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Abstract—A method for ECG compression, by imaging
the record as a 2D array and implementing a transform
lossy compression strategy, is advanced. The particularity of
the proposed transformation consists in applying a Discrete
Wavelet Transform along one of the dimensions and the
Discrete Cosine Transform along the other dimension. The
performance of the method is demonstrated on the MIT-

BIH Arrhythmia database. Significant improvements upon
the 1D version of the codec, and on benchmarks for 2D
ECG compression, are achieved.

I. INTRODUCTION

Cardiovascular diseases (CVDs) are the number one

cause of global death. The World Hearth Organization

has estimated that 17.9 million people died from CVDs

in 2016. Over three quarters of these deaths take place

in low and middle income countries. A major goal in the

Sustainable Development Agenda of the United Nations

is to reduce these figures one third by 2030. Within this

agenda, prevention and routine controls play a central role.

The electrocardiogram (ECG) is one of the most common

tests in the diagnosis of CVDs. It goes without saying that

techniques for safely compressing these types of data are

essential to the development and support of clinical health

care.

In a recent publication [1] a method for effective high

compression of ECG signals has been proposed. That

method, which is applied on a 1D record, was shown

to significantly improve upon benchmarks on the same

database [2]–[4]. In this Communication we extend the

compression technique in [1] to allow for its application

on a 2D array constructed out of 1D ECG signal. It

is demonstrated that, for the same level of distortion,

the average compression performance on the MIT-BIH

Arrhythmia database considerably improves in relation to

the 1D processing. The method is also shown to improve

upon previous state of the art benchmarks concerning 2D

ECG compression [5]. MATLAB software for reproducing

results and facilitating future comparisons has been made

available on a dedicated webpage [6].

II. PROPOSED CODING STRATEGY

A digital ECG signal represents a sequence of heart-

beats, each of which is characterized by a combination of

three graphical deflections, known as QRS complex, and

the so called P and T waves. 2D ECG compression relies

on this feature. Our approach operates on raw data and

consists of the following steps.

A) 1D to 2D conversion by segmentation and alignment

of heartbeats.

B) Application of a Discrete Wavelet Transform (DWT)

along the direction of the segmented beats and the

Discrete Cosine Transform (DCT) along the perpen-

dicular direction.

C) Quantization, organization, and entropy coding of the

information needed to recover the ECG record from

the compressed file.

A. 1D to 2D conversion

The conversion of the 1D ECG record into a 2D array

requires segmentation and alignment of heartbeats. We

implement this step as done in [5]. Firstly a QRS detection

algorithm is applied to locate the R peaks. Each of these

peaks is aligned with the previous one. Since the length

of the heartbeats are not uniform, a regular array A is

obtained by padding rows with zeros. The duration of the

heartbeats are stored as components of a vector, say h,

which has to be passed on to the decoder. Fig.1 illustrates

a 2D array of size 86 × 359 produced from a short 1D

ECG record consisting of 25,000 samples.

Fig. 1. 2D array produced by segmentation and alignment of heartbeats.

B. Transformation of the 2D array

This step introduces the distinctive feature of the pro-

posed codec. Instead of applying a 2D wavelet transform
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on the array A, as it is done in other 2D ECG compression

methods, e. g. [5], we apply a different transform in each

dimension. More precisely, we apply the 1D cdf97 DWT

on the rows of A and the 1D DCT transform on the

columns of A, i.e., we create the transformed array B

as follow:

B = Ŵ1rĈ1cA, (1)

where Ŵ1r indicates the 1D cdf97 DWT operating on

the rows of the array Ĉ1cA and Ĉ1c indicates the DCT

transform operating on the columns of the array A. The

convenience of performing this mixed transformation for

encoding purposes becomes clear from the graphs of

Fig. 2. The upper graph represents the absolute value of

the 2D cdf97 DWT of A and the lower graph the absolute

value of the array B as given in (1). The distribution of

most significant elements in B (lightest regions in the

lower graph) benefits the coding strategy described below.
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Fig. 2. Magnitude of the 2D cdf97 DWT (upper graph) and magnitude
of mixed transform given in (1) (lower graph).

C. Encoding

The encoding process begins by adopting a column-

major order to express the N ×M array B as a 1D vector

b = (b(1), . . . , b(NM)). Hereafter the encoding proceeds

as in [1]. The components of b are converted to integer

numbers by a mid-tread uniform quantizer as follows:

b∆(i) = ⌊
b(i)

∆
+

1

2
⌋, i = 1, . . . , NM. (2)

where ⌊x⌋ indicates the largest integer number smaller or

equal to x and ∆ is the quantization parameter.

The absolute value of the elements (2) are placed in

a smaller vector, say c = (c(1), . . . , c(K)), after the

elimination of zeros. The signs are encoded separately in

a vector s = (s(1), . . . , s(K)) using a binary alphabet (1

for + and 0 for -).

Assuming that the nonzero values in (2) occur at the

positions ℓi, . . . , ℓK , these indices are re-ordered in as-

cending order ℓi → ℓ̃i, i = 1, . . . ,K , which guarantees

that ℓ̃i < ℓ̃i+1, i = 1, . . . ,K . This induces a re-order in

the coefficients, c → c̃ and in the corresponding signs

s → s̃. Defining δ(i) = ℓ̃i − ℓ̃i−1, i = 2, . . . ,K the array

δ = (ℓ̃1, δ(2), . . . , δ(K)) stores the indices ℓ̃1, . . . , ℓ̃K
with unique recovery.

Finally the vectors c̃, s̃, δ, as well as the length of the

heartbeats h, are compressed using Huffman coding. The

additional numbers which have to be passed to the decoder

are: i) the quantization parameter ∆ ii) the mean value of

the 1D ECG record and iii) the size of the 2D array A.

III. 1D ECG SIGNAL RECOVERY

At the decoding stage, after reverting Huffman coding,

the locations ℓ̃1, . . . , ℓ̃K of the nonzero entries in the

transformed array, after quantization, are readily obtained.

This allows the recovery of the array as follows. i) Set

br(i) = 0, i = 1, . . . , NM and br(ℓ̃i) = (2s̃(i) −
1)c̃(i)∆, i = 1, . . . ,K . ii) Reshape the vector br as a 2D

array B
r of size N ×M . The array A

r is recovered from

B
r inverting the Ŵ1r and Ĉ1c transformations (c.f.(1)).

The re-conversion to the 1D signal say, f r, from the 2D

array A
r is straightforward using the heartbeat lengths in

h and the mean value signal.

The achieved compression ratio CR, which is defined

as

CR =
Size of the uncompressed file.

Size of the compressed file
(3)

depends on the required quality of the recovered signal.

This is assessed with respect to the standard PRD metric

as given by

PRD =
‖f − f

r‖

‖f‖
× 100%, (4)

where, f is the original signal, f r is the signal reconstructed

from the compressed file and ‖ · ‖ indicates the 2-norm.

IV. NUMERICAL RESULTS

For all the tests the full MIT-BIH Arrhythmia database

[7], which contains 48 ECG records, is used. Each of

these records consists of N = 650, 000 11-bit samples

at a frequency of 360 Hz. At the QRS detection step

a MATLAB implementation [8] of the Pan Tompkins

algorithm was applied [9].

The comparison with 1D compression is realized with

respect to the 1D version of the strategy adopted here,

which has been shown in [1] to over-perform previously

reported results [2]–[4]. Table I produces comparisons for

PRD in the range [0.4 1]. The range [0.4 0.7] corresponds

to very low level distortion of the recovered signal. For

PRD < 0.4 the proposed coding strategy is not effective.

Nonetheless, it is worth noting that, because the approach

is applied on raw data, requiring PRD < 0.4 implies

to force the reproduction of the small high frequency
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noise present in all the records. As discussed in [1], the

decomposition of the cdf97 DWT in 4 levels produces the

best 1D compression results on the MIT-BIH Arrhythmia

database. In 2D, however, results improve by decomposing

into 6 levels. Table I shows the mean value CR and

corresponding standard deviation (std) yielded by the 1D

and 2D methods. In both cases the quantization parameter

has a different value for each record so as to achieve, for

every record in the database, the sharp values of PRD
given in the first row of Table I. Since the compressibility

of the records is not uniform, fixing the same PRD for

all the records generates large dispersion in CR. This is

reflected in the std values.

TABLE I
MEAN VALUE COMPRESSION RATIOS FOR PRD VALUES SHARPLY

REPRODUCED BY EVERY RECORD IN THE DATABASE.

PRD 1.00 0.90 0.80 0.70 0.60 0.50 0.40

CR (1D) 42 39 35 32 28 24 19
std 12 11 10 9 8 7 5
CR (2D) 85 73 61 50 39 29 20
std 50 42 34 28 21 15 10

Table II produces comparison with results in Table

VIII of [5], for the whole database with reconstruction

quality in our range of interest. The method in [5]

employs a modified set partitioning in hierarchical trees

(SPIHT) algorithm, which is shown to produce superior re-

sults than other image compressions techniques, including

JPEG2000. The reported values of PRD are said to have

been calculated after subtraction of a baseline of 1024 to

the original data. The corresponding values are indicated

here as PRDB. The notation PRD is kept to indicate the

PRD with respect to raw data.

TABLE II
COMPARISON WITH THE RESULTS IN TABLE VII OF [5] FOR THE

WHOLE DATABASE

Method PRDB std CR std PRD std

[5] 6.82 – 30 – – –
1D 6.82 0.01 31 14 0.77 0.41
2D 6.82 0.01 58 63 0.77 0.41

[5] 3.81 – 20 – – –
1D 3.81 0.01 19 10 0.43 0.23
2D 3.81 0.01 26 30 0.43 0.23

V. REMARKS AND CONCLUSIONS

The numerical tests demonstrate that the extension to

operate in 2D of the 1D compression strategy proposed

in [1] yields, on the whole, very significant improve-

ment in compression power. A distinctive feature of the

2D approach is that, fixing quality, there is very large

dispersion in the values of CR. This is due to the fact

that compressing in 2D is greatly beneficial for records

of very regular morphology. Only some of the records

in the MIT-BIH Arrhythmia database possess this trait.

Fig. 3 shows the histogram of CR for the 2D approach

and PRDB = 6.82.
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Fig. 3. Histogram of the CR obtained with the 2D approach correspond-
ing to PRDB = 6.82 for every record in the database.

We are aware that the calculation of PRD subtracting

a baseline of 1024 adopted in [5] has generated confusion

leading to propagation of unfair comparison with values

of PRD without subtraction of baseline. Table II gives the

two metrics. The quantization parameter ∆, which controls

quality, has been set differently for each record in oder to

reproduce the sharp values of PRDB as those reported in

[5]. The values of std are not reported in that publication.

The benefit of 2D compression comes at the expense

of some additional computation. With respect to the 1D

implementation there is an extra time for QRS detection

and for converting the 1D array into a 2D one. Further-

more, the Huffman coding step becomes more relevant in

2D compression than it is in 1D. However, as shown in

Tables I and II, the improvements in compression results

justify the computational overhead.
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