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ABSTRACT

Due to their unique dispersion and nonlinear properties, chalcogenide suspended-core fibers, characterized by a
few micrometer-sized core suspended between large air-holes by few small glass struts, are excellent candidates
for mid-infrared applications. In the present study the influence of the main cross-section characteristics of the
chalcogenide suspended-core fibers on the dispersion curve and on the position of the zero-dispersion wavelength
has been thoroughly analyzed with a full-vector modal solver based on the finite element. In particular, the design
of suspended-core fibers made of both As2S3 and As2Se3 has been optimized to obtain dispersion properties
suitable for the supercontinuum generation in the mid-infrared.

Keywords: Microstructured fibers, Dispersion engineering, Supercontinuum generation, Nonlinear fibers, Chalco-
genide optical fibers, Mid-infrared sources

1. INTRODUCTION

The Suspended-Core Fiber (SCF) is one of the most peculiar types of photonic crystal fibers, which has already
found several applications, spanning from biological sample recognition,1, 2 explosive detection,3 strain and tem-
perature measurements,4 nonlinear frequency conversion5–7 and SuperContinuum (SC) generation.8, 9 All these
applications exploit the unique properties of SCFs, which stem from the geometrical structure of the fiber cross-
section. SCFs are characterized by a small glass core suspended between large air-holes by few, typically 3 to 6,
submicrometer-scale bridges. The core shape, large air-filling fraction and the huge numerical aperture provide
very high light intensity in the core, which yields to strong nonlinear interaction, and cause a significant fraction
of the power to be carried in the evanescent tails of the guided-mode field, allowing its exploitation for interaction
with gases or liquids which can be infiltrated into the cladding air-holes. Furthermore, the strong dependence of
the light confinement characteristics on both wavelength and core size have a significant impact on the dispersion
profile, which can be significantly altered with respect to the one of the host material.
Among non-silica glasses, chalcogen element-based ones have recently attracted great attention because of their
potential applications in telecommunications, such as signal regeneration,10 wavelength conversion in the Infrared
(IR)11, 12 and mid-IR SC generation.13–15 Chalcogenide glasses are based on a mixture of chalcogen elements,
that is sulphur, selenium, or tellurium, and other elements, such as arsenic, germanium, antimony, or gallium.
Compared to silica glasses, they offer extraordinary nonlinear characteristics, i.e. their nonlinear refractive index
can be 800 times higher than that of silica fiber,10 low two-photon absorption,16 and excellent transmission win-
dow that extends far into the IR spectral region. Chalcogenide glasses have also long material Zero Dispersion
Wavelength (ZDW) compared to silica, which hinders their application in mid-IR nonlinear optics. Indeed, their
large normal group velocity dispersion at telecom wavelengths is responsible of a quick degradation of short
pulses,17 while the long ZDW does not allow anomalous dispersion pumping with conventional sources for broad
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Figure 1. (a) Cross-section of the considered chalcogenide SCF with 3 bridges. Detail of the core of the SCF with (b) 5
bridges and (c) 6 bridges.

band SC generation.
Effective tailoring of the dispersion properties of chalcogenide fibers to the need of specific applications is there-
fore mandatory to be able to develop mid-IR optical devices. Thanks to the aforementioned properties, SCFs
appear to be a valuable solution to this task. In this paper the dispersion properties of chalcogenide SCFs
based on As2S3 bulk glass have been thoroughly analyzed by taking into account the effects of all the main
design parameters, such as core radius and strut number and thickness. Moreover, SCFs made of both As2S3
and As2Se3 have been designed with ZDW around 2000 nm and 2800 nm in order to be exploited for the SC
generation in the mid-IR. To this aim, a custom full-vector modal solver based on the finite-element method has
been employed to calculate SCF guiding, dispersion and nonlinear properties.18

2. SCF NUMERICAL MODELING

Fig. 1(a) shows the cross-section of the more widespread SCF, that is the one with 3 air-holes in the cladding,
separated by the same number of thin glass bridges, which create the core at their intersection. This structure
is considered the starting point for the present study, since its main geometric characteristics have been changed
in the numerical analysis, in order to evaluate their influence on the guiding properties and, consequently, on the
dispersion parameter curve. The core radius rc, which is the radius of the largest circumference inscribed into the
core, the bridge thickness t and their number have been modified in the SCFs. In particular, fibers with 5 and 6
glass bridges in the cross-section, shown in detail in Fig. 1(b) and (c), respectively, have been taken into account.
In order to design technologically-feasible chalcogenide fibers or, at least, structures that can be obtained by
tapering over lengths of several centimeters,8, 19, 20 values of rc in the range of 0.5 μm–1.5 μm and of t between
0.15 μm and 0.45 μm have been considered for the simulations. The length of the struts has been fixed to about
20 μm, in order to prevent leakage of the fundamental mode into the cladding. Finally, two chalcogenide glasses,
that is As2S3 and As2Se3, providing the same good properties in terms of infrared transparency, nonlinearity
and drawing capability,19 but different contribution in terms of material dispersion, have been chosen for the
numerical analysis. Notice that the refractive index of the chalcogenide glasses has been calculated according to
the Sellmeier equation:

n2(λ) = 1 +
∑

i

Aiλ
2

λ2 − λ2
i

. (1)

Different values of the coefficients Ai and λi have been used for As2S3
21 and As2Se3.

22

A full-vector modal solver based on the finite-element method18 has been applied to calculate the SCF funda-
mental mode in the wavelength range between 1000 nm and 3500 nm. In order to investigate the nonlinear
properties of the SCFs designed for the mid-IR SC generation, the nonlinear coefficient γNL has been evaluated
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Figure 2. Dispersion parameter versus wavelength of the SCFs without bridges, with 3 ideal-shaped bridges and 3 real-
shaped bridges of thickness t = 0.45 µm, and core radius of (a) 0.5 µm, (b) 0.7 µm, (c) 0.9 µm, (d) 1.1 µm, (e) 1.3 µm
and (f) 1.5 µm.

according to this formulation:

γNL =
2π

λ

n2,NL

Aeff,NL
, (2)

with

Aeff,NL =
| ∫S Ē × H̄∗ · ẑdA |2∫
S | Ē × H̄∗ |2 ·ẑdA (3)

being S the glass domain in the SCF cross-section,23 and n2,NL the nonlinear refractive index, equal to 4.2·10−18

m2/W and 1.5·10−17 m2/W for As2S3
24 and As2Se3, respectively. Notice that the equation neglects the contri-

bution to overall nonlinearity of air, which is 5 orders of magnitudes lower than the of the chalcogenide glasses.
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Figure 3. Dispersion parameter versus wavelength of the 3-bridge SCFs with strut thickness t of (a) 0.15 µm, (b) 0.25 µm,
(c) 0.35 µm, and (d) 0.45 µm, and different values of the core radius rc.

3. ENGINEERING OF SCF DISPERSION PROPERTIES

The study of the influence of the bridge presence on the SCF dispersion properties represents the first step of this
numerical analysis. To this aim, the dispersion parameter curve of As2S3 SCFs with 3 bridges 45 μm wide has
been calculated for different rc values, and compared in Fig. 2(a)-(f) with the one of a nanowire with the same
radius, corresponding to the microstructured fiber core or, similarly, to the SCF without the struts. Moreover,
the geometric characteristics of the region where the bridges connect to the core have been changed in order to
analyze the role of the core shape on the SCF dispersion properties. In particular, SCFs with “real” bridges,
that is linked to the core by parabolic-shaped connectors like in the fabricated fibers, as shown in Fig. 1(a), have
been studied together with SCFs with “ideal” bridges, that is connected to the core in an abrupt way, without
any transition region. Notice that with such a strut geometry, a smaller glass area is obtained for the core, for
a fixed rc value, since all the interconnecting regions are missing.
Simulation results reported in Fig. 2 demonstrate that the bridge presence strong alters the SCF dispersion curve,
especially when the core area is small. For example, as shown in Fig. 2(a), when rc = 0.5 μm, the D parameter
curve of the nanowire has a significantly higher slope, both positive and negative, with respect to the one of
the SCF with “real” bridges. In particular, the maximum dispersion value reached is about 1425 ps/(km·nm)
around 2450 nm and about 136 ps/(km·nm) around 2075 nm for the nanowire and the “real” SCF, respectively.
The difference in the dispersion properties becomes lower and lower as the core radius becomes larger, since
the chalcogenide glass core is large enough to completely contain the fundamental mode field, which is tightly
confined in the high refractive index region at the center of the fiber cross-section, independently form the bridge
presence. Notice that, as rc increases, the dispersion curves have almost the same slope and are overlapping
at the shortest wavelengths in the considered range. For the largest core radius, that is rc = 1.5 μm, the
difference between the maximum D parameter values is only about 110 ps/(km·nm) at 3500 nm, being about
220 ps/(km·nm) for the chalcogenide glass nanowire. The fundamental mode field confinement in the As2S3 core
can explain also the behaviour of the dispersion curve of the SCFs with “real” bridges as a function of the core
radius rc. In particular, the influence of the core dimension on the fiber dispersion properties becomes negligible
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Figure 4. Dispersion parameter versus wavelength of the 5-bridge SCFs with strut thickness t of (a) 0.15 µm, (b) 0.25 µm,
(c) 0.35 µm, and (d) 0.45 µm, and different values of the core radius rc.

as the chalcogenide glass core enlarges, and for rc ≥ 0.9 μm all the SCF dispersion curves are almost overlapping
in all the considered wavelength range. It is important to underline that when the core radius is large enough
to provide a tight field confinement, with negligible leakage in the struts, the dispersion properties of the fibers
with “ideal” bridges are very similar to the ones of the nanowire, since, for a certain rc value, the two guiding
structures have exactly the same core area. On the contrary, a slightly larger core region is provided by the
parabolic-shaped interconnecting regions in the fibers with “real” struts, thus causing lower D parameter values,
especially at longer wavelengths, for rc > 1.1 μm. For lower rc values, since there are significant fundamental
mode field tails in the struts, the dispersion curves of the structures with bridges, regardless of their shape, are
more similar, and a stronger difference exist with respect to the nanowire properties.
After this preliminary study, the As2S3 SCF with 3 “real”-shaped bridges has been considered as the starting
point for a throughout analysis of the influence of the main cross-section characteristics on the fiber dispersion
properties. Simulation results obtained by changing the strut thickness t for different rc values are reported in
Fig. 3, 4 and 5 for SCFs with 3, 5 and 6 bridges, respectively. It is important to underline that, bearing in
mind the technological feasibility of the designed fibers, thinner bridges have been considered only for fibers with
smaller core. For example, struts with t = 0.15 μm have been chosen only when rc is equal to 0.5 μm or 0.7 μm,
regardless of the bridge number.
By comparing the dispersion curves shown in Fig. 3(a)-(d), it is possible to notice that all the 3-bridge SCFs
with the smallest core, that is rc = 0.5 μm, have two ZDWs in the considered wavelength range. In particular,
the first one, called λZDW,1, is around 1500 nm, independently to the strut width. It is important to underline
that in these small-core fibers the thickness t of the glass bridges has a strong impact on the behavior of the
dispersion parameter as a function of the wavelength. In particular, wider struts cause an overall decrease of D
parameter values. For example, when rc = 0.5 μm, the maximum D value is over 300 ps/(km·nm) for the SCF
with t = 0.15 μm, and only 130 ps/(km·nm) for the one with t = 0.45 μm. More interestingly, in the fibers with
rc = 0.5 μm the increase of the bridge thickness causes the distance between the two ZDWs to narrow, mostly
by blue-shifting the second ZDW, called λZDW,2. As a result, λZDW,2 = 2763 nm when t = 0.45 μm, while it is
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Figure 5. Dispersion parameter versus wavelength of the 6-bridge SCFs with strut thickness t of (a) 0.15 µm, (b) 0.25 µm,
(c) 0.35 µm, and (d) 0.45 µm, and different values of the core radius rc.
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Figure 6. (a) Dispersion parameter versus wavelength of the two chalcogenide glasses As2S3 and As2Se3. (b) Dispersion
curves of the 3-bridge SCFs, made of As2S3 (solid line) and As2Se3 (dashed line), designed to have the ZDW around
2000 nm and 2800 nm.

3489 nm for t = 0.15 μm. Simulation results reported in Fig. 3 demonstrate also that, as the chalcogenide glass
core enlarges, the dispersion curves of the 3-bridge SCFs red-shift and the anomalous dispersion regime becomes
wider. Moreover, the dispersion curve is progressively flattened and λZDW,2 is shifted outside the considered
wavelength range. The influence of the bridge thickness is greatly reduced in the SCFs with larger core, and no
significant effects are observed when rc ≥ 0.9 μm.
A further degree of freedom for the SCF dispersion engineering is provided by the choice of the number of bridges,
which influences the shape of the core and, consequently, the confinement of the fundamental mode field. Looking
at the results reported in Fig. 4(a)-(d) and in Fig. 5(a)-(d) for fibers with 5 and 6 bridges, respectively, it is
possible to notice that the most significant effect due to the increased number of struts is that their thickness
has a stronger impact on the dispersion properties, especially if small cores are considered. For example, by
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Table 1. Main characteristics of the 3-bridge SCFs, made of As2S3 and As2Se3, designed for pumping at 2000 nm and
2800 nm to obtain mid-IR SC generation.

As2S3

rc [μm] t [μm] ZDW [nm] λpump [nm] γNL at λpump [1/(W·km)]

1 0.35 1935 2000 4624

2.5 0.7 2825 2850 595

As2Se3

rc [μm] t [μm] ZDW [nm] λpump [nm] γNL at λpump [1/(W·km)]

0.58 0.35 1982 2000 36460

1.5 0.35 2855 2800 5625

comparing the SCFs with 3 and 5 bridges and rc = 0.5 μm, it is clear that higher D parameter values, up to
400 ps/(km·nm), can be achieved with t = 0.15 μm in the fiber with more struts. The situation is reversed for
the smallest-core designs with large struts, being, for example, the maximum dispersion parameter value about
130 ps/(km·nm) in the 3-bridge SCF with t = 0.45 μm and less than 50 ps/(km·nm) for the 5-bridge fiber with
the same geometric parameters. Furthermore, in the smallest-core SCFs with 5 struts the change of t has a
stronger effect on λZDW,1, which is significantly red-shifted by the increase of the bridge width, while the first
ZDW is almost constant in the SCFs with 3 bridges. A larger dispersion slope is also generally observed, yielding
to a narrowing of the distance between the two ZDWs, down to about 570 nm for the SCF with rc = 0.5 μm
and t = 0.45 μm. The effect of the bridge thickness gradually fades out with the increase of the core size, and
becomes negligible for rc > 0.9 μm, as already observed for SCFs with fewer struts. However, it is important
to underline that also for these large core radius, the number of bridges in the cladding is almost unimportant.
Finally, for what concerns 6-bridge SCF dispersion properties, results show that, for small core radius, that is
for fibers whose dispersion curve is still influenced by the strut thickness, the dispersion parameter values are
slightly lower than in the 5-bridge counterparts, for any given value of t. It is important to notice that, by
choosing rc = 0.5 μm and t = 0.45 μm, the SCF with 6 bridges operates in normal dispersion regime in all
the considered wavelength range. Again, the core widening causes the effect of t on the dispersion properties to
become less significant, as the curves converge on those already found for SCFs with 3 and 5 bridges.

4. SCF DESIGN FOR MID-IR SC GENERATION

Simulation results of the thorough analysis on dispersion properties of As2S3 SCFs presented in the previous
Section provide important dispersion engineering guidelines which have been exploited to design nonlinear chalco-
genide fibers suitable for SC generation in the mid-IR. In particular, the core radius and the bridge thickness of
SCFs with 3 bridges, which are the easiest to fabricate, have been properly changed to obtain a ZDW around the
wavelengths of 2000 nm and 2800 nm, which can be both considered for efficient pumping for the SC generation.
Besides As2S3, another chalcogenide glass, that is As2Se3, has been taken into account, in order to increase the
degrees of freedom for the dispersion engineering. As shown in Fig. 6(a), which reports the two glass dispersion
curves in the wavelength range between 1000 nm and 5000 nm, the latter chalcogenide material provides a ZDW
which is longer than the As2S3 one, which is around 4900 nm. As a consequence, it is necessary to significantly
blue-shift the As2Se3 ZDW towards the desired wavelength range by introducing a strong waveguide dispersion
component through the SCF design, which is obtained, according to previous results, with a reduction of the
core radius.
Fig. 6(b) reports the dispersion curves of the SCFs, made of both As2S3 and As2Se3, which have been designed
to have a proper ZDW for SC generation pumping around 2000 nm and 2800 nm. The main characteristics of
the proposed fibers are summarized in Tab. 1. It is important to underline that, as expected, both the As2Se3
fibers have a core which is smaller than the one of the SCFs made of As2S3. Moreover, larger core fibers provide
a longer ZDW, regardless of the chalcogenide glass chosen. Finally, notice that all the designed SCFs offer a
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high nonlinear coefficient γNL, that is between 595 1/(W·km) and 36460 1/(W·km), so the enhanced nonlinear
properties of the proposed chalcogenide fibers can be successfully exploited for the SC generation.

5. CONCLUSION

The dispersion properties of chalcogenide suspended-core fibers have been thoroughly analyzed by means of
a full-vector modal solver based on the finite-element method. After showing the importance of taking into
account the glass struts for the numerical modeling of the guiding characteristics of these microstructured fibers,
the possibility to widely engineer their dispersion curve by acting on the core radius, and on the number and
thickness of the glass bridges has been investigated. A wide range of geometric parameter values have been
considered, in order to prove guidelines for the design of highly nonlinear suspended-core fibers to operate
in several applications relying on different pumping sources. Finally, the fiber design has been optimized in
order to obtain proper dispersion properties around 2000 nm and 2800 nm for efficient pumping for mid-IR
supercontinuum generation.
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