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ABSTRACT 

This study provides innovative forecasts of the probabilities of certain scenarios of tourism 

demand instead of its volume, because the former provide supplemental information about 

uncertainty. The scenarios of interest are constructed in relation to tourism growth and 

economic growth. The probability forecasts based on these scenarios provide valuable 

information for destination policymakers. The time-varying parameter panel vector 

autoregressive (TVP-PVAR) model is adopted for scenario forecasting. Both the accuracy rate 

and the Brier score are used to evaluate the forecasting performance. A global set of 25 tourism 

destinations is empirically examined, and the results confirm that the TVP-PVAR model with 

a time-varying error covariance matrix is generally a promising tool for forecasting. Our study 

contributes to tourism forecasting literature in advocating the use of scenario forecasting to 

facilitate industry decision-making in situations wherein forecasts are defined by two or more 

dimensions simultaneously. In addition, it is the first study to introduce the TVP-PVAR model 

to tourism demand forecasting. 
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INTRODUCTION 

Forecasting tourism demand is vital to tourism business planning and policy making and has 

received increasing attention from industry practitioners in recent years (Li & Wu, 2019). The 

current practice of tourism demand forecasting is dominated by point forecasting (Wu, Song, 

& Shen, 2017), which often provides an expected average outcome for future development; 

however, tourism demand is susceptible to volatile market conditions, and relevant 

stakeholders may need various types of forecasts to make better informed decisions (Hall, 2010; 

Lewis & Pain, 2015; Ringbeck & Pietsch, 2013). It is, therefore, increasingly important to 

understand the degree of variability or uncertainty that surrounds point forecasts (Greenwood-

Nimmo, Nguyen, & Shin, 2012). To this end, interval forecasting is desirable because it 

predicts a likely range of future outcomes, thus allowing for contingency planning 

(Christoffersen, 1998). Interval forecasting has been applied in tourism and hospitality studies, 

such as those by Athanasopoulos, Hyndman, Song, and Wu (2011), Kim, Song, and Wong 

(2010), Kim, Wong, Athanasopoulos, and Liu (2011), and Li, Wu, Zhou, and Liu (2019). 

Interval forecasts provide a range of outcomes instead of a single point of forecasting for future 

tourism demand at a preset confidence level/probability (Li et al., 2019). 

Although interval forecasts are considered to be an effective supplement to point 

forecasts because they provide information about the degree of variability or uncertainty of the 

forecasts (Li et al., 2019), they cannot describe the forecasted likelihood of predefined 

outcomes in which decision makers are interested. In reality, industry practitioners and 

policymakers may be concerned about certain scenarios that are closely related to their 

objectives and operation strategies (e.g., if the future inflation rate falls within the 2%–5% 

interval) and may therefore need forecasts regarding the possibilities of these scenarios to plan 

ahead and achieve optimal results. Scenario forecasting allows forecasters to specify the 

threshold values that define events of interest so that the probability of the specified events can 



3 

 

be generated accordingly. Even more importantly, scenario forecasting allows an event of 

interest to be defined on the basis of the values of more than one variable simultaneously, such 

as a joint event of tourism growth acceleration and gross domestic product (GDP) growth 

deceleration. This enables researchers and practitioners to construct complicated scenarios with 

multiple dimensions. As such, scenario forecasting is a promising tool for tourism researchers 

to explore any range of outcomes in relation to future tourism demand (e.g., gauging the 

possibility of a recession in tourism demand) and investigate the policy implications of those 

outcomes. 

 Thus, this study extends the current tourism forecasting literature by conducting 

probabilistic forecasting of global tourism demand in various scenarios. Four scenarios are 

developed to jointly consider the variables of tourism growth and economic growth. These two 

variables are adopted for scenario construction because the information they provide is 

important to market practitioners, and they correlate and interact with each other in an 

economic system. The values of the predicted probabilities of the scenarios provide insights 

into the degree of confidence/risk associated with different decisions. With the inclusion of 

these two variables, the following four scenarios can be generated: tourism growth acceleration 

and economic growth acceleration, tourism growth acceleration and economic growth 

deceleration, tourism growth deceleration and economic growth acceleration, and tourism 

growth deceleration and economic growth deceleration. The events of interest are based on 

various rates of tourism growth and economic growth. We identify an effective approach to 

obtaining an accurate probability using a theoretically sound modeling technique—time-

varying parameter panel vector autoregressive (TVP-PVAR) modeling. The study’s results will 

provide policymakers and tourism businesses with an outlook regarding the potential 

developments in major tourism markets while accounting for various uncertainties. 
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 The significance of this study is threefold. First, it introduces probabilistic scenario 

forecasting to the tourism literature as an effective supplement to point or interval forecasts 

when policymakers and industry practitioners are interested in the probability of a certain 

scenario happening. Second, from a methodological perspective, scenarios that jointly consider 

more than one variable are generated, and a suitable hybrid model—the TVP-PVAR model—

is applied and examined accordingly. The PVAR model is an effective approach to capturing 

the cross-sectional effects in one system and is therefore most suitable to our scenario setting, 

whereas the TVP technique enhances forecasting accuracy performance owing to its time-

varying features and empirical evidence. Therefore, this hybrid model is expected to achieve 

good forecasting performance. Third, unlike the traditional TVP model, both the coefficients 

and the covariance matrix of errors are allowed to vary over time in the TVP settings of this 

study, and the constant–coefficient models and the TVP models with different time-varying 

settings are examined separately. This sheds new light on the application of the TVP model in 

tourism forecasting. 

 This study is organized as follows. The following literature review section discusses 

relevant studies on tourism forecasting and scenario forecasting. The methods section presents 

discussions of the PVAR model, TVP-PVAR model, performance evaluation of scenario 

forecasting, scenario setting, and data. The empirical results section reports and compares the 

forecasting performance of the various models. The last concluding remarks section concludes 

the study and suggests directions for future research. 

 

LITERATURE REVIEW 

Tourism demand forecasting 

Demand modeling and forecasting represent a prime area of tourism research. It has undergone 

remarkable developments since the 1990s, especially in terms of advances in research methods. 
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 As widely reviewed (Song & Li, 2008; Wu et al., 2017), statistical methods of tourism 

demand forecasting generally fall into three broad categories, as follows. (1) Non-causal time 

series methods, such as exponential smoothing models (e.g., double exponential smoothing and 

Holt–Winters exponential smoothing), autoregressive moving average models (e.g., 

autoregressive integrated moving average and seasonal autoregressive integrated moving 

average), and structural time series models, some of which are often used as benchmark models 

for accuracy comparison. (2) Econometric methods, such as error correction models, 

autoregressive distributed lag models, vector autoregressive models, and almost-ideal demand 

system (AIDS) models. (3) Artificial intelligence-based methods, such as the artificial neural 

network model, support vector regression, the rough set model, and fuzzy system methods. 

 Econometric methods have an advantage over other methods in capturing the causal 

relationships between tourism demand and a wide range of determinants. These methods allow 

businesses and policymakers to formulate strategies and policies that target certain 

determinants. A recent development in econometric methods is the global vector autoregressive 

(GVAR) model (Pesaran, Schuermann, & Weiner, 2004), which can account for the 

endogeneity within a large set of cross-sectionally interdependent variables while overcoming 

the overparameterization issue or “curse of dimensionality” (Bussière, Chudik, & Sestieri, 

2009). This model has been applied in macroeconomic forecasting (e.g., Favero, 2013; 

Greenwood-Nimmo et al., 2012; Pesaran, Schuermann, & Smith, 2009). In the context of 

tourism research, the GVAR model presents opportunities to study the global interdependence 

of tourism markets, in which countries share a certain level of co-movement with respect to 

their macroeconomic characteristics and tourism demand (Assaf, Li, Song, & Tsionas, 2019; 

Cao et al., 2017). Another highly relevant development in econometric methods is the PVAR 

model, which allows multiple variables to be treated as endogenous simultaneously. This 

model can also be effectively used with a relatively short time-series dimension because of the 
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efficiency gained from the cross-sectional dimension that allows the inclusion of fixed effects 

to capture time-invariant components (Grossmann, Love, & Orlov, 2014; Lof & Malinen, 

2014). In view of the popularity of the Bayesian approach in the VAR literature, Canova and 

Ciccarelli (2004) introduced the Bayesian version of the PVAR model and showed that their 

approach is competitive and improves on existing univariate and simple Bayesian VAR models. 

In the field of tourism research, Mahadevan and Suardi (2019) applied the PVAR model to 

measure the effects of tourism growth on poverty reduction. Still, the PVAR model has room 

for wider use. 

 A recurrent limitation of econometric models is predictive failure, which is normally 

associated with the structural instability of the model; that is, the parameters of the demand 

model vary over time (Song, Witt, & Li, 2009, p. 138). One reason for structural instability is 

the underlying structural change in the data-generating process, which may be related to 

important social, political, and economic changes (Song, Witt, & Li, 2009, p. 138). To account 

for underlying changes embedded in the data, the time-varying parameter (TVP) model, a non-

linear modeling technique, has been applied in tourism research. To assess the effects of the 

global economic crisis and swine flu pandemic on the demand for U.K. tourism, Page, Song, 

and Wu (2012) constructed a TVP model to yield ex post forecasts of demand under no-impact 

and economic-impact scenarios and estimated the effects of the events by comparing the two 

scenarios. The TVP model is also used in combination with other models to achieve superior 

performance. Li, Song, and Witt (2006) developed a TVP error correction AIDS model that 

outperforms its fixed-parameter counterparts in the overall evaluation of demand forecasts. 

 In view of the TVP model’s advantages, Koop and Korobilis (2019) developed the 

TVP-PVAR model and demonstrated its superiority to alternative methods for large vector 

autoregressions in the context of forecasting inflation rates in the eurozone. However, 

applications of this model in tourism research are lacking. 
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Scenario forecasting 

Scenario forecasting can be divided into two main types. In the first type, tourism demand is 

forecast given certain conditions/scenarios, such as optimistic or pessimistic scenarios. For 

example, Page et al. (2012) separated the impacts of swine flu pandemic and economic crisis 

on the demand for U.K. tourism by forecasting tourism demand under two scenarios: a no-

impact scenario and an economic crisis impact scenario. This type of scenario forecasting still 

belongs to the scope of point forecasting. The second type of scenario forecasting involves the 

prediction of the probability of a given scenario/condition, and it belongs to the scope of 

probabilistic forecasting. This study focuses on the second type of scenario forecasting, i.e., 

probabilistic scenario forecasting.  

 

A point forecast can be fairly accurate if the data correspond to a period of stability, but it alone 

cannot convey the degree of variability or uncertainty, which has been increasingly recognized 

as important information by academics and practitioners (Garratt, Lee, Pesaran, & Shin, 2003; 

Greenwood-Nimmo et al., 2012). To mitigate this limitation of point forecasts, one can use 

interval forecasts, which generates forecasting intervals given a preset confidence 

level/probability. Interval forecasts have two advantages over single forecasts (Li et al., 2019): 

(i) they provide information on both the central tendency of the forecast and the future variation 

at a certain confidence level, and (ii) they can generate different forecast intervals based on 

different confidence levels preset by the forecasters, which helps with policy and strategy 

formulation based on those confidence levels. 

In addition to the advantages provided by point and interval forecasts, probabilistic 

scenario forecasting can offer supplemental information from a new perspective by generating 

the probability that a predefined outcome happens. Thus, probabilistic scenario forecasting may 
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be particularly useful when the decision makers are interested in the possibility of a certain 

scenario happening in the future. Scenario forecasting has three main advantages. First, 

forecasters can decide the scope of the event to be forecast by specifying the threshold values 

that define an event of interest. Second, scenario forecasting allows an event of interest to be 

defined based on the values of two or more variables simultaneously, in which a joint event 

can be defined, and compute its possibility. This enables researchers and practitioners to 

construct complicated scenarios with multiple dimensions. Third, the results of scenario 

forecasting are very straightforward and are more likely to be understood and adopted by 

decision makers. 

Closely related to scenario forecasting, scenario planning has been adopted as a 

research framework in the field of tourism (e.g., Moriarty, 2012; Page et al., 2010). It argues 

that nothing in the future is certain or predictable, especially in view of the growing recognition 

that global tourism is operating in turbulent times. Global issues such as climate change, the 

use of oil as a fuel, and terrorism inevitably create great uncertainties for the tourism sector 

(Page et al., 2010). As such, credible sense-making can be achieved using ranges of scenarios 

that encompass possible extrema that conceivably and traceably arise from the current 

operating environment (Moriarty, 2012). Although scenario planning is considered important, 

scenario forecasting, as the foundation for scenario planning, has received less attention from 

academics and deserves further examination under different scenario forecasting settings.  

 

Scenario settings 

 

This study aims to examine the performance of scenario forecasting using a 

theoretically sound forecasting method, in which a two-dimensional scenario is developed that 

jointly considers tourism growth and economic growth at the destination. These two variables 
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are chosen for scenario settings for three reasons. First, tourism growth and economic growth 

are both important indicators for decision-making by market practitioners, and a large body of 

empirical research has verified that these two variables are highly correlated [e.g., Brida, 

Cortes-Jimenez and Pulina (2016), Nunkoo et al. (2019), and Fonseca and Rivero (2019)]. 

Therefore, compared with the examination of two variables independently and separately, 

scenario settings based on these two variables can capture their interaction effects and provide 

industry practitioners with more comprehensive information on the tourism market. This 

finding is also consistent with that of van Doorn (1986), who stated that tourism development 

and its outside societal influences should be embedded within a scenario.  

Second, comparing the growth rates of the two variables provides important 

information for strategy formulation and resource allocation at the destination. For example, it 

may be wise to invest in tourism rather than another industry when the scenario of tourism 

demand acceleration and economic growth deceleration is forecast to happen with the highest 

probability, but not when this scenario is forecast with the lowest probability. 

Third, in scenario forecasting that considers both economic growth and tourism 

growth, the values of the predicted probabilities provide practitioners with the level of risk 

associated with each decision. For example, it is less risky to invest aggressively in the tourism 

industry if the scenario of tourism demand acceleration and economic growth acceleration is 

forecast with a high probability, such as 90%. However, the risk associated with this decision 

will increase when this scenario is forecast to have a lower probability.  

For the abovementioned reasons, the scenarios examined in this study are set 

considering both economic growth and tourism growth. In particular, four scenarios are 

considered for scenario forecasting: tourism growth acceleration and economic growth 

acceleration, tourism growth acceleration and economic growth deceleration, tourism growth 
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deceleration and economic growth acceleration, and tourism growth deceleration and economic 

growth deceleration.  

Given the volatile market conditions faced by the tourism sector worldwide, 

scenario forecasting is an appealing tool for tourism researchers to explore possibilities in 

relation to future tourism demand and economic growth and investigate the policy implications 

of such outcomes. This is the first study to provide scenario forecasts that consider both 

worldwide tourism demand and economic growth, and its findings will enrich the tourism 

forecasting research field and provide the industry with new insights into the complex global 

tourism system. 

 

METHODS 

The PVAR model 

With the increase in globalization, economic activities in various countries have become more 

interconnected. Correspondingly, efforts to accommodate and model such links have also 

increased. Various model specifications have been proposed and used in previous studies, 

including the GVAR model (Dees, Mauro, Pesaran, & Smith, 2007) and the multi-country 

PVAR model (Canova & Ciccarelli, 2009). Cao et al. (2017) were the first to apply the GVAR 

model in the tourism context, and Assaf et al. (2019) further used its Bayesian version. This 

study is the first to use the PVAR model to model cross-unit interdependencies for tourism 

demand forecasting. The PVAR model is constructed by augmenting VAR models for each 

individual country with lagged dependent variables from other countries. The specification of 

the PVAR model for each country (i=1, …, N) with 𝑝 lags can be written as 

 𝒚𝒊𝒕 = 𝑨𝒊
𝟏𝒀𝒕−𝟏 + ⋯ + 𝑨𝒊

𝒑
𝒀𝒕−𝒑 + 𝒖𝒊𝒕, (1) 

where 𝒚𝒊𝒕 is the 𝐺 × 1 vector of dependent variables for country i at time t (t=1, …,T); 𝒀𝒕 =

(𝑦1𝑡
′ , … , 𝑦𝑁𝑡

′ )′  is the 𝑁𝐺 × 1 vector of dependent variables for N countries; 𝑨𝒊
𝑗
 is the 𝐺 × 𝑁𝐺 
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matrix of the PVAR coefficients for country i and lag j; and 𝒖𝒊𝒕  is the 𝐺 × 1  vector of 

disturbances, 𝒖𝒊𝒕~𝑁(0, 𝛴𝑖𝑖), which are not correlated over time but may be correlated across 

countries. We denote 𝐸(𝒖𝒊𝒕𝒖𝒋𝒕) = 𝛴𝑖𝑗 and 𝛴 as the 𝑁𝐺 × 𝑁𝐺 error covariance matrix for 𝑢𝑡 =

(𝒖𝟏𝒕
′ , … , 𝒖𝑵𝒕

′ )′. For notational simplicity, an intercept is not added, and this omission does not 

affect the illustration of the model specifications. An intercept is included in the empirical work 

of this study. 

 An unrestricted PVAR model has 𝐾 = 𝑝 × (𝑁 × 𝐺)2  unknown autoregressive 

parameters to be estimated, which is likely to cause over-parameterization. To solve this 

problem, Canova and Ciccarelli (2009) suggested the use of a factor structure for the PVAR 

coefficients. If we define 𝐴𝑗 = (𝐴1
𝑗
, … , 𝐴𝑁

𝑗
) for j=1, …, p and α = (vec(A1)′, … , vec(A𝑃)′)′, then 

α is assumed to follow the factor structure 

 𝛂 = 𝚵𝟏𝛉𝟏 + 𝚵𝟐𝛉𝟐 + ⋯ + 𝚵𝐪𝛉𝐪 + 𝐞 = 𝚵𝛉 + 𝐞, (2) 

where Ξ = (Ξ1, … , Ξq) is known and decided based on the assumed factor structure and θ =

(𝜃1
′ , … , 𝜃𝑞

′ )′ is an 𝑅 × 1 vector of unknown parameters with 𝑅 being much smaller than 𝐾. e is 

assumed to not be correlated with 𝑢𝑡 and has a normal distribution with mean 0 and covariance 

matrix 𝛴 ⊗ 𝑉 , where 𝑉 = 𝜎2𝐼 . The factor structure used by Canova and Ciccarelli (2009) 

suggests that α consists of three types of factors: a common factor, a factor specific to each 

country, and a factor specific to each variable. Under this setting, q = 3. Ξ1 is a 𝐾 × 1 vector of 

ones, and θ1 is a scalar that represents the common factor. Ξ2 is a 𝐾 × 𝑁 matrix that comprises 

zeroes and ones to select coefficients for each country, and θ2 is an 𝑁 × 1 vector that represents 

country-specific factors. Ξ3  is a 𝐾 × 𝐺  matrix that comprises zeroes and ones to select 

coefficients for each variable, and θ3 is an 𝐺 × 1 vector that represents variable-specific factors. 

By imposing factor structure restriction, the dimensions of the parameters decrease greatly 
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from 𝐾 in α to 𝑅 = 1 + 𝑁 + 𝐺 in θ1, θ2, and θ3. This strategy is used to estimate the PVAR 

model in this study. 

 

The TVP-PVAR model 

The assumption of constant parameters can occasionally be too restrictive, but it can be relaxed 

using the TVP method. By adding the subscript t to α, the TVP-PVAR model can be written in 

the matrix form as 

 𝒀𝒕 = 𝑿𝒕
′𝜶𝒕 + 𝒖𝒕, (3) 

where X𝑡 = 𝐼 ⊗ (Y𝑡−1
′ , … , Y𝑡−𝑝

′ )
′
 and 𝜶𝒕  follows a random walk process. However, as noted 

above, this form can lead to over-parameterization if no restriction is imposed. Therefore, as 

an extension of the model used by Canova and Ciccarelli (2009), Koop and Korobilis (2019) 

proposed a time-varying version that assumes a random walk of the factors 

 𝛂𝒕 =  𝚵𝛉𝒕 + 𝐞, (4) 

 𝜃𝑡 = 𝜃𝑡−1 + 𝑤𝑡, (5) 

where 𝜃𝑡 is an 𝑅 × 1 vector of unknown parameters, which changes following a random walk 

process, and 𝑤𝑡~𝑁(0, 𝑊𝑡), where 𝑊𝑡  is an 𝑅 × 𝑅 covariance matrix. The TVP-PVAR model 

can then be rewritten in a state space form as 

 𝒀𝒕 = �̃�𝒕
′𝛉𝒕 + 𝒗𝒕, (6) 

 𝜃𝑡 = 𝜃𝑡−1 + 𝑤𝑡, (7) 

where �̃�𝑡 = 𝑋𝑡𝚵  and 𝒗𝒕 = �̃�𝑡
′e + 𝑢𝑡  with 𝑣𝑡~𝑁(0, (𝐼 + 𝜎2𝑋𝑡

′𝑋𝑡) × 𝛴) . Equation (6) is the 

measurement equation, and Equation (7) is the state equation. Following Canova and Ciccarelli 

(2009), 𝜎2 is set as 0 in this study. If 𝑊𝑡 is known, the Kalman filter can be applied to estimate 

𝜃𝑡. A Bayesian analysis, given the priors of 𝑊𝑡, would entail the use of Markov chain Monte 

Carlo methods to generate the posterior distribution for 𝜃𝑡 ; however, this approach would 

create a heavy computational burden and could be prohibitive in some cases. An alternative 
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approach with forgetting factors is commonly used to estimate state space models such as the 

TVP-PVAR model. Detailed discussions can be found in studies by Dangl and Halling (2012) 

and Raftery et al. (2010). The motivation to use forgetting factors is to avoid the need to 

estimate or simulate 𝑊𝑡. To illustrate this point, if we denote 𝐷𝑡−1 as the data available until 

time t−1, then the only place that involves 𝑊𝑡 in the Kalman filter iteration is 

 𝒗𝒂𝒓(𝜽𝒕|𝑫𝒕−𝟏) =  𝒗𝒂𝒓(𝜽𝒕−𝟏|𝑫𝒕−𝟏) + �̂�𝒕. (8) 

If we replace this equation with 

 𝒗𝒂𝒓(𝜽𝒕|𝑫𝒕−𝟏) =  
𝟏

𝝀
𝒗𝒂𝒓(𝜽𝒕−𝟏|𝑫𝒕−𝟏), (9) 

𝑊𝑡 no longer plays a role in the Kalman filtering process. λ is the forgetting factor with a range 

of 0 < λ ≤ 1 and is often set to a number slightly less than 1 (Raftery et al., 2010). Equations 

(8) and (9) imply that 

 �̂�𝒕 = ( 
𝟏

𝝀
− 𝟏)𝒗𝒂𝒓(𝜽𝒕−𝟏|𝑫𝒕−𝟏), (10) 

and it can be seen that 𝑊𝑡 = 0 when λ=1, which suggests constant parameters. Using the 

forgetting factor approach can greatly reduce the computational burden, so it is adopted in this 

study. 

 The TVP-PVAR model can be further extended to allow the error covariance to vary 

by time; that is, 𝑣𝒕~𝑁(0, 𝛴𝑡). Exponentially weighted moving average methods are used in this 

study to estimate 𝛴𝑡: 

 �̂�𝒕 = 𝜿�̂�𝒕−𝟏 + (𝟏 − 𝜿)�̂�𝒕�̂�𝒕
′ , (11) 

where �̂�𝒕�̂�𝒕
′ = (𝑌𝑡 − �̃�𝑡

′𝐸(𝜃𝑡|𝐷𝑡−1)) (𝑌𝑡 − �̃�𝑡
′𝐸(𝜃𝑡|𝐷𝑡−1))

′
 and 0 < κ ≤ 1. κ is the decay factor. 

Following the version introduced by Koop and Korobilis (2019), a relatively diffuse choice of 

an initial value of 0.1 × 𝐼 is set for �̂�𝑡. 

 The forgetting factor λ and the decay factor κ determine the levels of time variation of 

𝜃𝑡 and �̂�𝑡, respectively. Higher values of λ and κ suggest faster changes over time. When λ =
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κ = 1, 𝜃𝑡 and �̂�𝑡 become time invariant, and the resulting PVAR model has constant parameters 

and is homoscedastic. In this study, to investigate the effects of time variation in the parameters 

and error covariance on the forecasting performance of the PVAR model, we use λ = 0.9 and 

κ = 0.9. As in the studies by Canova and Ciccarelli (2009) and Koop and Korobilis (2019), the 

maximum lag 𝑝 in this study is set to 1 for the PVAR model. 

 As we are interested in generating scenario forecasts that depend on the values of the 

corresponding variables in the past four periods, the forecasts at horizon ℎ > 1 depend on the 

forecasts at earlier steps. Therefore, forecast simulations are performed to calculate the 

probability of scenario forecasts in this study, and the number of simulations is set to 500. 

 

Scenario forecasting evaluation 

As this study’s focus is scenario forecasting, both the accuracy rate and the Brier score are used 

as the evaluation metrics. The accuracy rate is defined as the percentage of correct predictions, 

i.e., the fraction of instances that are correctly classified, as shown below: 

AR =
𝐶𝑃

𝑀
,       (12) 

where AR is the accuracy rate, M is the number of forecasts in the test period, and CP is the 

number of correct predictions. Here, “correct predictions” refers to the situation in which the 

scenario with the highest probability in scenario forecasting occurs in reality. Therefore, higher 

accuracy rates indicate better forecasts. 

In addition to examining whether the scenario with the highest probability occurs in 

reality, the Brier score includes the probability values for each scenario in the evaluation of the 

accuracy of scenario forecasting. The Brier score, proposed by Brier in 1950, is commonly 

used to evaluate forecasts that assign probabilities to a set of mutually exclusive discrete 

outcomes. It is a proper scoring rule that encourages the forecaster to make careful assessments 
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and be honest. The importance of being proper has been widely recognized (Bröcker & Smith, 

2007). The Brier score for multiclass forecasts can be defined as 

 𝐁𝐒 =
𝟏

𝑴
∑ ∑ (𝑭𝒕𝒊 − 𝑨𝒕𝒊)𝟐𝑪

𝒊=𝟏
𝑴
𝒕=𝟏 , (13) 

where 𝐹𝑡𝑖 is the forecast probability assigned to class 𝑖 at forecast period 𝑡, 𝐴𝑡𝑖 is the actual 

outcome for class 𝑖 at forecast period 𝑡 (0 if it does not occur and 1 if it does), M is the number 

of forecasting periods, and C is the number of possible classes (i.e., four in this study). The 

Brier score measures the mean squared difference between the predicted probabilities and the 

actual outcomes; therefore, it can take values between 0 and 1. A lower Brier score indicates 

better scenario forecasts. 

 

Scenario setting and data processing 

As discussed in the literature review, the scenarios examined in this study are set 

considering both economic growth and tourism growth for the following three reasons. These 

two variables always reflect practitioners’ interests and are correlated; scenario forecasting 

using these two variables provides valuable information for decision-making; and the predicted 

probabilities provide insights into the degrees of risk associated with different decisions. In 

particular, economic growth is measured by GDP growth at the destination. Referring to 

tourism growth, according to the literature, tourism demand is often measured by tourist 

arrivals (such as Wang 2009) and tourism expenditure (such as Wang 2014). These variables 

measure tourism demand from different perspectives. According to the IMF (2009), tourism 

exports are related to the goods and services acquired from an economy by visiting non-

residents, either for their own use or to give away. Therefore, tourism exports are indeed 

comparable with tourism expenditure as a measure of tourism demand, as the core component 

of both is the spending of tourists at the destination. The tourism exports indicator has also 

been adopted in several previous studies, e.g., those by Gray (1966), Artus (1972), Smeral and 
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Witt (1996), Smeral and Weber (2000), and Smeral (2004). Therefore, this study uses tourism 

export growth as the measure of tourism growth.  

Therefore, the scenarios of interest in this study are related to a country’s tourism 

export growth and economic growth. Specifically, we devise the following four scenarios for 

each country: 

Scenario 1: Economic growth accelerates, and tourism growth accelerates. 

Scenario 2: Economic growth decelerates, and tourism growth accelerates. 

Scenario 3: Economic growth decelerates, and tourism growth decelerates. 

Scenario 4: Economic growth accelerates, and tourism growth decelerates. 

Growth acceleration has attracted considerable research attention since the 2000s [e.g., 

Hausmann, Pritchett, and Rodrik (2005) and Jong-A-Pin and De Haan (2011)]. In the tourism 

literature, economic growth and tourism growth have been used to construct scenarios (Smeral 

and Weber, 2000). Empirical evidence has shown that cyclical fluctuations in GDP and tourism 

income have different lengths and that tourism income has greater volatility than the GDP cycle 

(Eeckels, Filis, & Leon, 2012). 

Hence, the four scenarios identified above follow the existing literature on the cyclical 

patterns in the tourism sector and the wider economy. In particular, scenarios 2 and 4 justify 

the need for a specific level of support for the tourism sector compared with the rest of the 

economy, given the cyclical pattern of tourism exports. Although both tourism exports and 

imports can be incorporated into a scenario, we focus on tourism exports because this indicator 

(i.e., inbound tourism) has a far more direct influence on, and thus greater relevance to, local 

economic growth than tourism imports. 

Growth acceleration represents a speeding up of growth rate, i.e., when economic 

growth rate at period t is higher than that in previous periods. In economics literature, it is 

defined based on Δgt (gt represents the economic growth rate at t) [e.g., Greenwood-Nimmo, 
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Nguyen, and Shin (2012); Hausmann, Pritchett, and Rodrik (2005); and Stankov (2018)], 

although the specific operational definition may vary across studies.  

In this study, we follow Greenwood-Nimmo, Nguyen, and Shin (2012) in operationally 

defining acceleration as the case in which the growth rate of the target variable at quarter t is 

higher than the average of its growth rates in the previous four quarters: 

∆𝑙𝑛𝑦𝑖,𝑡 ≥ (∆𝑙𝑛𝑦𝑖,𝑡−1 + ∆𝑙𝑛𝑦𝑖,𝑡−2 + ∆𝑙𝑛𝑦𝑖,𝑡−3 + ∆𝑙𝑛𝑦𝑖,𝑡−4)/4,                       (14) 

where 𝑙𝑛𝑦𝑖,𝑡 refers to the natural logarithm of tourism exports (or GDP) for the ith country at 

quarter t and ∆ is the difference operator. 

 Deceleration is defined as occurring when the growth rate of the target variable at 

quarter t is lower than the average of its growth rates in the previous four quarters:  

∆𝑙𝑛𝑦𝑖,𝑡 < (∆𝑙𝑛𝑦𝑖,𝑡−1 + ∆𝑙𝑛𝑦𝑖,𝑡−2 + ∆𝑙𝑛𝑦𝑖,𝑡−3 + ∆𝑙𝑛𝑦𝑖,𝑡−4)/4.                    (15) 

 In total, four endogenous variables are included in the system modeling process: 

economic growth, tourism price, real tourism imports, and real tourism exports. Economic 

growth is measured by the natural logarithm of the GDP index for each country, and tourism 

price is measured by the exchange rate-adjusted consumer price index (CPI): 

𝑃𝑖,𝑡 = 𝐶𝑃𝐼𝑖,𝑡 𝐸𝑋𝑖,𝑡⁄ .                                                         (16) 

where 𝑃𝑖,𝑡, 𝐶𝑃𝐼𝑖,𝑡, and 𝐸𝑋𝑖,𝑡 are the tourism price, CPI, and exchange rate for the ith country at 

quarter t, respectively. Real tourism exports are measured by the tourism price-adjusted total 

tourism exports: 

𝑒𝑥𝑝𝑜𝑟𝑡𝑖,𝑡
𝑟𝑒𝑎𝑙 = 𝑒𝑥𝑝𝑜𝑟𝑡𝑖,𝑡 𝑃𝑖,𝑡⁄ ,                                             (17) 

where 𝑒𝑥𝑝𝑜𝑟𝑡𝑖,𝑡
𝑟𝑒𝑎𝑙  denotes real tourism exports and 𝑒𝑥𝑝𝑜𝑟𝑡𝑖,𝑡 denotes total tourism exports. 

Real tourism imports are measured by total tourism imports adjusted by the weighted tourism 

price: 

𝑖𝑚𝑝𝑜𝑟𝑡𝑖,𝑡
𝑟𝑒𝑎𝑙 = 𝑖𝑚𝑝𝑜𝑟𝑡𝑖,𝑡 ∑ 𝑤𝑗,𝑖,𝑡𝑃𝑗,𝑡

24
𝑗=1⁄ ,                                   (18) 
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where 𝑖𝑚𝑝𝑜𝑟𝑡𝑖,𝑡
𝑟𝑒𝑎𝑙 denotes real tourism imports, 𝑖𝑚𝑝𝑜𝑟𝑡𝑖,𝑡 denotes total tourism imports, and 

𝑤𝑗,𝑖,𝑡 is the share of country j’s trade weight among country i’s total trading partners at quarter 

t, which is calculated using a 25×25 matrix with the elements representing the average of the 

absolute values of imports and exports. The matrix changes every year, and the matrices for 

1993 to 2016 are constructed accordingly. 

 The data are seasonally adjusted using the X-13 method and transformed into the 

natural logarithm format before establishing the model. We use data for 1993Q1 to 2016Q4 

from 25 major economies worldwide: Australia, Belgium, Brazil, Canada, China, France, 

Germany, India, Italy, Japan, Korea, Mexico, Netherlands, New Zealand, Norway, the 

Philippines, Portugal, Singapore, Slovenia, South Africa, Spain, Sweden, Thailand, the U.K., 

and the U.S.. As shown in Table 1, the data are obtained from open sources, such as the IMF’s 

International Financial Statistics and Balance of Payments Statistics databases and the 

economies’ respective national statistics offices. 

 

--------Insert Table 1 here-------- 

 

EMPIRICAL RESULTS 

Table 2 shows the accuracy rates for the 25 countries over 8 forecasting horizons. A higher 

accuracy rate refers to more accurate forecasting. Random choice is a benchmark that assigns 

each scenario equal probability, with an accuracy rate of 0.25. The first observation is that the 

accuracy rates of the best models (in bold font) for all scenarios are greater than 0.25, which 

indicates that the forecasting techniques can improve the scenario forecasting accuracy. It can 

also be observed that although the best model varies by country and by the forecasting horizon, 

the average accuracy rates (the last column in Table 2) indicate that the TVP-PVAR model 

generally performs best when the error variances are time-varying [either TVP(λ)-PVAR or 
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TVP(λκ)-PVAR] for most forecasting horizons, with two exceptions (h=5 and 7) in which the 

VAR(2) model performs best. This observation supports the application of the TVP-PVAR 

model with time-varying error variances for scenario forecasting. It can further be observed 

from Table 2 that the accuracy decreases when the forecasting horizon increases, which is 

consistent with most findings in the forecasting literature. However, even for the horizon of 8, 

the forecasting accuracy of each model is superior to random choice on average. 

 

--------Insert Table 2 here-------- 

 

 Table 3 shows the Brier scores of the 25 countries for forecasting evaluation. A lower 

Brier score indicates better forecasting performance. The average Brier scores (the last column 

in Table 3) indicate that the TVP-PVAR models outperform the benchmark of the VAR models 

for all horizons. The best model is the TVP(κ)-PVAR model for six horizons (h=1, 2, …, 6), 

and the TVP(λκ)-PVAR model for two horizons (h=7 and 8). On average, the TVP-PVAR 

models with a time-varying error covariance matrix generate the most accurate scenario 

forecasts. This conclusion is consistent with the results of accuracy rates. 

 

--------Insert Table 3 here-------- 

 

 When the Brier scores of all 25 countries are examined in Table 3, it can be seen that 

the TVP-PVAR model is more advantageous for forecasting horizons within 1 year (h=1, 2, 3, 

and 4) than over 2 years (h=5, 6, 7, and 8). In particular, the TVP(κ)-PVAR model produces 

the most accurate forecasts for h=1, 2, and 4: the TVP(κ)-PVAR model is the best model in 11 

of the 25 cases for one-step-ahead forecasting, in 12 of the 25 cases for two-step-ahead 

forecasting, and in 9 of the 25 cases for four-step-ahead forecasting. When h=3, both the 
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TVP(κ)-PVAR model and the TVP(λκ)-PVAR model perform best (both in 9 of the 25 cases). 

Therefore, we conclude that the TVP-PVAR model with a time-varying covariance matrix of 

errors is the optimal approach to the scenario forecasting of global tourism and economic 

growth when short-run forecasting (i.e., within 1 year) is required. 

 When longer forecasting horizons are examined, the TVP(λκ)-PVAR model generally 

performs best. When h=5, both the TVP(λκ)-PVAR model and VAR(2) perform best in 9 of 

the 25 cases. When h=7, the TVP(λκ)-PVAR model, the TVP(κ)-PVAR model, and the VAR(2) 

model show similar performance, with each performing best in 7 of the 25 cases. When h=8, 

the TVP(λκ)-PVAR model performs best in 7 of the 25 cases. For h=6, the VAR(2) model 

performs best in 8 of the 25 cases; this is the only instance in which the TVP-PVAR models 

fail to outperform the benchmark model. In other words, for h=6, when considering the average 

Brier scores of the 25 countries, the TVP(λκ)-PVAR model is the best choice (see Table 3). 

However, when considering the accuracy rates (see Table 2) or the times in which the model 

performs best, based on the Brier scores of the 25 countries (see Table 3), the VAR(2) model 

is the best choice. 

 In conclusion, we examine scenario forecasting using the TVP-PVAR model and use 

accuracy rates and Brier scores to evaluate the forecasting performance. The TVP-PVAR 

models generally outperform the benchmark models in most cases, which supports our 

assumption. Furthermore, the TVP-PVAR model that considers the time-varying error 

covariance matrix is especially effective for short-run forecasting (i.e., within 1 year). This 

finding not only theoretically enriches the tourism forecasting literature but also provides 

practical guidance for achieving accurate scenario forecasting using a system model. 

 

CONCLUDING REMARKS 
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Unlike traditional demand forecasting, which predicts the volume of tourism demand, such as 

tourist arrivals or tourism receipts, this study innovatively forecasts events and/or scenarios of 

tourism demand. The scenarios for forecasting could be constructed based on a single event or 

by jointly considering more than one event. Scenario forecasts provide information on the 

possibility that a given event or scenario will occur in reality. Accordingly, practitioners can 

gain knowledge of the reliability of and risks associated with decisions about certain strategies 

and policies. When more than one event is used for scenario construction, three factors should 

be considered: these events should be of interest to market practitioners or scholars; they should 

be related; and the constructed scenarios or new events should be of interest to market 

practitioners or scholars. 

As stated in the above discussion regarding scenario construction, this study generates 

scenarios based on two important variables: tourism exports and economic growth at a given 

destination. A total of 25 destination countries are examined simultaneously in a system model 

(i.e., the PVAR model) in which the interactions of these 25 destinations can be well captured. 

In particular, the TVP version of the PVAR model is used, and the constant-parameter PVAR 

and VAR models are used as benchmarks. Eight forecasting horizons are examined separately, 

and the accuracy rates and Brier scores are used to evaluate the predicted probability. 

The empirical results reveal interesting findings. First, the TVP-PVAR model with a 

time-varying error covariance matrix generally performs better than the benchmark models in 

forecasting the probability of a given scenario or event over 8 forecasting horizons and 25 

destinations. This finding suggests that the proposed model is a promising tool for forecasting. 

Second, our study shows that it is important to allow the error covariance matrix to vary over 

time in the TVP settings. This aspect is often omitted in forecasting studies. Finally, this study 

shows that in addition to accuracy rates, which are often used to evaluate classification 
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accuracy, Brier scores can be used to measure the accuracy of scenario forecasting because the 

predicted probability is included for evaluation. 

 This study makes important contributions to the tourism forecasting literature. It 

examines tourism demand forecasting from the new perspective of scenario forecasting, in 

which scenarios are constructed based on two variables. To capture the interaction of tourism 

demand between various destinations, a system model—the TVP-PVAR model—that provides 

superior performance is introduced to the tourism forecasting field. Moreover, unlike the 

traditional TVP, in which only coefficients are allowed to vary over time, the TVP-PVAR 

model in this study allows both the coefficients and the error covariance matrix to vary over 

time. This sheds new light on the application of the TVP model in tourism forecasting. 

 Furthermore, the findings of this study provide persuasive practical guidance for 

industry decision making. For example, when the scenario of high tourism demand (i.e., higher 

tourism export) growth and low economic growth is predicted with a high probability, it is 

more reasonable to invest in the tourism industry than in other sectors at the destination given 

limited resources. In contrast, when the scenario of low tourism demand (i.e., tourism export) 

growth and high economic growth is predicted with a high probability, investment in tourism-

related industries may not be the optimal business decision. In addition, when the scenario of 

low tourism demand growth and low economic growth is predicted with a high probability, 

business decisions should be less aggressive owing to the recession in both tourism and overall 

economic markets. Aggressive decision-making is more suitable for the scenario in which both 

tourism demand and economic growth rates are high. The values of the probabilities predicted 

for various scenarios provide practitioners with the knowledge and confidence to make such 

business decisions. 

The findings of this study suggest several future research directions. First, various 

versions of the TVP-PVAR models are examined in this study, and on average, the TVP(κ)-
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VAR model demonstrates superior forecasting ability. In future studies, different levels of time 

variation for parameters and error covariance matrices could be tested to examine the model’s 

generalizability and provide more evidence of its superiority. Second, this study constructs 

scenarios and events using both tourism exports and the destination’s economic growth as 

variables. In future studies, different types of scenarios or events could be tested using different 

variables. Third, this study uses a TVP technique in which both the coefficients and the 

variances of the error terms are allowed to vary over time. It would be interesting to explore 

whether this setting works for traditional tourism demand forecasting, and a comparative 

examination would be worthwhile. 
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Table 1. Summary of Data Sources. 

Variable Measure Frequency Source 

Tourism imports 

Travel debits (million 

US$), passenger transport 

debits (million US$) 

Quarterly 
Balance of Payments 

Statistics Yearbook, IMF 

Tourism exports 

Travel credits (million 

US$), passenger transport 

credits (million US$) 

Quarterly 
Balance of Payments 

Statistics Yearbook, IMF 

Real GDP index 
Real GDP index (base 

year 2005 = 100) 
Quarterly 

International Financial 

Statistics, IMF; national 

statistical offices 

Consumer price index 
CPI (base year 2005 = 

100) 
Quarterly 

International Financial 

Statistics, IMF; main 

economic indicators, 

OECD 

Exchange rates 
National currency against 

US$ 
Quarterly 

International Financial 

Statistics, IMF 

Bilateral trade volume 
Average of exports and 

imports (in US$)  
Annual 

Direction of Trade 

Statistics, IMF 

Note: All data cover the period from 1993Q1 to 2016Q4.  
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Table 2. Accuracy Rates for Each Country in the System for Eight Forecast Horizons. 

 AUS BEL BRA CAN CHN FRA DEU IND ITA JPN KOR MEX NLD NZL NOR PHL PRT SGP SVN ZAF ESP SWE THA GBR USA Average 

 h=1                      

VAR(1) 0.500  0.375  0.438  0.219  0.438  0.313  0.438  0.313  0.344  0.438  0.406  0.344  0.438  0.469  0.531  0.375  0.344  0.438  0.469  0.344  0.344  0.406  0.500  0.375  0.406  0.400 

VAR(2) 0.500  0.313  0.469  0.313  0.406  0.250  0.406  0.281  0.344  0.438  0.344  0.375  0.500  0.438  0.500  0.406  0.313  0.500  0.438  0.375  0.313  0.281  0.406  0.313  0.500  0.389 

PVAR 0.219  0.500  0.281  0.281  0.375  0.281  0.281  0.156  0.125  0.125  0.250  0.125  0.281  0.188  0.281  0.500  0.250  0.406  0.156  0.500  0.219  0.281  0.250  0.313  0.188  0.273 

TVP(λ)-PVAR 0.250  0.313  0.344  0.313  0.344  0.281  0.156  0.219  0.344  0.344  0.219  0.344  0.250  0.281  0.188  0.281  0.250  0.344  0.313  0.281  0.281  0.250  0.281  0.250  0.375  0.284 

TVP(κ)-PVAR 0.500  0.375  0.469  0.281  0.406  0.281  0.375  0.344  0.500  0.406  0.406  0.281  0.375  0.469  0.563  0.500  0.438  0.531  0.406  0.281  0.406  0.531  0.531  0.438  0.375  0.419 

TVP(λκ)-PVAR 0.375  0.406  0.313  0.250  0.344  0.281  0.469  0.313  0.375  0.438  0.406  0.375  0.344  0.438  0.594  0.406  0.375  0.469  0.406  0.344  0.344  0.500  0.438  0.500  0.406  0.396 

 h=2                      

VAR(1) 0.419  0.387  0.387  0.387  0.258  0.323  0.452  0.355  0.258  0.387  0.355  0.290  0.323  0.323  0.355  0.419  0.355  0.452  0.516  0.419  0.323  0.323  0.516  0.226  0.258  0.363 

VAR(2) 0.258  0.419  0.290  0.387  0.194  0.290  0.323  0.419  0.452  0.290  0.290  0.290  0.419  0.258  0.452  0.452  0.290  0.355  0.387  0.355  0.387  0.387  0.484  0.194  0.323  0.346 

PVAR 0.258  0.194  0.290  0.323  0.387  0.323  0.129  0.258  0.226  0.355  0.290  0.258  0.258  0.161  0.258  0.258  0.226  0.452  0.258  0.323  0.387  0.226  0.419  0.419  0.226  0.286 

TVP(λ)-PVAR 0.258  0.161  0.355  0.290  0.161  0.226  0.226  0.258  0.226  0.355  0.387  0.226  0.226  0.194  0.226  0.258  0.355  0.258  0.161  0.226  0.258  0.194  0.323  0.194  0.258  0.250 

TVP(κ)-PVAR 0.452  0.387  0.452  0.290  0.258  0.258  0.484  0.323  0.355  0.419  0.355  0.323  0.323  0.290  0.484  0.419  0.323  0.419  0.484  0.516  0.452  0.419  0.484  0.387  0.355  0.388 

TVP(λκ)-PVAR 0.355  0.258  0.387  0.355  0.290  0.258  0.387  0.258  0.290  0.452  0.355  0.387  0.258  0.355  0.452  0.387  0.452  0.258  0.452  0.355  0.387  0.387  0.516  0.387  0.419  0.364 

 h=3                      

VAR(1) 0.333  0.333  0.367  0.400  0.267  0.300  0.300  0.467  0.300  0.367  0.400  0.233  0.400  0.367  0.433  0.367  0.267  0.400  0.433  0.300  0.333  0.267  0.333  0.400  0.333  0.348 

VAR(2) 0.333  0.300  0.267  0.333  0.367  0.233  0.400  0.400  0.300  0.367  0.333  0.267  0.300  0.367  0.300  0.400  0.300  0.400  0.467  0.333  0.333  0.400  0.367  0.300  0.233  0.336 

PVAR 0.133  0.167  0.367  0.267  0.267  0.333  0.200  0.400  0.300  0.367  0.200  0.233  0.267  0.400  0.400  0.233  0.267  0.167  0.267  0.200  0.167  0.333  0.100  0.533  0.267  0.273 

TVP(λ)-PVAR 0.233  0.167  0.267  0.333  0.333  0.333  0.267  0.333  0.133  0.233  0.267  0.333  0.367  0.367  0.400  0.233  0.200  0.267  0.333  0.200  0.200  0.400  0.200  0.300  0.300  0.280 

TVP(κ)-PVAR 0.367  0.300  0.433  0.333  0.300  0.300  0.367  0.433  0.267  0.333  0.267  0.233  0.233  0.300  0.433  0.300  0.267  0.400  0.500  0.267  0.333  0.500  0.400  0.233  0.300  0.336 

TVP(λκ)-PVAR 0.400  0.300  0.400  0.400  0.267  0.400  0.500  0.433  0.300  0.367  0.367  0.267  0.267  0.300  0.500  0.333  0.333  0.333  0.500  0.300  0.300  0.467  0.367  0.400  0.400  0.368 

 h=4                      

VAR(1) 0.207  0.310  0.207  0.379  0.241  0.276  0.207  0.241  0.345  0.276  0.310  0.483  0.345  0.310  0.379  0.345  0.379  0.552  0.310  0.207  0.379  0.207  0.310  0.448  0.276  0.317 

VAR(2) 0.241  0.345  0.172  0.276  0.379  0.241  0.345  0.345  0.379  0.241  0.310  0.345  0.310  0.310  0.276  0.276  0.379  0.483  0.345  0.172  0.310  0.379  0.310  0.414  0.276  0.314 

PVAR 0.310  0.138  0.448  0.276  0.241  0.172  0.207  0.241  0.103  0.276  0.276  0.414  0.138  0.379  0.276  0.310  0.207  0.207  0.276  0.241  0.138  0.310  0.241  0.241  0.345  0.257 

TVP(λ)-PVAR 0.172  0.414  0.276  0.207  0.345  0.276  0.414  0.069  0.379  0.241  0.207  0.345  0.276  0.345  0.172  0.310  0.241  0.310  0.241  0.345  0.207  0.172  0.276  0.241  0.207  0.268 

TVP(κ)-PVAR 0.345  0.379  0.276  0.345  0.241  0.207  0.379  0.241  0.241  0.345  0.310  0.448  0.310  0.345  0.379  0.345  0.310  0.586  0.379  0.276  0.379  0.310  0.241  0.483  0.310  0.337 

TVP(λκ)-PVAR 0.310  0.379  0.379  0.310  0.241  0.345  0.414  0.310  0.345  0.310  0.276  0.345  0.207  0.414  0.552  0.241  0.310  0.483  0.345  0.207  0.414  0.345  0.310  0.586  0.310  0.348 
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 h=5                      

VAR(1) 0.321  0.321  0.179  0.393  0.250  0.286  0.250  0.250  0.321  0.179  0.321  0.107  0.286  0.214  0.286  0.214  0.286  0.214  0.429  0.179  0.393  0.321  0.250  0.143  0.179  0.263 

VAR(2) 0.321  0.250  0.143  0.357  0.321  0.250  0.357  0.321  0.286  0.321  0.429  0.429  0.179  0.321  0.107  0.214  0.464  0.536  0.571  0.286  0.286  0.179  0.214  0.286  0.357  0.311 

PVAR 0.357  0.214  0.250  0.357  0.286  0.214  0.107  0.250  0.321  0.179  0.286  0.286  0.214  0.286  0.250  0.214  0.179  0.321  0.321  0.214  0.179  0.214  0.321  0.286  0.357  0.259 

TVP(λ)-PVAR 0.321  0.214  0.286  0.179  0.250  0.250  0.321  0.429  0.179  0.393  0.286  0.321  0.321  0.393  0.286  0.143  0.357  0.393  0.250  0.143  0.321  0.179  0.214  0.214  0.286  0.277 

TVP(κ)-PVAR 0.286  0.286  0.214  0.214  0.143  0.143  0.321  0.179  0.393  0.536  0.321  0.321  0.250  0.321  0.214  0.179  0.464  0.357  0.429  0.286  0.250  0.214  0.393  0.179  0.286  0.287 

TVP(λκ)-PVAR 0.393  0.179  0.393  0.143  0.214  0.143  0.286  0.429  0.250  0.429  0.321  0.214  0.250  0.214  0.250  0.179  0.286  0.321  0.286  0.179  0.214  0.286  0.464  0.321  0.286  0.277 

 h=6                      

VAR(1) 0.296  0.222  0.185  0.370  0.296  0.296  0.185  0.074  0.222  0.333  0.185  0.185  0.148  0.333  0.222  0.148  0.333  0.333  0.296  0.148  0.296  0.296  0.259  0.296  0.296  0.250 

VAR(2) 0.333  0.444  0.074  0.370  0.296  0.259  0.556  0.222  0.333  0.370  0.259  0.259  0.222  0.259  0.222  0.222  0.519  0.444  0.519  0.185  0.333  0.296  0.296  0.370  0.259  0.317 

PVAR 0.296  0.296  0.222  0.259  0.111  0.333  0.148  0.407  0.259  0.222  0.333  0.333  0.333  0.296  0.259  0.185  0.333  0.296  0.259  0.296  0.148  0.259  0.259  0.259  0.185  0.264 

TVP(λ)-PVAR 0.296  0.111  0.333  0.296  0.444  0.259  0.111  0.259  0.222  0.185  0.296  0.111  0.222  0.333  0.370  0.222  0.148  0.222  0.185  0.296  0.222  0.333  0.222  0.259  0.185  0.246 

TVP(κ)-PVAR 0.407  0.074  0.333  0.259  0.259  0.370  0.333  0.259  0.296  0.370  0.370  0.222  0.259  0.296  0.481  0.444  0.444  0.519  0.259  0.370  0.296  0.259  0.333  0.296  0.222  0.321 

TVP(λκ)-PVAR 0.370  0.259  0.370  0.222  0.407  0.333  0.259  0.370  0.296  0.148  0.296  0.259  0.296  0.222  0.296  0.222  0.148  0.185  0.481  0.222  0.407  0.259  0.222  0.222  0.259  0.281 

 h=7                      

VAR(1) 0.385  0.308  0.231  0.385  0.385  0.308  0.269  0.269  0.192  0.269  0.308  0.346  0.231  0.269  0.308  0.269  0.385  0.500  0.346  0.192  0.231  0.231  0.269  0.269  0.346  0.300 

VAR(2) 0.231  0.346  0.154  0.462  0.346  0.231  0.423  0.269  0.269  0.462  0.154  0.385  0.115  0.385  0.231  0.308  0.385  0.385  0.385  0.231  0.385  0.269  0.231  0.269  0.346  0.306 

PVAR 0.346  0.077  0.308  0.231  0.385  0.346  0.346  0.231  0.154  0.115  0.192  0.231  0.115  0.269  0.192  0.346  0.269  0.308  0.308  0.115  0.154  0.192  0.308  0.077  0.269  0.235 

TVP(λ)-PVAR 0.423  0.346  0.115  0.308  0.154  0.115  0.154  0.115  0.192  0.231  0.308  0.462  0.154  0.154  0.192  0.269  0.231  0.154  0.269  0.346  0.231  0.308  0.269  0.077  0.269  0.234 

TVP(κ)-PVAR 0.231  0.192  0.462  0.269  0.231  0.115  0.269  0.269  0.346  0.308  0.423  0.154  0.346  0.269  0.308  0.385  0.269  0.423  0.308  0.308  0.269  0.346  0.346  0.192  0.308  0.294 

TVP(λκ)-PVAR 0.423  0.269  0.231  0.346  0.231  0.115  0.192  0.115  0.269  0.269  0.308  0.346  0.192  0.346  0.385  0.385  0.346  0.269  0.385  0.231  0.269  0.231  0.385  0.346  0.308  0.288 

 h=8                      

VAR(1) 0.440  0.120  0.080  0.360  0.360  0.120  0.360  0.200  0.160  0.320  0.360  0.200  0.400  0.280  0.200  0.240  0.400  0.360  0.440  0.240  0.280  0.320  0.200  0.320  0.400  0.286 

VAR(2) 0.320  0.280  0.240  0.360  0.240  0.320  0.400  0.240  0.280  0.240  0.240  0.120  0.120  0.240  0.360  0.320  0.400  0.360  0.280  0.200  0.360  0.240  0.360  0.200  0.360  0.283 

PVAR 0.360  0.240  0.160  0.240  0.200  0.160  0.240  0.040  0.160  0.360  0.560  0.280  0.160  0.200  0.200  0.360  0.200  0.280  0.400  0.200  0.200  0.240  0.160  0.320  0.280  0.248 

TVP(λ)-PVAR 0.200  0.240  0.200  0.120  0.280  0.240  0.320  0.320  0.240  0.240  0.280  0.240  0.160  0.160  0.400  0.280  0.120  0.200  0.360  0.240  0.320  0.200  0.160  0.200  0.360  0.243 

TVP(κ)-PVAR 0.280  0.320  0.200  0.120  0.120  0.240  0.320  0.200  0.320  0.160  0.360  0.240  0.240  0.200  0.280  0.240  0.360  0.280  0.320  0.240  0.440  0.160  0.360  0.160  0.440  0.264 

TVP(λκ)-PVAR 0.480  0.120  0.320  0.200  0.160  0.240  0.440  0.280  0.440  0.440  0.160  0.200  0.200  0.400  0.160  0.240  0.440  0.480  0.360  0.200  0.400  0.280  0.360  0.200  0.240  0.298 

Note: VAR(i) refers to the VAR model with i lags. λ (or κ) indicates a time-varying setting for parameters (or error covariance matrix) with 

λ (or κ) set as 0.9.  
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Table 3. Brier Scores for Each Country in the System for Eight Forecast Horizons. 

 AUS BEL BRA CAN CHN FRA DEU IND ITA JPN KOR MEX NLD NZL NOR PHL PRT SGP SVN ZAF ESP SWE THA GBR USA Average 

 h=1                      

VAR(1) 0.644  0.713  0.704  0.757  0.701  0.773  0.678  0.756  0.722  0.647  0.709  0.723  0.723  0.672  0.629  0.686  0.750  0.703  0.711  0.690  0.758  0.727  0.629  0.685  0.685  0.703  

VAR(2) 0.651  0.775  0.751  0.771  0.697  0.774  0.733  0.746  0.732  0.634  0.736  0.796  0.711  0.665  0.624  0.676  0.798  0.686  0.755  0.738  0.776  0.734  0.666  0.736  0.614  0.719  

PVAR 0.753  0.738  0.739  0.753  0.739  0.743  0.745  0.752  0.764  0.760  0.734  0.758  0.749  0.762  0.754  0.732  0.751  0.734  0.757  0.726  0.757  0.745  0.759  0.749  0.751  0.748  

TVP(λ)-PVAR 0.762  0.745  0.746  0.745  0.744  0.750  0.757  0.755  0.739  0.745  0.746  0.745  0.750  0.754  0.759  0.733  0.746  0.744  0.747  0.750  0.754  0.755  0.751  0.755  0.739  0.749  

TVP(κ)-PVAR 0.720  0.675  0.638  0.709  0.728  0.731  0.658  0.753  0.689  0.678  0.694  0.770  0.686  0.668  0.629  0.687  0.735  0.663  0.712  0.748  0.698  0.676  0.654  0.666  0.714  0.695  

TVP(λκ)-PVAR 0.755  0.680  0.745  0.749  0.750  0.744  0.661  0.784  0.710  0.693  0.697  0.751  0.688  0.680  0.609  0.684  0.745  0.690  0.689  0.763  0.734  0.674  0.661  0.658  0.708  0.708  

 h=2                      

VAR(1) 0.699  0.733  0.729  0.746  0.740  0.776  0.687  0.715  0.755  0.719  0.705  0.753  0.758  0.730  0.711  0.702  0.742  0.714  0.690  0.697  0.820  0.744  0.693  0.794  0.711  0.730  

VAR(2) 0.785  0.753  0.754  0.746  0.742  0.766  0.719  0.716  0.732  0.781  0.746  0.798  0.748  0.766  0.655  0.695  0.815  0.748  0.724  0.771  0.763  0.719  0.652  0.823  0.773  0.748  

PVAR 0.748  0.760  0.747  0.745  0.747  0.747  0.757  0.750  0.743  0.752  0.741  0.770  0.753  0.765  0.759  0.743  0.752  0.737  0.739  0.745  0.748  0.753  0.739  0.740  0.749  0.749  

TVP(λ)-PVAR 0.748  0.754  0.744  0.752  0.759  0.751  0.742  0.753  0.755  0.744  0.732  0.756  0.745  0.758  0.753  0.750  0.748  0.753  0.755  0.750  0.757  0.759  0.741  0.753  0.749  0.750  

TVP(κ)-PVAR 0.716  0.733  0.694  0.733  0.743  0.741  0.703  0.732  0.713  0.696  0.713  0.722  0.718  0.736  0.695  0.717  0.733  0.712  0.679  0.681  0.692  0.714  0.697  0.710  0.733  0.714  

TVP(λκ)-PVAR 0.718  0.737  0.697  0.750  0.768  0.756  0.710  0.744  0.722  0.678  0.712  0.724  0.725  0.746  0.689  0.729  0.722  0.738  0.704  0.694  0.708  0.710  0.691  0.722  0.711  0.720  

 h=3                      

VAR(1) 0.709  0.750  0.751  0.765  0.717  0.741  0.703  0.707  0.764  0.739  0.724  0.741  0.746  0.732  0.726  0.731  0.785  0.687  0.696  0.781  0.811  0.750  0.746  0.712  0.735  0.738  

VAR(2) 0.731  0.800  0.758  0.782  0.721  0.762  0.707  0.720  0.780  0.750  0.715  0.726  0.769  0.745  0.742  0.731  0.779  0.704  0.681  0.804  0.826  0.748  0.745  0.731  0.799  0.750  

PVAR 0.754  0.760  0.740  0.743  0.754  0.741  0.749  0.746  0.741  0.744  0.748  0.742  0.756  0.740  0.744  0.753  0.746  0.765  0.737  0.748  0.761  0.735  0.758  0.732  0.761  0.748  

TVP(λ)-PVAR 0.751  0.764  0.767  0.737  0.745  0.742  0.752  0.746  0.754  0.746  0.748  0.748  0.744  0.746  0.741  0.759  0.752  0.746  0.739  0.750  0.756  0.733  0.754  0.748  0.747  0.749  

TVP(κ)-PVAR 0.736  0.720  0.716  0.736  0.731  0.724  0.706  0.706  0.748  0.720  0.724  0.739  0.738  0.712  0.698  0.707  0.729  0.699  0.682  0.734  0.725  0.709  0.709  0.741  0.748  0.721  

TVP(λκ)-PVAR 0.732  0.734  0.694  0.734  0.756  0.731  0.703  0.712  0.732  0.715  0.718  0.735  0.716  0.728  0.697  0.716  0.743  0.701  0.673  0.748  0.728  0.704  0.716  0.733  0.745  0.722  

 h=4                      

VAR(1) 0.758  0.759  0.774  0.775  0.721  0.759  0.742  0.751  0.776  0.777  0.743  0.694  0.744  0.751  0.732  0.739  0.750  0.675  0.715  0.823  0.772  0.762  0.781  0.698  0.761  0.749  

VAR(2) 0.726  0.771  0.788  0.782  0.738  0.747  0.725  0.750  0.774  0.772  0.724  0.723  0.751  0.737  0.736  0.746  0.734  0.677  0.711  0.821  0.791  0.757  0.764  0.720  0.740  0.748  

PVAR 0.747  0.761  0.738  0.749  0.751  0.757  0.752  0.745  0.759  0.741  0.761  0.750  0.756  0.743  0.746  0.741  0.754  0.760  0.747  0.752  0.749  0.748  0.753  0.763  0.751  0.751  

TVP(λ)-PVAR 0.764  0.741  0.749  0.759  0.743  0.746  0.734  0.762  0.742  0.769  0.759  0.747  0.748  0.745  0.752  0.753  0.741  0.749  0.752  0.750  0.744  0.759  0.743  0.753  0.752  0.750  

TVP(κ)-PVAR 0.747  0.717  0.741  0.743  0.746  0.752  0.730  0.739  0.759  0.734  0.730  0.708  0.727  0.719  0.702  0.715  0.736  0.690  0.696  0.768  0.725  0.748  0.745  0.699  0.745  0.730  

TVP(λκ)-PVAR 0.735  0.728  0.727  0.746  0.740  0.748  0.726  0.748  0.742  0.740  0.739  0.717  0.739  0.723  0.705  0.739  0.731  0.691  0.695  0.764  0.726  0.731  0.740  0.706  0.749  0.731  
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 h=5                      

VAR(1) 0.747  0.781  0.781  0.763  0.758  0.751  0.724  0.756  0.746  0.740  0.746  0.788  0.741  0.771  0.754  0.763  0.721  0.724  0.736  0.811  0.753  0.760  0.750  0.760  0.750  0.755  

VAR(2) 0.755  0.764  0.774  0.770  0.745  0.770  0.710  0.756  0.744  0.735  0.745  0.732  0.767  0.760  0.780  0.778  0.684  0.715  0.700  0.771  0.804  0.773  0.767  0.748  0.714  0.750  

PVAR 0.746  0.764  0.752  0.748  0.751  0.751  0.766  0.753  0.749  0.752  0.753  0.750  0.751  0.755  0.741  0.757  0.755  0.740  0.745  0.756  0.759  0.764  0.740  0.747  0.749  0.752  

TVP(λ)-PVAR 0.745  0.752  0.747  0.760  0.751  0.756  0.744  0.741  0.749  0.737  0.745  0.750  0.745  0.740  0.737  0.758  0.749  0.743  0.744  0.765  0.744  0.753  0.756  0.754  0.751  0.749  

TVP(κ)-PVAR 0.733  0.753  0.759  0.762  0.755  0.763  0.742  0.758  0.746  0.725  0.729  0.755  0.772  0.750  0.744  0.746  0.735  0.715  0.712  0.751  0.739  0.758  0.734  0.767  0.744  0.746  

TVP(λκ)-PVAR 0.733  0.760  0.726  0.770  0.770  0.767  0.750  0.743  0.754  0.732  0.729  0.754  0.756  0.752  0.750  0.747  0.761  0.712  0.720  0.750  0.748  0.753  0.728  0.753  0.759  0.747  

 h=6                      

VAR(1) 0.742  0.762  0.761  0.750  0.744  0.763  0.739  0.768  0.758  0.739  0.759  0.761  0.744  0.737  0.742  0.762  0.711  0.723  0.738  0.785  0.750  0.764  0.762  0.733  0.734  0.749  

VAR(2) 0.735  0.749  0.757  0.757  0.751  0.736  0.705  0.758  0.759  0.732  0.753  0.751  0.754  0.746  0.775  0.768  0.692  0.697  0.714  0.761  0.774  0.768  0.757  0.733  0.739  0.745  

PVAR 0.750  0.744  0.750  0.749  0.760  0.753  0.762  0.731  0.746  0.746  0.743  0.753  0.738  0.748  0.751  0.755  0.746  0.752  0.749  0.746  0.756  0.755  0.742  0.751  0.755  0.749  

TVP(λ)-PVAR 0.747  0.767  0.743  0.749  0.747  0.755  0.770  0.753  0.749  0.752  0.751  0.755  0.748  0.748  0.747  0.760  0.758  0.755  0.753  0.747  0.749  0.747  0.766  0.751  0.766  0.753  

TVP(κ)-PVAR 0.739  0.755  0.734  0.746  0.757  0.743  0.730  0.749  0.745  0.735  0.752  0.756  0.761  0.746  0.729  0.735  0.728  0.697  0.728  0.754  0.734  0.765  0.756  0.748  0.754  0.743  

TVP(λκ)-PVAR 0.739  0.749  0.724  0.761  0.750  0.743  0.727  0.749  0.750  0.746  0.749  0.755  0.749  0.757  0.742  0.750  0.748  0.715  0.701  0.754  0.720  0.746  0.751  0.762  0.754  0.744  

 h=7                      

VAR(1) 0.736  0.753  0.752  0.744  0.744  0.750  0.737  0.759  0.762  0.741  0.759  0.745  0.751  0.751  0.757  0.744  0.711  0.702  0.731  0.774  0.738  0.759  0.737  0.754  0.731  0.745  

VAR(2) 0.747  0.759  0.763  0.754  0.740  0.753  0.720  0.741  0.756  0.733  0.771  0.728  0.748  0.731  0.754  0.752  0.720  0.716  0.734  0.757  0.749  0.760  0.763  0.755  0.747  0.746  

PVAR 0.752  0.760  0.756  0.758  0.744  0.759  0.751  0.745  0.752  0.770  0.757  0.756  0.764  0.756  0.751  0.746  0.750  0.752  0.746  0.765  0.759  0.756  0.752  0.757  0.747  0.755  

TVP(λ)-PVAR 0.750  0.751  0.752  0.745  0.757  0.751  0.754  0.757  0.753  0.766  0.748  0.738  0.757  0.757  0.768  0.755  0.751  0.757  0.750  0.745  0.755  0.743  0.748  0.772  0.750  0.753  

TVP(κ)-PVAR 0.735  0.754  0.730  0.750  0.758  0.761  0.742  0.750  0.746  0.733  0.741  0.762  0.756  0.749  0.734  0.742  0.752  0.713  0.719  0.744  0.747  0.754  0.737  0.754  0.752  0.745  

TVP(λκ)-PVAR 0.727  0.745  0.756  0.744  0.760  0.762  0.746  0.759  0.747  0.740  0.749  0.740  0.755  0.738  0.743  0.739  0.738  0.723  0.727  0.746  0.725  0.758  0.723  0.746  0.756  0.744  

 h=8                      

VAR(1) 0.728  0.758  0.766  0.743  0.745  0.766  0.734  0.756  0.760  0.752  0.724  0.760  0.745  0.746  0.749  0.758  0.724  0.702  0.738  0.766  0.743  0.758  0.746  0.752  0.731  0.746  

VAR(2) 0.734  0.743  0.751  0.751  0.755  0.759  0.715  0.753  0.755  0.745  0.750  0.750  0.749  0.760  0.748  0.761  0.712  0.701  0.748  0.757  0.749  0.756  0.739  0.773  0.741  0.746  

PVAR 0.748  0.760  0.757  0.759  0.751  0.759  0.760  0.758  0.757  0.757  0.730  0.747  0.754  0.750  0.748  0.745  0.752  0.749  0.741  0.745  0.752  0.751  0.751  0.742  0.752  0.751  

TVP(λ)-PVAR 0.757  0.750  0.761  0.742  0.748  0.747  0.751  0.738  0.755  0.751  0.748  0.753  0.759  0.755  0.738  0.756  0.765  0.762  0.746  0.750  0.746  0.752  0.769  0.765  0.743  0.752  

TVP(κ)-PVAR 0.737  0.744  0.737  0.768  0.761  0.754  0.739  0.736  0.744  0.736  0.743  0.767  0.756  0.749  0.732  0.747  0.742  0.723  0.718  0.755  0.739  0.763  0.741  0.751  0.731  0.745  

TVP(λκ)-PVAR 0.738  0.756  0.740  0.755  0.766  0.763  0.733  0.755  0.740  0.727  0.743  0.747  0.748  0.744  0.745  0.750  0.734  0.707  0.713  0.747  0.736  0.752  0.731  0.751  0.768  0.744  

 


