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Abstract 14 

Volatile fatty acids (VFAs) derived from organic wastes are being considered as low-cost 15 

feedstock for microbial lipid production as a valuable alternative to plant derived oils/biodiesel. 16 

In this study, VFAs were produced from anaerobic open culture fermentation of wastepaper and 17 

subsequently, used as feedstock for lipid production by Cryptococcus curvatus. Total VFAs, 18 

yield and productivity achieved from waste office paper (WOP) and newspaper (WNP) were 19 

17.3 and 10.2 g/L, 0.17 and 0.10 g/g TS, and 0.86 and 0.51 g/L/day, respectively. Biomass, lipid 20 

content and productivity achieved utilizing VFAs of WOP and WNP were 4.3 and 2.9 g/L, 41.2 21 

and 27.7% DCW, and 0.037 and 0.033 g/L/h, respectively. The dominance of fatty acids such as 22 

oleic, palmitic, stearic and linoleic acid in the lipids suggests a high level of similarity with 23 

plant/vegetable oils used for biodiesel production. Therefore, VFAs derived from wastepaper 24 

could be potentially used as feedstock to produce microbial lipids towards cost-effective 25 

production of biodiesel. 26 
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1. Introduction 31 

Currently, the world is facing global challenges such as fossil fuel depletion and climate 32 

change caused by global warming due to the increase of greenhouse gasses (GHGs) emissions 33 

from fossil fuels [1, 2]. Biodiesel, fatty acids alkyl ester, can be obtained by transesterification of 34 

triacylglycerol from edible vegetable oils (i.e. soybean, sunflower and palm oil), fats and cooling 35 

oil wastes, has several advantages than conventional petroleum-based diesel fuel such as non-36 

sulfur oxide emission, sustainability and potential for carbon reduction [3]. However, the use of 37 

these edible oils as a feedstock for biodiesel limiting its commercialization as it competes with 38 

food production and increase the cost of raw material such as vegetables and agricultural 39 

commodities [4]. Microbial lipids produced by oleaginous microorganisms, which accumulates 40 

20-80% of their dry weight in the form of lipids under nutrient-limitation conditions, are the 41 

most promising alternative non-edible lipid source for sustainable production of biodiesel [5-8]. 42 

However, the production cost of microbial lipids remains as a major limiting factor due to the 43 

carbon sources used for production, which is estimated to be about 80% of the total medium cost 44 

and it contributes to over 60% of the total production costs while using glucose as a carbon 45 

source [9]. A potential solution to reduce the production cost is to utilize low-cost or waste 46 

biomass that can be used as a substrate for microbial lipid production [8, 10, 11].  47 

Volatile fatty acids (VFAs) are linear short-chain fatty acids (C2 – C5), which includes 48 

acetic, propionic, butyric, isobutyric, valeric, isovaleric and 2-methylbutyric acid are 49 

intermediate products of anaerobic digestion (AD), have been extensively investigated for 50 

production of various bio-based materials, using a so-called VFAs platform [12-14]. The major 51 

advantages of VFAs platform for bio-based materials production are the absence of requirement 52 

for sterilization or addition of enzymes to hydrolyze, and the availability of feedstock in 53 
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substantial quantities [15].VFAs are considered as a potential carbon source for lipid production 54 

using oleaginous yeast as it requires only shorter transformation pathway (VFAs into acetyl-55 

CoA, which is used for biosynthesis of lipids) with high theoretical lipid conversion efficiency 56 

[16, 17]. 57 

Microbial lipids production utilizing lignocellulosic biomass has received increasing 58 

interest in recent days, as an alternative solution for large-scale production of biodiesel [7, 18, 59 

19]. Wastepaper, a major component of municipal and industrial solid wastes, accounts more 60 

than 35% of total lignocellulosic wastes is being considered as a promising feedstock for biofuels 61 

due to its sustainability and abundance [20, 21]. Recently, wastepaper has been used as feedstock 62 

for production of various valuable bio-products such as bioethanol and PHAs [7, 20, 22]. 63 

Utilization of wastepaper for production of microbial lipids is a promising alternative biorefinery 64 

approach for large-scale production of biodiesel, which is not only reduces the cost of 65 

production, but also provides alternative route for waste management [23]. Hence, in this study 66 

we aim to investigate the conversion of wastepaper into VFAs through anaerobic open culture 67 

fermentation (OCF) and subsequently, use the VFAs as possible feedstock for production of 68 

microbial lipids as an alternative to industrial production of biodiesel.  69 

2. Materials and methods 70 

 All chemicals and reagents used in this study were purchased from Sigma-Aldrich (St. 71 

Louis, MO, USA) or as indicated. 72 

2.1. Inocula 73 

2.1.1. Inoculum for VFAs production 74 

Waste activated sludge (WAS) obtained from local wastewater treatment plant was 75 

passed through a sieve (18 mesh) and heat treated at 90
o
 C for 20 min to inactivate methanogens. 76 
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The raw sludge contained 1.59 ± 0.01 g/L total suspended solid (TSS) and 1.36 ±0.01 g/L 77 

volatile suspended solid (VSS). Further, WAS purged with N2 gas for 10 min, pH maintained at 78 

5.4 - 5.6 using 2N HCl and NaOH, incubated in a shaker incubator at 35
o
C and 200 rpm was 79 

used as a inoculum for VFA production.  80 

2.1.2. Inoculum for microbial lipid production 81 

 The oleaginous yeast, Cryptococcus curvatus DSM 70022 obtained from DSMZ 82 

(Germany) was propagated on YPD agar slants in every two weeks (yeast extract 10; peptone 10; 83 

glucose 20; agar 15 (g/L), pH 6.0, 30
o 

C). For seed culture, C. curvatus was inoculated into 50 84 

mL of YPD medium in 250 mL flask and incubated at 30
o 

C, 200 rpm for 36 h. Afterwards, the 85 

cultures were grown in a medium containing 10 g/L acetate, 2 g/L propionate, 1 g/L butyrate, 1 86 

g/L peptone, and 1 g/L yeast extract (pH - 5.5) for 24 h and used as a inoculum for lipid 87 

production.  88 

2.2. Feasibility of C. curvatus for lipid production using VFAs  89 

The feasibility of C. curavtus for lipid production using VFAs was investigated using 90 

synthetic VFAs [mixture of acetic acid (AA), propionic acid (PA) and butyric acid (BA)].  The 91 

influence of VFAs on lipid accumulation was studied by comparing the initial concentration and 92 

ratio of each VFA in the mixture. The effect of initial VFAs concentration was evaluated using 2, 93 

5 and 10 g/L at a ratio of 5:1:4. Effects of various VFAs ratio (AA: BA: PA) (5:1:4, 5:2:3, 6:2:2 94 

and 6:1:3) on lipid accumulation was investigated at an initial concentration of 5 g/L VFAs. The 95 

effect of various nitrogen sources and their combination (1:1) on lipid production was 96 

investigated using various inorganic [(NH4)2SO4, NH4Cl, NH4NO3, NaNO3 and KNO3] and 97 

organic nitrogen sources [yeast extract (10% N, w/w)] and peptone (14% N, w/w)]. The initial 98 
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pH of the medium was adjusted to 5.5 using 2N HCl and NaOH, and the C/N ratio was 99 

maintained at 40 under all tested concentrations. 100 

2.3. Feedstock pretreatment for VFAs production 101 

 The feedstock for VFAs production such as waste office paper (WOP) and waste 102 

newspaper (WNP) were shredded into a small pieces (2 x 6 mm) and subjected to pretreatment 103 

by mixing with 0.5% H2O2 (5% w/v) and then autoclave at 121
o
C for 30 min. The solid residue 104 

was collected by centrifugation (Eppendorf-5810R, Germany) at 5000 xg for 10 min, washed 3 - 105 

4 times repeatedly with deionized water until obtain neutral pH, dried at 60
o
C for 24 h and used 106 

as substrate for anaerobic digestion. 107 

2.4. VFAs production from wastepaper by OCF  108 

Anaerobic open culture fermentation  (OCF) was carried out in 250 mL reactors (serum 109 

bottles with seals) with 100 mL of anaerobic fermenter medium [modified RAMM medium 110 

containing 1; yeast extract, 0.27; KH2PO4, 0.35; K2HPO4, 0.53; NH4Cl, 0.1; MgCl·6H2O, 0.075; 111 

CaCl2·2H2O and 10; NaHCO3] with the solid loading of 10% (w/v) pretreated WOP and WNP. 112 

NaHCO3 was added to the medium separately as an alkaline buffer. The trace element solution 113 

(DSMZ 320, 0.1% v/v) and vitamin solution (DSMZ 503, 0.1% (v/v) was added to the 114 

fermentation medium and the pH was adjusted to 8.0 (2 N HCl and NaOH). 2-115 

mercaptoethanesulfonate (BES) (12 mM) was used as a methanogens inhibitor. The reactors 116 

were seeded with 10% (v/v) inoculum, purged with nitrogen gas for 10 min, sealed with rubber 117 

stopper with crimp aluminum seals and incubated at 30
o
 C with 100 rpm for 4 weeks. After 118 

incubation, the broth from OCF was centrifuged (Eppendorf-5810R, Germany) at 10,000 xg for 119 

10 min and the supernatant was subjected to struvite precipitation at 1: 1: 1.1 (Mg
2+

: NH
4+

-N: 120 
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PO4
3- 

-P) molar concentration to achieve C/N ratio of 40 and subsequently used for lipid 121 

production. 122 

2.5. Lipid production using VFAs produced from wastepaper  123 

Lipid production was carried out in 250 mL conical flasks containing 50 mL of VFAs 124 

broth obtained from OCF. No additional nutrients were added. Seed cultures were grown for 24 h 125 

in synthetic VFAs media until reaching an Optical Density of 1 at a wavelength of 600 nm 126 

(OD600). Flasks were inoculated with 1% (v/v) seed cultures subsequently grown for 72 h at       127 

30 
o
C and 200 rpm. Aliquots (5 mL) were withdrawn at regular intervals (12 h) and used to 128 

determine cell biomass, lipid production and residual VFAs in the medium. Biomass was 129 

estimated gravimetrically by centrifuging the culture broth (5 mL) at 5000 xg for 10 min at 4
o
C, 130 

washed with deionized water and dried at 60
o
C for 24 h and expressed as cell dry cell weight (g 131 

DCW/L).  132 

2.6. Analytical methods 133 

 Total Solids (TS) were determined by drying at 105 
o
C overnight and volatile solids (VS) 134 

were determined by ashing at 550 
o
C for 3 h [24]. Total nitrogen (TN) and ammonium nitrogen 135 

(NH3-N) were measured using a standard method [24]. The concentrations of VFAs were 136 

analyzed using an HPLC (Agilent Technology 1100 series) equipped with Aminex HPX-87H 137 

column (BIORAD INC., USA), using refractive index (RI) and diode array detectors (DAD). 138 

The mobile phase was 0.004 M H2SO4 at a flow rate was 0.6 mL/min and the column 139 

temperature was maintained constant at 50
o
C. Samples were filter through 0.2µm (PVDF) 140 

syringe filter (Millipore, USA) and subsequently used for analysis. 141 
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 Lipids extraction from dried biomass was done by the method of Folch et al. [25]. 142 

Briefly, 10 mg of dried biomass was digested using 3.2 mL of 4M HCl at 55
o
C for 2 h and 143 

extracted with 8 mL of chloroform/methanol (2:1, v/v), vortexed for 2 - 3min and centrifuged at 144 

2,000 xg for 5 min. Further, the extracted solution was purged with nitrogen gas to evaporate the 145 

solvents and the lipids were measured and expressed as g/L.  146 

 Fatty acid methyl esters (FAME) were prepared using 2.8 M H2SO4 in methanol 147 

containing (10 mL/L) nonadecanoic acid (C19:0) as an internal standard and heated at 100°C for 148 

4 h. After cooling to room temperature, 1 mL of distilled water was added, vortexed for 3 min 149 

and centrifuged at 2,000 xg for 1 min for organic phase separation. FAMEs were analyzed by GC 150 

(Agilent 7890A, USA) equipped with flame ionization detector (FID) and FAMEWAX column 151 

(30 m x 320 µm x 0.25 µm) using helium as a carrier gas. The injector was kept at 280
o
C with an 152 

injection volume of 1 µL with a split ratio at 30. The initial oven temperature was set at 120
o
C. 153 

The oven temperature was increased at a heating rate of 3
o 

C/min up to 240
o
C and held for 20 154 

min. The temperature of the detector was set at 250
o
C. Fatty acids were calculated relative to 155 

their weight compared to total lipids in biomass and expressed as percentage (% total lipids). 156 

3. Results and discussion 157 

3.1. Effect of VFAs concentration and ratio on biomass and lipid production 158 

The effects of initial concentration of VFAs on biomass and lipid production was 159 

investigated and presented in Table 1. Biomass and lipid yield achieved was 1.62 ± 0.06 and 160 

0.587 ± 0.004, 2.78 ± 0.08 and 0.781± 0.008, and 4.19 ± 0.11 and 0.712 ± 0.005 g/L, and lipid 161 

content achieved was 36.3 ± 0.21, 28.1 ± 0.18 and 17.0 ± 0.20% with 2, 5 and 10 g/L VFAs 162 

concentration, respectively. These results evidenced that C. curvatus was able to grow even at 163 
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10g/L VFAs concentration; however, there was a considerable decrease in lipid production 164 

reported with increasing the concentration VFAs, which clearly suggesting that the higher 165 

concentration of VFAs promotes the cell growth than lipid accumulation. Thus, the initial 166 

concentration of 5 g/L VFAs was considered as most suitable resulting in high yield of biomass 167 

and lipid production compared to the other tested VFAs concentration. Park et al. [12] reported 168 

that the yeast, C. curvatus was not able to utilize 8 g/L of VFAs; however, lipid production was 169 

elevated with increasing VFAs to 6 g/L. Several other studies also reported that there was a 170 

significant inhibition on lipid production when VFAs concentration increased above 5 g/L [26, 171 

27].  172 

The effect of different ratio of VFAs on biomass and lipid production was investigated 173 

with four different ratios such as 5:1:4, 5:2:3, 6:2:2 and 6:1:3 (AA: BA: PA). The cell biomass 174 

and lipid yield achieved was ranged between 3.62 ± 0.10 and 4.38 ± 0.08 g/L, and 0.85 ± 0.004 175 

and 1.69 ± 0.010g/L, respectively (Table.1). The results suggested that maximum biomass (4.38 176 

± 0.08 g/L), lipid production (1.69 ± 0.010g/L) and lipid yield coefficient (0.338 g/g) was 177 

achieved with the VFAs ratio of 6:1:3. Our results showed that high content of acetic acid (AA) 178 

in VFAs mixture greatly promotes the cell biomass and lipid productivity; hence, acetic acid is 179 

more favorable for high productivity than butyric and propionic acids. Liu et al. [28] reported 180 

that high content of AA in VFAs mixture (6:3:1) increased the biomass and productivity by C. 181 

curvatus utilizing WAS- derived VFAs through sequencing batch fermentation strategy.  182 

3.2. Effect of various nitrogen sources on lipid accumulation  183 

Several studies suggested that lipid accumulation using VFAs were greatly influenced by 184 

nitrogen source used for production. In this study, effect of various nitrogen sources was 185 
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investigated using synthetic VFAs at 5 g/L with C/N ratio 40 as presented in Table 2. The cell 186 

biomass achieved from the nitrogen sources such as ammonium sulphate, ammonium chloride, 187 

ammonium nitrate, sodium nitrate, potassium nitrate, yeast extract and peptone were 3.60 ± 0.13, 188 

3.69 ± 0.14, 3.71 ± 0.16, 1.49 ± 0.08, 1.36 ± 0.08, 3.24 ± 0.15 and 4.17 ± 0.12 (g/L), 189 

respectively. The lipid yield (g/L) and lipid content (%) achieved using ammonium sulphate, 190 

ammonium chloride, ammonium nitrate, sodium nitrate, potassium nitrate, yeast extract and 191 

peptone were 0.236 ± 0.006 and 6.5 ± 0.18, 0.456 ± 0.008 and 12.4 ± 0.08, 0.416 ± 0.006 and 192 

11.2 ± 0.12, 0.256 ± 0.005 and 17.2 ± 0.14, 0.139 ± 0.004 and 10.2 ± 0.08, 0.790 ± 0.006 and 193 

24.4 ± 0.16, and 0.556 ± 0.008 and 13.3 ± 0.10, respectively. The results of combined addition of 194 

organic and inorganic nitrogen (1:1) suggested that maximum cell biomass (5.53 ± 0.09 g/L), 195 

lipid yield (1.724 ± 0.008 g/L) and lipid content (31.2 ± 0.13) was achieved with the combination 196 

of ammonium nitrate and yeast extract. These results clearly suggested that the nitrogen sources 197 

playing an important role in cell biomass and lipid production, and the combined addition of 198 

ammonium nitrate and yeast extract (1:1) was most suitable for high yield of lipids while using 199 

VFAs as a carbon source. Several other studies also reported that the combination of both 200 

organic and inorganic nitrogen sources were significantly higher than the yield achieved while 201 

using organic/inorganic nitrogen alone with carbon sources [7, 29]. 202 

3.3. VFAs production from wastepaper through OCF  203 

The VFAs production profile from WOP and WNP by OCF suggested that VFAs 204 

production started at day 2 and reached maximum after 20 days (Fig. 1). VFAs produced from 205 

WOP and WNP were 17.28 ± 0.67 and 10.23 ± 0.52 g/L with the total nitrogen of 106.16 ± 2.34 206 

and 82.62 ±1.52 mg/L, respectively. The VFAs yield and productivity achieved from WOP and 207 

WNP were 0.173 g/g TS and 0.864 g/L/day, and 0.102 g/g TS and 0.512 g/L/day, respectively. 208 
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Sawatdeenarunat et al. [30] (2017) achieved a VFAs yield of 107.25 ± 2.19 mg/gVS from 209 

anaerobic digestion of Napier grass using micro oxygenation. Park et al. [12] reported that 8.12 210 

g/L of VFAs obtained from rice straw after 2 weeks of anaerobic fermentation with NH3-N and 211 

total-N content of 75.16 mg/L and 129.33 mg/L, respectively.  212 

Figure 2 shows the composition of VFAs produced from WOP and WNP. Results 213 

suggests that acetic, butyric and propionic acids were produced equally at the earlier stages (4 214 

days); however, acetic acid was remained as most dominated thereafter followed by propionic 215 

and butyric acid. The composition of VFAs was 53.4 and 48.6 % AA, 35.6 and 35.8 % PA, and 216 

11.0 and 17.3 % BA with WOP and WNP, respectively. Our results are consistent compared to 217 

previous studies where a similar trend was observed with the dominance of acetic, propionic, and 218 

butyric acids during anaerobic digestion of various waste biomasses [12, 30]. 219 

3.4. Lipid production utilizing VFAs produced from wastepaper 220 

Lipid production using the VFAs derived from anaerobic OCF of WOP and WNP was 221 

carried out by growing the oleaginous yeast, C. curvatus for 72 h at 30
o
C without any additional 222 

nutrients at a C/N ratio of 40. During the batch cultivation, cell biomass production was 223 

increased constantly from the beginning and reached maximum at 48 and 24 h with WOP and 224 

WNP, respectively (Fig.3 a & b). Lipid accumulation was also increased with time and reached 225 

maximum at 48 h without any further increase. Biomass, lipid yield and lipid content achieved 226 

from the VFAs of WOP and WNP were 4.32 ± 0.24 and 2.91 ± 0.23 g/L, 1.78 ± 0.12 and 0.80 ± 227 

0.06 g/L, and 41.2 ± 0.62 and 27.7 ± 0.36 %, respectively (Table 3). The lipid coefficient 228 

achieved was 0.11 ± 0.02 and 0.08 ± 0.02 g/g VFA with the productivity of 0.037 ± 0.004 and 229 

0.033 ± 0.006 g/L/h from VFAs of WOP and WNP, respectively. The results suggested that the 230 
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cell biomass and lipid yield achieved from VFAs of WOP was comparatively higher than the 231 

VFAs of WNP, due to the high yield of VFAs and compositional variation between WOP and 232 

WNP. Xu et al. [4] achieved 2.5 g/L biomass with lipid productivity of 0.272 g/L/d from C. 233 

curvatus utilizing VFAs from anaerobic digestion of macroalgae.  234 

The results of VFAs consumption during batch cultivation suggested that all of the three 235 

VFAs were started to be utilized from the beginning of fermentation, and were completely 236 

exhausted within 72 and 60 h with the VFAs of WOP and WNP, respectively (Fig. 4). The 237 

results suggested that acetic acid was mainly utilized up to 36 h followed by butyric and 238 

propionic acids. Though biomass and lipid production were increased with decreasing VFAs 239 

concentration in the medium, rate of production was comparatively high during assimilation of 240 

acetic acid than other VFAs. Previous studies also suggested that high proportion of acetic acid 241 

was more advantageous for the synthesis of microbial lipids and cell mass production than 242 

butyric and propionic acids [31, 32]. These results also indicated that C. curvatus is able to 243 

utilize all three kinds of acid simultaneously, but preferably acetic acid than propionic and 244 

butyric acids due to the variation in metabolic fate of each single VFAs [17, 33]. Acetic acid can 245 

be directly transformed to acetyl-coenzyme A (CoA), which can be used to synthesize microbial 246 

oils. Contrarily, propionate, an odd-chain carboxylic acid, is converted to propionyl CoA and 247 

then enters the tricarboxylic acid (TCA) cycle via methylmalonyl-CoA interconversion to 248 

succinyl-CoA. On the other hand, butyrate undergoes β-oxidation to produce acetoacetyl-CoA 249 

which is further transformed into acetyl-CoA [17, 33]. 250 

3.5. Fatty acid profile of microbial lipids produced by C. curvatus utilizing VFAs  251 
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Fatty acid profile analysis of the lipids produced by C. curvatus suggested that C18 fatty 252 

acids (stearic, oleic, linoleic acid) were dominated (80%), followed by C16 fatty acid (palmitic 253 

acid) (15%). The results suggested that the oleic acid (52.64 ± 1.32 and 50.65 ± 1.82%) was the 254 

most abundant fatty acid followed by palmitic acid (16.42 ± 1.16 and 15.18 ± 0.82%), stearic 255 

acid (15.26 ± 0.78 and 14.41 ± 0.69%) and linoleic acid (12.25 ± 0.82 and 12.16 ± 0.71%) in 256 

lipids produced from VFAs of WOP and WNP, respectively. Several other studies were also 257 

reported that palmitic acid, stearic acid, and oleic acid were the major fatty acids of lipids 258 

produced by C. curvatus using VFAs derived from various sources [4, 12]. Thus, the long chain 259 

saturated and unsaturated fatty acids (C16 and C18) are the main components of the lipid, which 260 

is similar to the typical plant/vegetable oils, suggesting its potential to use as a feedstock for 261 

large scale production of biodiesel. 262 

4. Conclusions 263 

 Utilization of wastepaper for production of microbial lipids to use as feedstock for 264 

biodiesel aims to open new avenues for cost-effective production of biofuels through biorefinery 265 

concept. Moreover, this biorefinery approach offers a potential valuable and alternative route for 266 

management of wastepaper. Importantly, VFAs derived from wastepaper were used for lipid 267 

production without the need to supply any additional nutrients. Biomass (4.3 g DCW/L) and lipid 268 

accumulation (41 %) achieved in this study was comparatively higher than other studies utilizing 269 

VFAs from various sources. Fatty acid profiles of lipids produced were comparable to 270 

plant/vegetable oils used for biodiesel production, and hence, VFAs derived from wastepaper 271 

could be a potential feedstock for microbial lipids production to use as non-edible lipid source 272 

for biodiesel. However, further investigations will be needed to ensure process scale up 273 

feasibility and sustainable production. 274 
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1. Introduction 31 

Currently, the world is facing global challenges such as fossil fuel depletion and climate 32 

change caused by global warming due to the increase of greenhouse gasses (GHGs) emissions 33 

from fossil fuels [1, 2]. Biodiesel, fatty acids alkyl ester, can be obtained by transesterification of 34 

triacylglycerol from edible vegetable oils (i.e. soybean, sunflower and palm oil), fats and cooling 35 

oil wastes, has several advantages than conventional petroleum-based diesel fuel such as non-36 

sulfur oxide emission, sustainability and potential for carbon reduction [3]. However, the use of 37 

these edible oils as a feedstock for biodiesel limiting its commercialization as it competes with 38 

food production and increase the cost of raw material such as vegetables and agricultural 39 

commodities [4]. Microbial lipids produced by oleaginous microorganisms, which accumulates 40 

20-80% of their dry weight in the form of lipids under nutrient-limitation conditions, are the 41 

most promising alternative non-edible lipid source for sustainable production of biodiesel [5-8]. 42 

However, the production cost of microbial lipids remains as a major limiting factor due to the 43 

carbon sources used for production, which is estimated to be about 80% of the total medium cost 44 

and it contributes to over 60% of the total production costs while using glucose as a carbon 45 

source [9]. A potential solution to reduce the production cost is to utilize low-cost or waste 46 

biomass that can be used as a substrate for microbial lipid production [8, 10, 11].  47 

Volatile fatty acids (VFAs) are linear short-chain fatty acids (C2 – C5), which includes 48 

acetic, propionic, butyric, isobutyric, valeric, isovaleric and 2-methylbutyric acid are 49 

intermediate products of anaerobic digestion (AD), have been extensively investigated for 50 

production of various bio-based materials, using a so-called VFAs platform [12-14]. The major 51 

advantages of VFAs platform for bio-based materials production are the absence of requirement 52 

for sterilization or addition of enzymes to hydrolyze, and the availability of feedstock in 53 
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substantial quantities [15].VFAs are considered as a potential carbon source for lipid production 54 

using oleaginous yeast as it requires only shorter transformation pathway (VFAs into acetyl-55 

CoA, which is used for biosynthesis of lipids) with high theoretical lipid conversion efficiency 56 

[16, 17]. 57 

Microbial lipids production utilizing lignocellulosic biomass has received increasing 58 

interest in recent days, as an alternative solution for large-scale production of biodiesel [7, 18, 59 

19]. Wastepaper, a major component of municipal and industrial solid wastes, accounts more 60 

than 35% of total lignocellulosic wastes is being considered as a promising feedstock for biofuels 61 

due to its sustainability and abundance [20, 21]. Recently, wastepaper has been used as feedstock 62 

for production of various valuable bio-products such as bioethanol and PHAs [7, 20, 22]. 63 

Utilization of wastepaper for production of microbial lipids is a promising alternative biorefinery 64 

approach for large-scale production of biodiesel, which is not only reduces the cost of 65 

production, but also provides alternative route for waste management [23]. Hence, in this study 66 

we aim to investigate the conversion of wastepaper into VFAs through anaerobic open culture 67 

fermentation (OCF) and subsequently, use the VFAs as possible feedstock for production of 68 

microbial lipids as an alternative to industrial production of biodiesel.  69 

2. Materials and methods 70 

 All chemicals and reagents used in this study were purchased from Sigma-Aldrich (St. 71 

Louis, MO, USA) or as indicated. 72 

2.1. Inocula 73 

2.1.1. Inoculum for VFAs production 74 

Waste activated sludge (WAS) obtained from local wastewater treatment plant was 75 

passed through a sieve (18 mesh) and heat treated at 90
o
 C for 20 min to inactivate methanogens. 76 
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The raw sludge contained 1.59 ± 0.01 g/L total suspended solid (TSS) and 1.36 ±0.01 g/L 77 

volatile suspended solid (VSS). Further, WAS purged with N2 gas for 10 min, pH maintained at 78 

5.4 - 5.6 using 2N HCl and NaOH, incubated in a shaker incubator at 35
o
C and 200 rpm was 79 

used as a inoculum for VFA production.  80 

2.1.2. Inoculum for microbial lipid production 81 

 The oleaginous yeast, Cryptococcus curvatus DSM 70022 obtained from DSMZ 82 

(Germany) was propagated on YPD agar slants in every two weeks (yeast extract 10; peptone 10; 83 

glucose 20; agar 15 (g/L), pH 6.0, 30
o 

C). For seed culture, C. curvatus was inoculated into 50 84 

mL of YPD medium in 250 mL flask and incubated at 30
o 

C, 200 rpm for 36 h. Afterwards, the 85 

cultures were grown in a medium containing 10 g/L acetate, 2 g/L propionate, 1 g/L butyrate, 1 86 

g/L peptone, and 1 g/L yeast extract (pH - 5.5) for 24 h and used as a inoculum for lipid 87 

production.  88 

2.2. Feasibility of C. curvatus for lipid production using VFAs  89 

The feasibility of C. curavtus for lipid production using VFAs was investigated using 90 

synthetic VFAs [mixture of acetic acid (AA), propionic acid (PA) and butyric acid (BA)].  The 91 

influence of VFAs on lipid accumulation was studied by comparing the initial concentration and 92 

ratio of each VFA in the mixture. The effect of initial VFAs concentration was evaluated using 2, 93 

5 and 10 g/L at a ratio of 5:1:4. Effects of various VFAs ratio (AA: BA: PA) (5:1:4, 5:2:3, 6:2:2 94 

and 6:1:3) on lipid accumulation was investigated at an initial concentration of 5 g/L VFAs. The 95 

effect of various nitrogen sources and their combination (1:1) on lipid production was 96 

investigated using various inorganic [(NH4)2SO4, NH4Cl, NH4NO3, NaNO3 and KNO3] and 97 

organic nitrogen sources [yeast extract (10% N, w/w)] and peptone (14% N, w/w)]. The initial 98 
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pH of the medium was adjusted to 5.5 using 2N HCl and NaOH, and the C/N ratio was 99 

maintained at 40 under all tested concentrations. 100 

2.3. Feedstock pretreatment for VFAs production 101 

 The feedstock for VFAs production such as waste office paper (WOP) and waste 102 

newspaper (WNP) were shredded into a small pieces (2 x 6 mm) and subjected to pretreatment 103 

by mixing with 0.5% H2O2 (5% w/v) and then autoclave at 121
o
C for 30 min. The solid residue 104 

was collected by centrifugation (Eppendorf-5810R, Germany) at 5000 xg for 10 min, washed 3 - 105 

4 times repeatedly with deionized water until obtain neutral pH, dried at 60
o
C for 24 h and used 106 

as substrate for anaerobic digestion. 107 

2.4. VFAs production from wastepaper by OCF  108 

Anaerobic open culture fermentation  (OCF) was carried out in 250 mL reactors (serum 109 

bottles with seals) with 100 mL of anaerobic fermenter medium [modified RAMM medium 110 

containing 1; yeast extract, 0.27; KH2PO4, 0.35; K2HPO4, 0.53; NH4Cl, 0.1; MgCl·6H2O, 0.075; 111 

CaCl2·2H2O and 10; NaHCO3] with the solid loading of 10% (w/v) pretreated WOP and WNP. 112 

NaHCO3 was added to the medium separately as an alkaline buffer. The trace element solution 113 

(DSMZ 320, 0.1% v/v) and vitamin solution (DSMZ 503, 0.1% (v/v) was added to the 114 

fermentation medium and the pH was adjusted to 8.0 (2 N HCl and NaOH). 2-115 

mercaptoethanesulfonate (BES) (12 mM) was used as a methanogens inhibitor. The reactors 116 

were seeded with 10% (v/v) inoculum, purged with nitrogen gas for 10 min, sealed with rubber 117 

stopper with crimp aluminum seals and incubated at 30
o
 C with 100 rpm for 4 weeks. After 118 

incubation, the broth from OCF was centrifuged (Eppendorf-5810R, Germany) at 10,000 xg for 119 

10 min and the supernatant was subjected to struvite precipitation at 1: 1: 1.1 (Mg
2+

: NH
4+

-N: 120 
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PO4
3- 

-P) molar concentration to achieve C/N ratio of 40 and subsequently used for lipid 121 

production. 122 

2.5. Lipid production using VFAs produced from wastepaper  123 

Lipid production was carried out in 250 mL conical flasks containing 50 mL of VFAs 124 

broth obtained from OCF. No additional nutrients were added. Seed cultures were grown for 24 h 125 

in synthetic VFAs media until reaching an Optical Density of 1 at a wavelength of 600 nm 126 

(OD600). Flasks were inoculated with 1% (v/v) seed cultures subsequently grown for 72 h at       127 

30 
o
C and 200 rpm. Aliquots (5 mL) were withdrawn at regular intervals (12 h) and used to 128 

determine cell biomass, lipid production and residual VFAs in the medium. Biomass was 129 

estimated gravimetrically by centrifuging the culture broth (5 mL) at 5000 xg for 10 min at 4
o
C, 130 

washed with deionized water and dried at 60
o
C for 24 h and expressed as cell dry cell weight (g 131 

DCW/L).  132 

2.6. Analytical methods 133 

 Total Solids (TS) were determined by drying at 105 
o
C overnight and volatile solids (VS) 134 

were determined by ashing at 550 
o
C for 3 h [24]. Total nitrogen (TN) and ammonium nitrogen 135 

(NH3-N) were measured using a standard method [24]. The concentrations of VFAs were 136 

analyzed using an HPLC (Agilent Technology 1100 series) equipped with Aminex HPX-87H 137 

column (BIORAD INC., USA), using refractive index (RI) and diode array detectors (DAD). 138 

The mobile phase was 0.004 M H2SO4 at a flow rate was 0.6 mL/min and the column 139 

temperature was maintained constant at 50
o
C. Samples were filter through 0.2µm (PVDF) 140 

syringe filter (Millipore, USA) and subsequently used for analysis. 141 
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 Lipids extraction from dried biomass was done by the method of Folch et al. [25]. 142 

Briefly, 10 mg of dried biomass was digested using 3.2 mL of 4M HCl at 55
o
C for 2 h and 143 

extracted with 8 mL of chloroform/methanol (2:1, v/v), vortexed for 2 - 3min and centrifuged at 144 

2,000 xg for 5 min. Further, the extracted solution was purged with nitrogen gas to evaporate the 145 

solvents and the lipids were measured and expressed as g/L.  146 

 Fatty acid methyl esters (FAME) were prepared using 2.8 M H2SO4 in methanol 147 

containing (10 mL/L) nonadecanoic acid (C19:0) as an internal standard and heated at 100°C for 148 

4 h. After cooling to room temperature, 1 mL of distilled water was added, vortexed for 3 min 149 

and centrifuged at 2,000 xg for 1 min for organic phase separation. FAMEs were analyzed by GC 150 

(Agilent 7890A, USA) equipped with flame ionization detector (FID) and FAMEWAX column 151 

(30 m x 320 µm x 0.25 µm) using helium as a carrier gas. The injector was kept at 280
o
C with an 152 

injection volume of 1 µL with a split ratio at 30. The initial oven temperature was set at 120
o
C. 153 

The oven temperature was increased at a heating rate of 3
o 

C/min up to 240
o
C and held for 20 154 

min. The temperature of the detector was set at 250
o
C. Fatty acids were calculated relative to 155 

their weight compared to total lipids in biomass and expressed as percentage (% total lipids). 156 

3. Results and discussion 157 

3.1. Effect of VFAs concentration and ratio on biomass and lipid production 158 

The effects of initial concentration of VFAs on biomass and lipid production was 159 

investigated and presented in Table 1. Biomass and lipid yield achieved was 1.62 ± 0.06 and 160 

0.587 ± 0.004, 2.78 ± 0.08 and 0.781± 0.008, and 4.19 ± 0.11 and 0.712 ± 0.005 g/L, and lipid 161 

content achieved was 36.3 ± 0.21, 28.1 ± 0.18 and 17.0 ± 0.20% with 2, 5 and 10 g/L VFAs 162 

concentration, respectively. These results evidenced that C. curvatus was able to grow even at 163 



8 
 

10g/L VFAs concentration; however, there was a considerable decrease in lipid production 164 

reported with increasing the concentration VFAs, which clearly suggesting that the higher 165 

concentration of VFAs promotes the cell growth than lipid accumulation. Thus, the initial 166 

concentration of 5 g/L VFAs was considered as most suitable resulting in high yield of biomass 167 

and lipid production compared to the other tested VFAs concentration. Park et al. [12] reported 168 

that the yeast, C. curvatus was not able to utilize 8 g/L of VFAs; however, lipid production was 169 

elevated with increasing VFAs to 6 g/L. Several other studies also reported that there was a 170 

significant inhibition on lipid production when VFAs concentration increased above 5 g/L [26, 171 

27].  172 

The effect of different ratio of VFAs on biomass and lipid production was investigated 173 

with four different ratios such as 5:1:4, 5:2:3, 6:2:2 and 6:1:3 (AA: BA: PA). The cell biomass 174 

and lipid yield achieved was ranged between 3.62 ± 0.10 and 4.38 ± 0.08 g/L, and 0.85 ± 0.004 175 

and 1.69 ± 0.010g/L, respectively (Table.1). The results suggested that maximum biomass (4.38 176 

± 0.08 g/L), lipid production (1.69 ± 0.010g/L) and lipid yield coefficient (0.338 g/g) was 177 

achieved with the VFAs ratio of 6:1:3. Our results showed that high content of acetic acid (AA) 178 

in VFAs mixture greatly promotes the cell biomass and lipid productivity; hence, acetic acid is 179 

more favorable for high productivity than butyric and propionic acids. Liu et al. [28] reported 180 

that high content of AA in VFAs mixture (6:3:1) increased the biomass and productivity by C. 181 

curvatus utilizing WAS- derived VFAs through sequencing batch fermentation strategy.  182 

3.2. Effect of various nitrogen sources on lipid accumulation  183 

Several studies suggested that lipid accumulation using VFAs were greatly influenced by 184 

nitrogen source used for production. In this study, effect of various nitrogen sources was 185 



9 
 

investigated using synthetic VFAs at 5 g/L with C/N ratio of 40 as presented in Table 2. The cell 186 

biomass achieved from the nitrogen sources such as ammonium sulphate, ammonium chloride, 187 

ammonium nitrate, sodium nitrate, potassium nitrate, yeast extract and peptone were 3.60 ± 0.13, 188 

3.69 ± 0.14, 3.71 ± 0.16, 1.49 ± 0.08, 1.36 ± 0.08, 3.24 ± 0.15 and 4.17 ± 0.12 (g/L), 189 

respectively. The lipid yield (g/L) and lipid content (%) achieved using ammonium sulphate, 190 

ammonium chloride, ammonium nitrate, sodium nitrate, potassium nitrate, yeast extract and 191 

peptone were 0.236 ± 0.006 and 6.5 ± 0.18, 0.456 ± 0.008 and 12.4 ± 0.08, 0.416 ± 0.006 and 192 

11.2 ± 0.12, 0.256 ± 0.005 and 17.2 ± 0.14, 0.139 ± 0.004 and 10.2 ± 0.08, 0.790 ± 0.006 and 193 

24.4 ± 0.16, and 0.556 ± 0.008 and 13.3 ± 0.10, respectively. The results of combined addition of 194 

organic and inorganic nitrogen (1:1) suggested that maximum cell biomass (5.53 ± 0.09 g/L), 195 

lipid yield (1.724 ± 0.008 g/L) and lipid content (31.2 ± 0.13) was achieved with the combination 196 

of ammonium nitrate and yeast extract. These results clearly suggested that the nitrogen sources 197 

playing an important role in cell biomass and lipid production, and the combined addition of 198 

ammonium nitrate and yeast extract (1:1) was most suitable for high yield of lipids while using 199 

VFAs as a carbon source. Several other studies also reported that the combination of both 200 

organic and inorganic nitrogen sources were significantly higher than the yield achieved while 201 

using organic/inorganic nitrogen alone with carbon sources [7, 29]. 202 

3.3. VFAs production from wastepaper through OCF  203 

The VFAs production profile from WOP and WNP by OCF suggested that VFAs 204 

production started at day 2 and reached maximum after 20 days (Fig. 1). VFAs produced from 205 

WOP and WNP were 17.28 ± 0.67 and 10.23 ± 0.52 g/L with the total nitrogen of 106.16 ± 2.34 206 

and 82.62 ±1.52 mg/L, respectively. The VFAs yield and productivity achieved from WOP and 207 

WNP were 0.173 g/g TS and 0.864 g/L/day, and 0.102 g/g TS and 0.512 g/L/day, respectively. 208 
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Sawatdeenarunat et al. [30] (2017) achieved a VFAs yield of 107.25 ± 2.19 mg/gVS from 209 

anaerobic digestion of Napier grass using micro oxygenation. Park et al. [12] reported that 8.12 210 

g/L of VFAs obtained from rice straw after 2 weeks of anaerobic fermentation with NH3-N and 211 

total-N content of 75.16 mg/L and 129.33 mg/L, respectively.  212 

Figure 2 shows the composition of VFAs produced from WOP and WNP. Results 213 

suggests that acetic, butyric and propionic acids were produced equally at the earlier stages (4 214 

days); however, acetic acid was remained as most dominated thereafter followed by propionic 215 

and butyric acid. The composition of VFAs was 53.4 and 48.6 % AA, 35.6 and 35.8 % PA, and 216 

11.0 and 17.3 % BA with WOP and WNP, respectively. Our results are consistent compared to 217 

previous studies where a similar trend was observed with the dominance of acetic, propionic, and 218 

butyric acids during anaerobic digestion of various waste biomasses [12, 30]. 219 

3.4. Lipid production utilizing VFAs produced from wastepaper 220 

Lipid production using the VFAs derived from anaerobic OCF of WOP and WNP was 221 

carried out by growing the oleaginous yeast, C. curvatus for 72 h at 30
o
C without any additional 222 

nutrients at a C/N ratio of 40. During the batch cultivation, cell biomass production was 223 

increased constantly from the beginning and reached maximum at 48 and 24 h with WOP and 224 

WNP, respectively (Fig.3 a & b). Lipid accumulation was also increased with time and reached 225 

maximum at 48 h without any further increase. Biomass, lipid yield and lipid content achieved 226 

from the VFAs of WOP and WNP were 4.32 ± 0.24 and 2.91 ± 0.23 g/L, 1.78 ± 0.12 and 0.80 ± 227 

0.06 g/L, and 41.2 ± 0.62 and 27.7 ± 0.36 %, respectively (Table 3). The lipid coefficient 228 

achieved was 0.11 ± 0.02 and 0.08 ± 0.02 g/g VFA with the productivity of 0.037 ± 0.004 and 229 

0.033 ± 0.006 g/L/h from VFAs of WOP and WNP, respectively. The results suggested that the 230 
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cell biomass and lipid yield achieved from VFAs of WOP was comparatively higher than the 231 

VFAs of WNP, due to the high yield of VFAs and compositional variation between WOP and 232 

WNP. Xu et al. [4] achieved 2.5 g/L biomass with lipid productivity of 0.272 g/L/d from C. 233 

curvatus utilizing VFAs from anaerobic digestion of macroalgae.  234 

The results of VFAs consumption during batch cultivation suggested that all of the three 235 

VFAs were started to be utilized from the beginning of fermentation, and were completely 236 

exhausted within 72 and 60 h with the VFAs of WOP and WNP, respectively (Fig. 4). The 237 

results suggested that acetic acid was mainly utilized up to 36 h followed by butyric and 238 

propionic acids. Though biomass and lipid production were increased with decreasing VFAs 239 

concentration in the medium, rate of production was comparatively high during assimilation of 240 

acetic acid than other VFAs. Previous studies also suggested that high proportion of acetic acid 241 

was more advantageous for the synthesis of microbial lipids and cell mass production than 242 

butyric and propionic acids [31, 32]. These results also indicated that C. curvatus is able to 243 

utilize all three kinds of acid simultaneously, but preferably acetic acid than propionic and 244 

butyric acids due to the variation in metabolic fate of each single VFAs [17, 33]. Acetic acid can 245 

be directly transformed to acetyl-coenzyme A (CoA), which can be used to synthesize microbial 246 

oils. Contrarily, propionate, an odd-chain carboxylic acid, is converted to propionyl CoA and 247 

then enters the tricarboxylic acid (TCA) cycle via methylmalonyl-CoA interconversion to 248 

succinyl-CoA. On the other hand, butyrate undergoes β-oxidation to produce acetoacetyl-CoA 249 

which is further transformed into acetyl-CoA [17, 33]. 250 

3.5. Fatty acid profile of microbial lipids produced by C. curvatus utilizing VFAs  251 
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Fatty acid profile analysis of the lipids produced by C. curvatus suggested that C18 fatty 252 

acids (stearic, oleic, linoleic acid) were dominated (80%), followed by C16 fatty acid (palmitic 253 

acid) (15%). The results suggested that the oleic acid (52.64 ± 1.32 and 50.65 ± 1.82%) was the 254 

most abundant fatty acid followed by palmitic acid (16.42 ± 1.16 and 15.18 ± 0.82%), stearic 255 

acid (15.26 ± 0.78 and 14.41 ± 0.69%) and linoleic acid (12.25 ± 0.82 and 12.16 ± 0.71%) in 256 

lipids produced from VFAs of WOP and WNP, respectively. Several other studies were also 257 

reported that palmitic acid, stearic acid, and oleic acid were the major fatty acids of lipids 258 

produced by C. curvatus using VFAs derived from various sources [4, 12]. Thus, the long chain 259 

saturated and unsaturated fatty acids (C16 and C18) are the main components of the lipid, which 260 

is similar to the typical plant/vegetable oils, suggesting its potential to use as a feedstock for 261 

large scale production of biodiesel. 262 

4. Conclusions 263 

 Utilization of wastepaper for production of microbial lipids to use as feedstock for 264 

biodiesel aims to open new avenues for cost-effective production of biofuels through biorefinery 265 

concept. Moreover, this biorefinery approach offers a potential valuable and alternative route for 266 

management of wastepaper. Importantly, VFAs derived from wastepaper were used for lipid 267 

production without the need to supply any additional nutrients. Biomass (4.3 g DCW/L) and lipid 268 

accumulation (41 %) achieved in this study was comparatively higher than other studies utilizing 269 

VFAs from various sources. Fatty acid profiles of lipids produced were comparable to 270 

plant/vegetable oils used for biodiesel production, and hence, VFAs derived from wastepaper 271 

could be a potential feedstock for microbial lipids production to use as non-edible lipid source 272 

for biodiesel. However, further investigations will be needed to ensure process scale up 273 

feasibility and sustainable production. 274 
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Table 1 Effect of initial concentrations and ratio of VFAs on biomass and lipid production (C/N 

ratio: 40). Results are presented using mean ± SD, n=3 

 

VFAs Biomass (g/L) Lipid yield (g/L) Lipid content (%) Yx/s (g/g) 

Concentrations (g/L) 

2 1.62 ± 0.06 0.587 ± 0.004 36.3 ± 0.21 0.294 

5 2.78 ± 0.08 0.781 ± 0.008 28.1 ± 0.18 0.156 

10 4.19 ± 0.11 0.712 ± 0.005 17.0 ± 0.20 0.071 

Ratio     

5:1:4 3.62 ± 0.10 0.85 ± 0.004 23.6 ± 0.23 0.170 

5:2:3 3.78 ± 0.08 0.99 ± 0.008 26.2 ± 0.18 0.262 

6:2:2 4.16 ± 0.12 1.25 ± 0.008 30.1 ± 0.22 0.250 

6:1:3 4.38 ± 0.08 1.69 ± 0.010 38.6 ± 0.19 0.338 

Yx/s - Lipid yield coefficient, g lipid/g VFAs 

 

 

 

 

 

 

Table



 

 

Table 2 Effect of various nitrogen sources on biomass and lipid production using synthetic 

VFAs as carbon source at 5 g/L (C/N ratio: 40). Results are presented using mean ± SD, n=3. 

Nitrogen sources 

Biomass  

(g/L) 

Lipid Yield  

(g/L) 

Lipid content  

(%) 

Yx/s  

(g/g) 

(NH4)2SO4 3.60 ± 0.13 0.236 ± 0.006 6.5 ± 0.18 0.047 ± 0.002 

NH4Cl  3.69 ± 0.14 0.456 ± 0.008 12.4 ± 0.08 0.091 ± 0.004 

NH4NO3  3.71 ± 0.16 0.416 ± 0.006 11.2 ± 0.12 0.083 ± 0.006 

NaNO3 1.49 ± 0.08 0.256 ± 0.005 17.2 ± 0.14 0.051 ± 0.004 

KNO3 1.36 ± 0.08 0.139 ± 0.004 10.2 ± 0.08 0.028 ± 0.003 

Yeast extract (YE) 3.24 ± 0.15 0.790 ± 0.006 24.4 ± 0.16 0.158 ± 0.005 

Peptone 4.17 ± 0.12 0.556 ± 0.008 13.3 ± 0.10 0.111 ± 0.003 

(NH4)2SO4 + YE 3.42 ± 0.21 0.360 ± 0.004 10.5 ± 0.11 0.072 ± 0.004 

NH4Cl + YE 4.68 ± 0.16 0.828 ± 0.006 17.7 ± 0.08 0.166 ± 0.006 

NH4NO3 + YE 5.53 ± 0.09 1.724 ± 0.008 31.2 ± 0.13 0.345 ± 0.008 

NaNO3 + YE 0.76 ± 0.05 0.112 ± 0.004 14.7 ± 0.10 0.022 ± 0.006 

KNO3+ YE 1.20 ± 0.08 0.199 ± 0.006 16.6 ± 0.12 0.040 ± 0.002 

Yx/s - Lipid yield coefficient, g lipid / g VFAs 

 

 

 

 

 



 

 

 

Table 3 Biomass, lipid yield, lipid content, lipid coefficient and productivity of C. curvatus from 

VFAs derived from anaerobic open culture fermentation of waste office paper (WOP) and waste 

newspaper (WNP). Results are presented using mean ± SD, n=3. 

 

 

Substrate  
Biomass  

(g/L) 

Lipid yield  

(g/L) 

Lipid content  

(%) 

Lipid coefficient  

(g/g VFA) 

Lipid productivity  

(g/L/h) 

WOP 4.32 ± 0.24 1.78 ± 0.12 41.2 ± 0.62 0.11 ± 0.02 0.037 ± 0.004 

WNP 2.91
 
± 0.23 0.80 ± 0.06 27.7 ± 0.36 0.08 ± 0.02 0.033 ± 0.006 



 

 

 

 

 

Table 4 Fatty acid profile of lipids from volatile fatty acids (VFAs) derived from anaerobic open 

culture fermentation of waste office paper (WOP) and waste newspaper (WNP). Results are 

presented using mean ± SD, n=3. 

 

Fatty acids 

VFAs  

WOP WNP 

Palmitic acid (C16:0) 16.42 ± 1.16 15.18 ± 0.82 

Stearic acid (C18:0) 15.26 ± 0.78 14.41 ± 0.69 

Oleic Acid (C18:1) 52.64 ± 1.32 50.65 ± 1.82 

Linoleic acid (C18:2) 12.25 ± 0.82 12.16 ± 0.71 
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Figure Captions 

Fig. 1 Total volatile fatty acids (TVFAs) production during anaerobic open culture fermentation 

(OCF) of waste office paper (WOP) and waste newspaper (WNP). Results are presented using 

mean ± SD, n=3. 

Fig. 2 Composition of volatile fatty acids (VFAs) produced during OCF of (a) waste office paper 

(WOP) and (b) waste newspaper (WNP). Results are presented using mean ± SD, n=3. (PA: 

Propionic Acid, BA: Butyric acid, AA: Acetic acid)  

Fig. 3 Biomass production, lipid yield and content during batch cultivation of C. curvatus from 

volatile fatty acids (VFAs) of waste office paper (WOP) and waste newspaper (WNP) from 

OCF. Results are presented using mean ± SD, n=3. 

Fig. 4 Consumption of each volatile fatty acids (VFAs) vs cell biomass production by C. 

curvatus utilizing VFAs of (a) waste office paper (WOP) and (b) waste newspaper (WNP). 

Results are presented using mean ± SD, n=3. 
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