ρ +

3P
c2

)
=

8πGρ

3
(A11)

that can be rearranged further into the Friedmann equations of the form (1) and (2). These equations
show that our initial scaling ȧ ∼ h ∼

√
ä ∼ ε is justified. Also, Equation (A8) for the off-diagonal

components become 0 = 0 identities which mean that the averaged metric remains of FLRW type.
Keeping in mind the relation P = c2ρ/3, which is typical for radiation or ultra-relativistic matter,

we see that gravitational waves make the universe expand in a way that usual radiation would.
However, it remains to be seen how the expansion itself affects the gravitational waves. The crucial
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difference with usual (e.g., electromagnetic) radiation is that the waves are nonlinear and, therefore,
may interact with each other and thus modify the usual energy dilution process. To describe the
evolution of the gravitational waves we need an equation for the fluctuating field up to order O(ε2), i.e.,

R(0)
µκ + R(1)

µκ + R(2)
µκ − 〈R(0)

µκ + R(1)
µκ + R(2)

µκ 〉 = 0

Recall that R(0)
µκ = 〈R(1)

µκ 〉 = 〈ahR(2)
lm 〉 = 0, 〈aR(2)

µκ 〉 = aR(2)
µκ , and that R(1)

lm and ahR(2)
lm are given by

Equations (A6) and (A7) respectively. Then, this enables us to write the fluctuation equation as

1
c2 ḧlm −

1
a2∇

2hlm −
ȧḣlm
c2a

= 2
(
〈hhR(2)

lm 〉 − hhR(2)
lm

)
(A12)

for l, m = 1, 2, 3. If we neglect the right-hand side of (A12), we would arrive at the familiar equation
for the gravitational wave dilution found in [53,54], and by neglecting the sub-leading order in ε,
its solution is

hlm ∼ a(t) exp
(
−ic|k|

∫ t

0

1
a(t′)

dt′ + ik · x
)

which leads to the typical dilution law of radiation ρ ∼ 1/a4.
The right-hand side of Equation (A12) describes nonlinear wave–wave interactions.

Neglecting this term would be justified if the universe would be filled with a substance causing
it to expand fast, so that ȧ = O(1). The key point is that in vacuum space, considered here, ȧ and h
are of the same order of magnitude and, therefore, in general the right-hand side of Equation (A12) is
of the same order as the dilution term ∼ ȧḣlm, i.e., the timescales of the dilution and the wave–wave
interaction are comparable. Note that randomness of phases may weaken the wave–wave interactions,
as is the case for weak gravitational turbulence [14]. However, when the wave amplitudes are not
weak and/or the phases are not random, the wave–wave interaction term becomes important and
one has to seek a reasonable model closure for its description. This is precisely the critical balance
approach suggested in the main text.
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