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Abstract 11 

Carbon capture and storage is considered a key technology for decarbonizing the heat and power 12 

industries and achieving net zero emission targets. However, the significant energy requirements of the 13 

process as currently utilized hinders its widespread implementation. This work presents a novel process 14 

configuration by which the energy expenditures of carbon capture and storage can be minimized. This 15 

configuration is intended to enhance heat integration during the capture process through an innovative 16 

combination of three stripper modifications, namely lean vapor compression, a rich solvent split with vapor 17 

heat recovery and reboiler condensate heat recovery using a stripper inter-heater in a single flow-sheet. For 18 

carbon dioxide compression, a novel pressurization strategy involving carbon dioxide multi-stage 19 

compressors, a heat pump system and a supercritical carbon dioxide power cycle was designed and 20 

evaluated. The heat pump was used for carbon dioxide liquefaction while the supercritical carbon dioxide 21 

power cycle was employed to recover the intercooling heat. Through a comprehensive parametric 22 

investigation of the proposed configuration, the optimum value of the key operating parameters i.e., the 23 

split fraction, flash pressure, stripper inter-heater location, stripper inter-heater solvent flowrate, carbon 24 

dioxide liquefaction pressure and supercritical carbon dioxide cycle turbine pressure ratio were estimated. 25 

The performance of the proposed design at the optimized condition was quantified in terms of the reboiler 26 

heat duty, the carbon dioxide pressurization power and the equivalent work and compared to a baseline 27 

case post-combustion carbon capture and storage process. The proposed case reduced the reboiler heat duty 28 

from 3.36 GJ/TonneCO2 to 2.65 GJ/TonneCO2 and the electric power required for carbon dioxide 29 

compression from 16,691 kW to 14,708 kW. The results demonstrate that the new design can significantly 30 
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reduce the reboiler duty, compression power and equivalent work by 21.1%, 11.88%, and 15.8%, 31 

respectively. 32 

 33 

Keywords: Post-combustion carbon dioxide capture, Novel capture process configuration, Hybrid carbon 34 

dioxide pressurization system, Supercritical carbon dioxide power cycle 35 

Nomenclature 36 

ai Stoichiometric coefficient of component i in reaction equation. 37 

𝑎𝑔,𝑙       Area of the gas-liquid interface 38 

BC Conventional multistage compression established as the baseline case 39 

CCS Carbon capture and storage 40 

Ci  Concentration of the ith component  41 

CP Specific heat capacity at constant pressure (J/kg.K) 42 

dT Temperature difference 43 

E Activation energy (Cal/mol) 44 

ENRTL Electrolyte non-random two-liquid 45 

GA Genetic algorithm 46 

h Enthalpy (J/kg) 47 

H Henry Constant  48 

k Pre-exponential factor 49 

K Overall mass transfer coefficient  50 

m Mass flow rate (kg/s) 51 

M Rate of mass transfer 52 

MEA Monoethanolamine 53 

n Exponent of Temperature, which is zero  54 

N Number of components in the reaction  55 

ORC Organic Rankine Cycle 56 

P Pressure (kPa) 57 

PP Pinch point in the heat transfer process 58 

Q Rate of heat transfer (W) 59 

r  Reaction rate.  60 

R Universal Gas Constant  61 

SH Refrigerants’ degree of superheat at the HP’s compressor inlet (K) 62 

s Entropy (J/kg.K)  63 

T Temperature (K) 64 

HP Heat pump 65 

W Power (W) 66 

X Quality  67 

State 1CO2–12CO2 CO2 states 68 

State 1Refr–4Refr Refrigerant R290 states 69 

 70 
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Greek Symbols 71 

ɸ Percentage of savings in equivalent work 72 

η Isentropic efficiency of compressors and pumps 73 

γ Activity coefficient in liquid phase 74 

 75 

Subscripts 76 

BC Conventional multistage compression established as the baseline case 77 

C Cooling temperature 78 

Comp Compressors 79 

Comp2 CO2 compressor at the end of CCS chain 80 

CW Cooling water 81 

Eq Equivalent work 82 

Eva Evaporator 83 

FG Flue gas 84 

In Incoming CO2 85 

is Isentropic  86 

o Ambient conditions 87 

Out Conditioned CO2 at the outlet 88 

ORC Organic Rankine Cycle 89 

PC Proposed design 90 

R Ratio 91 

Refr Refrigerant or HP working fluid 92 

SC Subcooling 93 

sCO2 Supercritical CO2 94 

State 1CO2–12CO2 CO2 states 95 

State 1Refr–4Refr Refrigerant R290 states 96 

Turb Turbine 97 

 98 

 99 

1. Introduction 100 

Carbon capture and storage (CCS) is a key technological measure for reducing the emission of 101 

greenhouse gases (GHG) from stationary emission sources such as thermal power plants and ensuring a 102 

sustainable and reliable global energy supply. CCS has the potential to significantly reduce carbon dioxide 103 

(CO2) emissions and mitigate climate change [1] and is, therefore, regarded as one of the most important 104 

research frontiers for the development of a sustainable future [2]. Different technologies, including oxy-105 

fuel combustion, pre-combustion and post-combustion [3], as well as different materials that are capable of 106 

selective sorption of CO2 (chemical or physical) [4] are available for CO2 sequestration. 107 

Post-combustion CO2 capture, making use of an aqueous amine absorption process, is an especially 108 

promising technology because it is inherently flexible and can be integrated into various energy systems or 109 
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retrofitted into existing facilities [5]. The carbon capture step is followed by CO2 transportation to the 110 

storage site, as shown in Fig. 1. Both of the major steps involved in the CCS process – CO2 capture and 111 

transportation to a storage site – are energy-intensive processes and can produce up to a 14% reduction in 112 

net plant efficiency. This significantly high energy penalty hinders the implementation of CCS into power 113 

plants [6]. 114 

 

Fig. 1. Carbon capture and storage process. 

 115 

In the amine absorption process, CO2 is absorbed at 40-60 oC in an absorber column that makes use 116 

of an aqueous amine solvent. This CO2-rich solvent is then thermally treated at 110-130 oC in a stripper 117 

column to produce pure CO2. The thermal treatment of the CO2-rich solvent requires a large amount of 118 

energy and accounts for approximately 70% of the total process cost [7]. Some researchers have focused 119 

on integrating CCS with renewable heat sources such as solar energy in order to provide the energy required 120 

for the thermal treatment of the solvent. However, this option remains economically unfeasible, as a large 121 

solar field is required to meet the high energy needs of solvent thermal treatment [8]. Therefore, various 122 

research activities are aimed at curtailing the energy expenditure of the CCS process by either improving 123 

the solvent for the absorption process [9] or the process configuration [10]. Improvement in the process 124 

configuration is easier and more effective, because it can be achieved with minimal retrofitting of any 125 

existing facility. 126 
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Different process configurations such as absorber inter-cooling [10], stripper inter-heating [11], 127 

rich solvent splitting [12], stripper overhead compression [13], lean vapor compression (LVC) [14], rich 128 

vapor compression [14] and many other process modifications have been reported to reduce the energy 129 

penalty of the process. Dmartiz et al. [15] compared the energy consumption of various amine absorption 130 

process configurations and concluded that improvement to the configuration has substantial potential to 131 

improve the energetic efficiency of the process. Furthermore, the combination of different process 132 

configurations has more potential to reduce the energy consumption of the process. A combination of 133 

absorber inter-cooling, advanced rich solvent splitting and stripper inter-heating was simulated using 134 

ASPEN PLUSTM and resulted in an 18% reduction in reboiler duty [16]. Haider et al. [17] also examined 135 

the combination of capture process modifications and achieved 14% reduction in the reboiler duty. 136 

The complete CCS process entails transporting sequestered CO2 from the capturing facility to the 137 

permanent storage site. Pipelines are considered a reliable and efficient mean of CO2 transportation where 138 

the required CO2 pressure ranges are from 150-200 bar [18]. Therefore, in the first step of the storage 139 

process, the pressure of the CO2 is to be boosted from the captured pressure (1.2-3.5 bar) to the pipeline 140 

pressure. The CO2 pressurization can result in an energy penalty of as high as 12% of the loss of power 141 

plant efficiency [19]. Therefore, to curtail this significant energy expenditure, extensive past research has 142 

focused on improving the CO2 compression process. Witkowski et al. [20] investigated a range of 143 

compression chain strategies and concluded that the requisite compression power can be reduced by 144 

designing a compression chain that makes use of CO2 liquefaction and pumping. This technique involves 145 

compressing the incoming CO2 from the capture unit to some intermediated liquefaction pressure, after 146 

which it is liquefied and then pumped to the target pressure. The liquefaction of CO2 requires sub-zero 147 

condensing temperatures, which makes the use of ambient sink impractical. Therefore, some research 148 

activities sought to design refrigeration cycles for CO2 liquefaction [21]. Alabdulakarem et al. [22] designed 149 

a vapor compression cycle (VCC) for CO2 liquefaction and pumping and explored various refrigerants. 150 

They concluded that by complementing the multistage compression with an ammonia-based vapor 151 

compression cycle, the power consumption could be reduced by 5.1% compared to conventional multi-152 

stage compression.  153 

The efficiency of the CO2 compression process can also be improved by recovering compression 154 

heat to produce useful work. Romeo et al. [23] optimized the CO2 compression process by investigating the 155 

compression ratio and converting the compression heat of the CO2 to low-pressure steam in the plant. 156 

Meanwhile, Kurtulus et al. [24] integrated an Organic Rankine Cycle (ORC) with CO2 compressors and 157 

conducted a thermodynamic analysis of their system. Pei et al. [25] conducted a similar analysis and 158 

concluded that the coupling of an ORC to shockwave-based CO2 compression is more promising than 159 



6 
 

simple intercooling compression. Farajollahi et al. [26] studied the impact of integrating an ORC into a 160 

3250 MW thermal power plant with post-combustion CO2 capture and found out that the efficiency of the 161 

plant increased from 31.26% to 33.4% through the application of ORC.  162 

Recently, to reduce the energy expenditure of the CCS process, the integration of fossil-fueled 163 

plants with solar hybrid systems has also been aggressively researched. Xu et al. [27] investigated a novel, 164 

direct-fired, oxy combustion supercritical CO2 (sCO2) power plant integrated with a solar-driven coal 165 

gasification array. They found that the proposed design reduced coal consumption by 29.9% and achieved 166 

a net energy efficiency of 43.4% with near zero carbon emissions. Similarly, Ghorbani et al. [28] proposed 167 

a tri-generation system to produce liquefied natural gas (LNG) and liquefied CO2 using an adsorption 168 

refrigeration system, and desalinated water. Their analysis revealed that hybrid poly-generation systems 169 

can enhance the exergetic efficiency of the system up to 88.97%. Although hybrid systems exhibit 170 

promising potential to decarbonize the industry for greenfield plants, they lack the capacity to be retrofitted 171 

with the existing facility. Therefore, this study sets out to design an advanced CCS process configuration 172 

that can be adapted to greenfield plant designs or retrofitted with existing plants to reduce the energy 173 

expenditure of the CCS process. 174 

Previous studies demonstrate that extensive research activities have focused on improving the 175 

capture process configuration and investigating a liquefaction system design for CO2 pressurization [29]. 176 

However, the majority of these research efforts have addressed these problems separately; therefore, this 177 

study aims to remedy this gap by evaluating the entire process chain of CO2 capture and liquefaction. 178 

Recently, Aliyon et al. [30] examined the compete CO2 capture and liquefaction process; however, their 179 

study employed a conventional capture process configuration and ship-based CO2 transportation. The CO2 180 

target pressure for their ship-based transportation was 19.7 bar and 26.5 bar, which makes the design of 181 

their CO2 pressurization system significantly differs from pipeline-based transportation.  182 

The originality of this work includes incorporating the complete CCS process while proposing and 183 

optimizing a new design for capture, as well as the pressurization process. For the capture process, the 184 

combination of stripper modifications has shown improvement potential. Jin et al. [31] reported a 28% 185 

reduction in energy consumption by incorporating a combination of stripper modifications, which included 186 

an air stripper, flue gas membrane pre-separation, inter-cooler and rich solvent split. However, their study 187 

did not consider the auxiliary loads of the added equipment, while the installation of a membrane increases 188 

the complexity of the process. In this study, three stripper modifications, namely LVC; a rich solvent split 189 

with vapor heat recovery; and heat recovery from reboiler condensate using stripper inter-heater are 190 

incorporated into a single flowsheet and auxiliary loads are accounted for while calculating net energy 191 
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consumption. For the pressurization process, Muhammad et al. [29] found that integrating liquefaction and 192 

pumping into the pressurization system can save the electric power, while Kurtulus et al. [24] demonstrated 193 

that the intercooling heat of CO2 compressors can be recovered to produce power. This study consolidated 194 

the effects of liquefaction and pumping and the recovery of intercooling heat by devising a hybrid CO2 195 

pressurization scheme. The proposed pressurization scheme involves multi-stage compressors, a heat pump 196 

(HP) system for CO2 liquefaction and an sCO2 power cycle to recover the intercooling heat. Unlike previous 197 

studies that investigated ORC to recover the intercooling heat, this study employs an sCO2 cycle. The sCO2 198 

cycle offers better efficiency compared to the ORC while harnessing low- to mid-temperature heat sources 199 

[32] and integrating the sCO2 cycle with the proposed CO2 pressurization scheme does not require any 200 

additional working fluid inventory. The capture process configurations were simulated and optimized using 201 

ASPEN PLUSTM V10.1 rigorous rate-based modeling, whereas the sCO2 cycle integrated pressurization 202 

scheme was modelled and optimized in the MATLAB environment. The energy expenditure of the 203 

proposed capture and pressurization configuration was then calculated at the optimized conditions. The 204 

resulting reduction in heat duty and electric power using the proposed design is converted to equivalent 205 

work (WEq) for a fair comparison with the baseline case (BC).  206 

2. Amine-based carbon dioxide capture process description and modelling  207 

The monoethanolamine (MEA) was used as an absorbent during the CO2 capture process. The 208 

liquid phase was modelled using Electrolyte Non-Random Two Liquid (ENRTL) property package while 209 

the vapor phase was modelled using the Redlich-Kwong (RK) equation of state. Absorber and stripper 210 

columns were simulated using rigorous rate-based models. FLEXIPAC 250Y was used as packing material 211 

in the absorber and stripper columns. Absorber and stripper specifications for the CCS process are presented 212 

in Table 1. The CO2 capture process was designed for 90% efficiency at a removal rate of 190 Tonne/hr. 213 

The CO2 capture process was designed for 300 MW coal-based power plants with a designed capacity of 214 

1.5 million tonnes of CO2 captured per annum. The flue gas composition was set in accordance with the 215 

guidelines provided by the Department of Energy (DOE) for the CO2 capture process. The flue gas molar 216 

composition and other specifications are provided in Table 2. These simulation bases were retained 217 

throughout the analysis.  218 

 219 

 220 

 221 
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Table 1. CO2 capture process specifications 222 

Component Specification 

Plant type Coal-based, ~300 [MW] 

Absorber 
Height 24 [m] 

Diameter 13 [m] 

Stripper 
Height 11 [m] 

Diameter 8 [m] 

Amine flowrate 2900 [Tonne/hr] 

CO2 capture rate (mCO2) 190 [Tonne/hr] 

CO2 capture efficiency 90% 

CO2 product purity 99 wt.% 

 223 

Table 2. Flue gas specifications 224 

Component Molar composition 

CO2 13 [mole %] 

O2 5 [mole %] 

H2O 10 [mole %] 

N2 72 [mole %] 

Pressure (PFG) 1.5 [bar] 

Temperature (TFG) 40 [oC] 

Flowrate (mFG) 300 [kg/s] 

 225 

2.1. Process chemistry  226 

The capture process, essentially a chemical process involving a variety of species and a series of 227 

reactions, was modelled using Aspen Plus® [33]. A water, amine and CO2 mixture were thermodynamically 228 

modeled using the ENRTL property package in Aspen Plus® [33]. The chemical reactions taking place in 229 

the process were modelled using the power law given in Eq. (1). The reactions and their kinetic parameters; 230 

rate constant (k) and activation energy (E) used in Eq. (1), taken from [31], are given in Table 3.  231 

 232 

𝑟 = 𝑘(𝑇)𝑛 𝑒𝑥𝑝 [(
−𝐸

𝑅
)] ∏ 𝐶𝑖

𝑎𝑖

𝑁

𝑖=1

 

 
(1) 
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Table 3. Reaction kinetics 233 

Reactions Type 
Rate constant 

(k) 

Activation 

energy (E) 

[Cal/mol] 

𝐻2𝑂 +  𝑀𝐸𝐴𝐻+ ↔ 𝑀𝐸𝐴 + 𝐻3𝑂+ Equilibrium - - 

2𝐻2𝑂 ↔ 𝐻3𝑂+ + 𝑂𝐻− Equilibrium - - 

𝐻𝐶𝑂3
− + 𝐻2𝑂 ↔ 𝐶𝑂3

2− +  𝐻3𝑂+ Equilibrium - - 

𝐶𝑂2 +  𝑂𝐻− ↔ 𝐻𝐶𝑂3
− Kinetic 4.32e+13 13249 

𝐻𝐶𝑂3
− ↔ 𝐶𝑂2 + 𝑂𝐻− Kinetic 2.38e+17 29451 

𝑀𝐸𝐴 + 𝐶𝑂2 +  𝐻2𝑂 ↔ 𝑀𝐸𝐴𝐶𝑂𝑂− + 𝐻3𝑂+ Kinetic 9.77e+10 9855.8 

𝑀𝐸𝐴𝐶𝑂𝑂− + 𝐻3𝑂+ ↔ 𝑀𝐸𝐴 + 𝐶𝑂2 +  𝐻2𝑂 Kinetic 3.23e+19 156554 

 234 

2.2. Mass transfer in the carbon dioxide capture process 235 

The mass transfer rate in the gas-liquid interface is expressed by Eq. (2) [34], below. The overall 236 

mass transfer coefficient is calculated by Eq. (3) [34]. 237 

 238 

 𝑀𝑖 = 𝑎𝑔,𝑙𝑁𝑖 = 𝑎𝑔,𝑙𝐾𝑡𝑜𝑡,𝑖(𝑃𝑖
𝑒𝑞

− 𝑃𝑖) =  𝑎𝑔,𝑙𝐾𝑡𝑜𝑡,𝑖(𝐻𝐸,𝑖𝛾𝑖𝑐𝑖 − 𝑃𝑖)  (2) 

1

𝐾𝑡𝑜𝑡,𝑖
=

𝑅𝑇

𝑘𝑖
𝑔 +

𝐻𝐸,𝑖

𝑘𝑖
𝑙  (3) 

 239 

The individual coefficients of mass transfer for species “i” are represented by 𝑘𝑖
𝑔

 and 𝑘𝑖
𝑙 in the gas 240 

and liquid phases, respectively. Henry’s Constant for CO2 solubility in water is obtained by regressing 241 

Vapor Liquid Equilibrium data [35], while that for CO2 in MEA is obtained from Wang et al. [36]. The 242 

non-random two-liquid (NRTL) model’s interaction parameters between MEA & water are obtained from 243 

Austgen et al. [37]. The NRTL interaction parameters are set to zero between CO2 and water. The interfacial 244 

area (𝑎𝑔,𝑙) and mass transfer coefficient in the liquid (𝑘𝑖
𝑙) and gas (𝑘𝑖

𝑔
) phases are derived from Bravo et 245 

al. [38]. 246 

2.3.1 Baseline case: The carbon dioxide capture process  247 

The conventional CO2 capture process is shown in Fig. 2. The 30 wt.% MEA solvent enters from 248 

the top of the absorber column and absorbs CO2from the flue gas emanating from the bottom of the absorber. 249 

After the absorption of CO2, clean gas exits from the top of the absorber. The CO2-rich solution from the 250 
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bottom of the absorber is then pumped to an economizer before regenerating the CO2-rich solvent in the 251 

stripper column. In the stripper column, CO2 is stripped from the CO2-rich solvent by heating it in a reboiler. 252 

The stripped CO2, along with the evaporated water vapors, exit from the top of the stripper column and 253 

move to the condenser, where they are cooled. The cooled 2-phase mixture is separated in a flash column 254 

that sends the condensed water back to the stripper as reflux and the separated CO2 to the compression unit 255 

to increase the pressure up to 150 bar for transportation and storage. The lean solvent from the stripper 256 

bottom exchanges heat in the economizer with CO2-rich solvent and is cooled to 40 oC before feeding back 257 

into the absorber. 258 

 259 

 

Fig. 2. Baseline case CO2 capture process flowsheet. 

 260 

2.3.2. Baseline case for carbon dioxide pressurization  261 

The CO2 pressurization is an essential step to prepare the captured CO2 for transportation. 262 

Conventionally, the CO2 is pressurized using multi-stage compression, which is taken as a BC in this study. 263 

Each stage of the multi-stage compression comprises a compressor and intercooler, as shown in Fig. 3. The 264 

number of stages required depends on the captured CO2 pressure (PIn), target pressure (POut) and the stage 265 

pressure ratio (PR). The process parameters taken for CO2 compression are tabulated in Table 4, while the 266 

net electric power consumed in the conventional compression process (WComp,BC) is given by Eq. (4). 267 
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 268 

 𝑊𝐶𝑜𝑚𝑝,𝐵𝐶 =  ∑ 𝑊𝐶𝑜𝑚𝑝

𝑁

𝑖=1

 (4) 

 269 

 

Fig. 3. Baseline case CO2 compression unit. 

 270 

 271 

Table 4. Performance parameters of CO2 pressurization during multi-stage compression 272 

Parameters Values 

Compressor and pump isentropic efficiency (η) 0.80 

Captured CO2 pressure (PIn) 1.9 [bar] 

CO2 target pressure (POut) 150 [bar] 

Cooling temperature (TC ) 30 [oC] 

Pinch point (PP) 5 

Compressor pressure ratio (PR) across each stage 3 

 273 

2.4.1.  Proposed carbon dioxide capture process configuration 274 

This proposed novel configuration aims to reduce the heat required for the regeneration of amine 275 

solvent by the addition of a HP and integrating process waste heat within the system, as shown in Fig. 4. 276 

The CO2-rich solution stream splits into two sub-streams before entering the economizer. One stream 277 

follows the conventional path by entering the economizer and then moving to the stripper column. The 278 

other moves to the vapor heat exchanger and recovers heat from the hot CO2/H2O vapors mixture exiting 279 

the stripper top. This modification (shown with red lines in Fig. 4) will not only reduce the stripper duty, 280 

but also the condenser duty by recovering a part of the heat that was being wasted in the condenser. The 281 

solvent from the vapor heat exchanger enters the stripper and the H2O/CO2 mixture moves to condenser. 282 

The stripper column is integrated with a pump-around heater (stripper inter-heater). Some of the solvent 283 

from the stripper column is withdrawn and the exchange heat in the stripper inter-heater is then pumped 284 
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back to the stripper. Saturated steam at 130 oC is used as the heating utility in the stripper reboiler. The 285 

condensate from the reboiler outlet is used as a heating utility in the stripper inter-heater. The modification 286 

is marked with violet lines in Fig. 4.  287 

 288 

 
Fig. 4. Proposed CO2 capture process flowsheet. 

 289 

A HP was installed to reduce lean loading and add energy to the system. Instead of pumping the 290 

CO2-lean solution from the stripper reboiler into the economizer, it was flashed in a two-phase separator, 291 

removing more CO2 and reducing the lean loading of the CO2-lean solution. The gas separated in the flash 292 

column was compressed back to the stripper pressure and returned to the stripper (as marked with green 293 

lines in Fig. 4). The lean solvent from the flash column was pumped to the economizer and further cooled 294 

before entering the absorber column. Even though additional electric power is needed to run the added 295 

compressor, the reduction in the reboiler’s heat duty remains more prominent. For a reasonable comparison, 296 

the heat duty and electric power are brought to a common basis in terms of equivalent work, which is 297 

discussed later. 298 

2.4.2. Proposed design for the carbon dioxide pressurization process 299 

In the proposed pressurization schematics, the multi-stage compression is assisted by the HP 300 

system, as shown in Fig. 5. Increasing the pressure of the liquid CO2 is significantly less energy-intensive 301 
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than gaseous compression. Therefore, the HP is used as a refrigeration cycle to liquefy the CO2, which is 302 

subsequently pumped to the required pressure. 303 

The incoming CO2 from the capture unit is 1.9 bar, whereas the triple point pressure of CO2 is 5.17 304 

bar. Therefore, the initial two stages of compression are necessary to raise the CO2 pressure beyond the 305 

triple point pressure. The HP system can thus be installed after either the second or third stages. This study 306 

evaluated the performance of the proposed design with HP installed after the second as well as third stage, 307 

which is discussed in Section 3.1.5.  308 

 309 

 

Fig. 5. Proposed heat pump assisted CO2 compression schematics. 

 
The difference between the conventional and the proposed approach for CO2 pressurization is 310 

elucidated in a P-h diagram in Fig. 6. The baseline approach is multi-stage compression while in the 311 

proposed case the last stage is replaced by CO2 liquefaction and subsequent pumping to the target pressure. 312 

 313 

 

Fig. 6. Thermodynamic routes for CO2 pressurization. 
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2.4.3. Modelling framework for proposed carbon dioxide pressurization process  314 

The refrigerant of the HP, which absorbs heat (QEva) from the CO2, is then compressed and adjusted 315 

to expel heat into the environment. Propane (R290) is considered as the HP refrigerant in this study. In the 316 

evaporator, the saturation parameters of R290 are determined by the pinch point (PP) limit and CO2 317 

liquefaction temperature. The CO2 liquefaction temperature is the saturation temperature, corresponding to 318 

its liquefaction pressure (P7CO2). State 1Refr in Fig. 5 is determined by identifying the refrigerant’s 319 

saturation temperature in the evaporator and assuming a degree of superheating (SH) at the HP’s 320 

compressor inlet. The ambient conditions, which are considered the heat sink for R290, determine the 321 

saturation temperature and pressure of R290 in the condenser and, consequently, the State 3Refr. State 322 

2Refr and 4Refr were determined by using a compressor model with isentropic efficiency and assuming 323 

isenthalpic expansion.  324 

The calculation procedure of the HP system in the proposed schematics is summarized in Table 5. 325 

The discretization scheme is used for the modeling of heat exchangers, details of which can be found in 326 

[39]. The net power consumed in the proposed schematics (WNet,PC) is given by Eq. (5), where WComp,CO2, 327 

WPump and WComp,Refr are the power consumed by the initial multi-stage CO2 compressors, the CO2 pump 328 

and the HP compressor, respectively.  329 

𝑊𝑁𝑒𝑡,𝑃𝐶 = 𝑊𝐶𝑜𝑚𝑝,𝐶𝑂2 + 𝑊𝑃𝑢𝑚𝑝 + 𝑊𝐶𝑜𝑚𝑝,𝑅𝑒𝑓𝑟 (5) 

 330 

 331 

 332 

 333 

 334 

 335 

 336 

 337 

 338 

 339 

 340 
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Table 5. Calculation schematics of the proposed heat pump system 341 

Step State Temperature Pressure Enthalpy Comments 

1 7CO2 T
7CO2

 = T
C
 P

7CO2
 f(T

7CO2
, P7CO2) 

Using the set values of PR, TC, 

and ηComp; State 7CO2 is 

solved. 

2 8CO2 
T

8CO2
 = T

Sat,8CO2
 

=f(P8CO2) 
P8CO2 = P7CO2 f(T

8CO2
, X=0) 

Calculate QEva using heat 

exchanger model. 

3 9CO2 
T

9CO2
 = f(P

9CO2
, 

ηPump) 
P9CO2 f(T

9CO2
, P9CO2) Pump model. 

4 1Refr 
T1Refr = f(TSat,4Refr , 

SH) 

P1Refr = PSat,1Refr = 

f(T4Refr) 
f(P1Refr , T1Refr) SH is taken as 5 K. 

5 2Refr 
T2Refr = f(PSat,2Refr , 

ηComp) 

P2Refr = PSat,2Refr =  

f(T3Refr) 
f(P2Refr , T2Refr) Compressor model. 

6 3Refr 
T3Refr = TSat,3Refr = 

TC 
P3Refr = PSat,3Refr f(TSat,3Refr, X=0) Heat exchanger model. 

7 4Refr 
T4Refr = TSat,4Refr = 

f(T8CO2 , PP ) 

P4Refr= PSat,4Refr = 

f(T4Refr) 
f(P4Refr, h3Refr) Isenthalpic expansion. 

 342 

2.4.4. Proposed heat pump pressurization process integration with supercritical carbon dioxide cycle 343 

During the multi-stage CO2 compression, the temperature of the CO2 at each compressor outlet can 344 

reach around 400 K, as is shown in Fig. 6. To make use of this temperature, an innovative scheme of CO2 345 

liquefaction and pumping integrated with the sCO2 cycle, as displayed in Fig. 7 is proposed. In contrast to 346 

the ORC, the sCO2 cycle is designed to utilize the intercooling heat, as no additional working fluid is 347 

required to operate the sCO2 cycle. As can be seen in Fig. 7, the heat source and cycle working fluid are 348 

both CO2, and therefore a better temperature match is achieved by employing an sCO2 cycle. In addition, 349 

as the captured CO2 is liquefied using the HP system, therefore the high-pressure level required to operate 350 

an sCO2 cycle which is generally in the range of 150-250 bar can be attained in an energy-efficient manner 351 

by means of the pump. For the integrated design, CO2 from the State 8CO2 is initially pressurized to 200 352 

bar and State 9CO2. The high-pressure CO2 is later divided into three streams, the flowrates of which are 353 

given in Fig. 7. The splitting of the total flow is performed in such a way so that the temperature of the 354 
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streams after heating at States 10CO2, 10CO2
/ and 10CO2

// is comparable. Thereafter, the streams are mixed 355 

(State 11CO2) and subsequently fed into a turbine to produce electric power.  356 

For the sCO2 power generation, the turbine power output is WTurb and the power consumed by the 357 

compressor to recover the pressure from State 13CO2 to 14CO2 and complete the process is WComp2CO2. The 358 

net power of the sCO2 cycle is expressed in Eq. (6).  359 

 360 

𝑊𝑁𝑒𝑡,𝐶𝑦𝑐𝑙𝑒 = 𝑊𝑇𝑢𝑟𝑏 − 𝑊𝐶𝑜𝑚𝑝2,𝐶𝑂2 (6) 

After the CO2 has delivered power to the turbine, it is cooled down and subsequently compressed 361 

to 150 bar (State 14CO2), thereby completing its flow (Fig. 7). After integrating the cycle, the WNet,PC is 362 

modified as follow: 363 

 364 

𝑊𝑁𝑒𝑡,𝑃𝐶 = 𝑊𝐶𝑜𝑚𝑝,𝐶𝑂2 + 𝑊𝑃𝑢𝑚𝑝 + 𝑊𝐶𝑜𝑚𝑝,𝑅𝑒𝑓𝑟 − 𝑊𝑁𝑒𝑡,𝐶𝑦𝑐𝑙𝑒 (7) 

 365 

 

Fig. 7. Heat pump system integrated with a supercritical CO2 cycle. 

 366 

2.5. Total equivalent work/performance indicator calculation 367 

In the CCS process, two different energy expenditures are incurred: (i) the electrical power 368 

consumed in the pumps and compressors; and (ii) the heat duty in the boiler. For a fair comparison, a 369 

common basis for the two types of energy is needed, and therefore WEq is defined for a performance 370 

comparison. The WEq for the base and the proposed configurations are calculated using Eq. (8):  371 
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𝑊𝐸𝑞 =  ∑
𝑇𝑢𝑟𝑏

∗ 𝑄𝑖  ((𝑇𝑖 + 10[𝐾] − 𝑇𝑆𝑖𝑛𝑘)/(𝑇𝑖 + 10[𝐾])) + 𝑊𝐸𝑒𝑙𝑐𝑡𝑟𝑖𝑐 (8) 

where the turbine efficiency (ηTurb) is considered to account for the non-ideal expansion, Ti is the 372 

reboiler temperature (K), the temperature of the steam in the reboiler is 10 oC higher than Ti, Qi is the 373 

reboiler duty for the base and proposed case (GJ/TonneCO2) and WElectric is the net electric power consumed 374 

during the complete CCS process. All the power entities, electric power and heat, consumed in the base as 375 

well as the proposed case, are converted to WEq using Eq. (8). After calculating the total equivalent work 376 

for the base (WEq,BC) and the proposed case (WEq,PC), the net effect (ɸNet) of the proposed schematics is 377 

defined as: 378 

ɸ𝑁𝑒𝑡 = (𝑊𝐸𝑞,𝐵𝐶 − 𝑊𝐸𝑞,𝑃𝐶)/𝑊𝐸𝑞,𝐵𝐶  (9) 

The calculation flow chart of the complete CCS configuration proposed is summarized in Fig. 8.  379 

 380 

 

Fig. 8. Calculation flowchart of the proposed carbon capture and storage process configuration. 

 381 

3. Results and discussion  382 

Initially, the BC was simulated to calculate the reboiler duty, which amounted to 3.36 383 

GJ/TonnesCO2 for a CO2 capture rate of 190 TonneCO2/hr. The four-stage compressors, with a PR of 3, 384 

were established as the BC for CO2 pressurization. The BC consumes 16691.40 kW of electric power to 385 
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increase the pressure of CO2 from 1.9 to 150 bar. After quantifying the BC, the capture process design is 386 

optimized for: split fraction, flash pressure, stripper inter-heater location and stripper inter-heater solvent 387 

flowrate. The HP-assisted CO2 compression integrated with the sCO2 power cycle is optimized to yield the 388 

best performance.  389 

3.1. Split ratio 390 

The CO2-rich stream is split to enhance the heat integration within the CO2 capture process. The 391 

objective is to recover maximum heat from the top and bottom streams, leaving the stripper. The amount 392 

of heat recovered from any of these streams depends on the CO2-rich solvent flowrate against the respective 393 

heat exchanger. The split ratio to the economizer was varied from 0.65 to 0.74 in order to study the effect 394 

on the stripper reboiler duty. Fig. 9 shows that 0.67 is the optimum split ratio, which corresponds to the 395 

minimum reboiler duty. The split ratio below 0.67 reduces the CO2-rich solvent flowrate to the economizer 396 

and the heat recovered in it. Although heat recovery in the vapor heat exchanger increases due to a higher 397 

CO2-rich solvent flowrate, the sum of the total heat recovery in the economizer and vapor heat exchanger 398 

is lower than at the split ratio of 0.67. Similarly, above the 0.67 split ratio, the economizer can recover more 399 

heat, but the heat recovery in the vapor heat exchanger declines. The overall impact is the reduction in total 400 

heat recovery. The split ratio of 0.67 is the optimum split ratio at which the overall heat recovered in the 401 

economizer and vapor heat exchangers is at a maximum and the stripper reboiler duty is minimal.  402 

 

Fig. 9. Reboiler duty variation with split fraction. 

3.2. Flash pressure  403 

Lean solvent from the stripper reboiler is flashed in a column to strip out the CO2, which is 404 

compressed back to the stripper pressure. Additional electrical energy is required for the compression of 405 

CO2. The amount of energy required for compression depends on the flashing pressure. However, this 406 

additional energy increases the temperature of CO2 which, upon returning to the stripper, not only adds 407 
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energy to the stripper but also acts as a mass and energy stripping agent and reduces the stripper duty. Fig. 408 

10 shows the impact of flash pressure on the compression energy requirement and the stripper reboiler duty. 409 

As the reboiler duty is in the form of heat energy and the compressor duty is in the form of electric work, 410 

WEq, is used as the key parameter to determine the optimum flash pressure (Eq. (8)). The impact of the flash 411 

pressure on WEq is shown in Fig. 11, which reveals that 1.3 bar is the optimum flash pressure and 412 

corresponds to the minimum total WEq. 413 

  

Fig. 10. Effect of the flash pressure on reboiler duty and 

compressor power. 

Fig. 11. Effect of the flash pressure on equivalent 

work. 

3.3. Stripper inter-heater location 414 

 Saturated steam, used as the reboiler heating utility, exits as condensate at 129 oC. To recover heat 415 

from the reboiler condensate, stripper inter-heater is introduced. The stripper has 20 stages. Rich amine is 416 

fed from the top (stage 1) while lean solvent leaves from the bottom (stage 20). Amine solvent from a higher 417 

stripper stage is withdrawn and heated in a stripper inter-heater using reboiler condensate, and is fed back 418 

to a lower stage. To find the optimal withdrawal and feedback location, the withdrawal and feedback stage 419 

was varied, and the stripper duty observed.  420 

Fig. 12 shows the impact of withdrawal and feedback stage on the stripper reboiler duty. The liquid 421 

at the top stages of the stripper column is at a relatively lower temperature and, therefore, has a high 422 

temperature difference from the reboiler condensate and can thus recover more heat. Withdrawal from the 423 

lower stage results in a lower temperature difference from the reboiler condensate and, consequently, less 424 

heat can be recovered. 425 

As the CO2-rich solvent is heated in the inter-heater, the CO2 gas and water vapors begin separating 426 

from the solvent. When this vapor-liquid mixture is fed back to a lower stage, the vapor phase interacts 427 
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with more liquid coming down and strips more CO2 from the CO2-rich solvent, thus reducing the reboiler 428 

duty. Stage 2 is the optimum withdrawal location and stage 15 the optimum feedback stage. Feeding below 429 

stage 15 does not induce any substantial change in reboiler duty. 430 

 

Fig. 12. Stripper inter-heater location optimization. 

 431 

3.4. Stripper inter-heater flowrate 432 

Hot solvent from the stripper inter-heater, when fed back to the stripper, serves as a stripping agent. 433 

The effectiveness of the stripping agent improves at higher temperature and reduces the reboiler duty [40]. 434 

Eq. (10) shows that higher temperatures (ΔTsolvent) can be achieved by reducing the solvent flowrate 435 

(msolvent). However, due to the thermal degradation of the solvent, the solvent temperature in the stripper 436 

inter-heater should not exceed 120 oC.  437 

In order to find the optimum flowrate at which the reboiler duty is at a minimum and the solvent 438 

temperature is below the degradation temperature (120 oC), the msolvent to stripper inter-heater was reduced 439 

from 3000 kmol/hr to 1000 kmol/hr and its impact on the reboiler duty and solvent outlet temperature was 440 

evaluated. Fig. 13 shows that by reducing the inter-heater flowrate, the temperature of the solvent fed back 441 

to stripper increases, which also improves the stripping efficiency and reduces the reboiler duty. However, 442 

due to the solvent degradation temperature limit, 1750 kmol/hr. is considered the optimum msolvent, which 443 

corresponds to a stripper inter-heater solvent temperature of below 120 oC and a lower reboiler duty.  444 

𝑄 = 𝑚𝑠𝑜𝑙𝑣𝑒𝑛𝑡 × 𝑐𝑝 ×  ∆𝑇𝑠𝑜𝑙𝑣𝑒𝑛𝑡 (10) 
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 445 

 

Fig. 13. Effect of stripper inter-heater flowrate on reboiler duty and solvent temperature. 

 446 

3.5. Optimizing the carbon dioxide pressurization process  447 

The proposed pressurization process aims to reduce the required electric power to raise the CO2 448 

pressure by replacing one or two stages of CO2 compressors with an HP system, consequently reducing 449 

WComp,CO2. However, due to the application of HP, another source of electric power consumption becomes 450 

involved in the form of the compressor of the HP, i.e. WComp,Refr. Therefore, in the proposed design, 451 

WComp,CO2 and WComp,Refr are in a trade-off relationship. Table 6 summarizes the performance of the proposed 452 

design with the HP installed after the second and third stage of the compressors. Installing the HP after the 453 

third stage of the compressor instead of the second will seemingly increase the WComp,CO2. However, as can 454 

be seen in the table, the WComp,CO2 increases up to 46.49%. At the same time, however, the WComp,Refr is 455 

reduced by 85.80% while the difference in WPump remains negligible.  456 

 457 

Table 6. Performance evaluation with the heat pump installed after the second and the third stages of 458 
compressors. 459 

New Design 
Liquefaction 

Pressure [kPa] 

CO2 Multistage 

Compression 

(WComp,CO2) [kW] 

CO2 Pump 

(WPump) 

[kW] 

HP-Compressor 

(WComp,Refr) 

[kW] 

2-Stage CO2 

Compressor & HP 
P5CO2 = 1710 9191.50 1130.70 7581.70 
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3-Stage CO2 

Compressor & HP 
P7CO2 = 5130 13465.00 

1149.00 

 

1076.60 

 

Percentage change N/A +46.49% -1.62% -85.80% 

 460 

The substantial decrease in WComp,Refr with the HP installed after the third stage is due to the 461 

combined reduction in refrigerant flowrate (mRefr) and the PR across the HP’s compressor. Table 7 tabulates 462 

the QEva, the saturation pressure of the refrigerant in the evaporator and condenser, the resulting PR and the 463 

mRefr. QEva decreases and the saturation temperature of the refrigerant in the evaporator increases with the 464 

increase in CO2 liquefaction pressures. Therefore, the mRefr and PR both decrease, leading to a considerable 465 

reduction in WComp,Refr. The subsequent results and discussions are based on HP installed after the 466 

third compressor stage. 467 

 468 

Table 7. Operating characteristics of the heat pump system installed after the second and the third stages of 469 
compressors. 470 

New Design 

Liquefaction 

Pressure 

[kPa] 

Evaporator 

heat load 

(QEva) [kW] 

Refr. saturation 

pressure [kPa] 

 
Refr. flow 

rate (mRefr) 

[kg/s] 

PR across 

HP’s comp 

Evaporator Condenser 

2-Stage CO2 

Compressor & HP 
P5CO2 = 1710 

 

18461.54 
171.16 1079.26 68.44 6.30 

3-Stage CO2 

Compressor & HP 
P7CO2 = 5130 

 

10983.51 
642.90 1079.26 

34.72 

 
1.68 

Percentage change N/A -40.51% N/A N/A -49.27% -73.33% 

 471 

3.6. The integrated supercritical carbon dioxide cycle optimization 472 

Due to the advantages discussed earlier, the compression heat is recovered using an integrated sCO2 473 

cycle (Fig. 7). For an sCO2 cycle at a given turbine inlet temperature, an optimum PR across the turbine is 474 

required to maximize the cycle performance [41]. In the analysis, the turbine inlet pressure (P11CO2) is fixed 475 

to 200 bar, and hence the turbine outlet pressure (P12CO2) is parametrically investigated in this study. Fig. 476 

14 shows the variation of WNet,Cycle with P12CO2, while the individual variation of WTurb and WComp2,CO2 with 477 
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P12CO2 is shown in Fig. 15. As can be seen in Fig. 15, the WTurb varies steadily throughout; however, the 478 

WComp2,CO2 experienced a sharp decrease at the start, with P12CO2. The sudden reduction of WComp2,CO2 is due 479 

to the operation of the compressor near the critical point  where the properties of CO2 substantially vary. 480 

Fig. 16 shows the variation of CO2 density at the compressor inlet with P12CO2. The drastic initial increase 481 

in CO2 density results in a sharp reduction of WComp2,CO2, which causes the sCO2 power cycle to behave in 482 

the manner presented in Fig. 14.  483 

 484 

 

 
 

Fig. 14. Supercritical CO2 power generation 

(WNet,Cycle) variation with turbine outlet pressure 

(P12CO2). 

Fig. 15. Turbine power (WTurb) and compressor power 

(WComp2,CO2) variation with turbine outlet pressure (P12CO2). 
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Fig. 16. Compressor inlet density variation with turbine outlet pressure (P12CO2). 

 485 

The progress of the CO2 through the HP and sCO2 cycle to the final state 14CO2 is revealed in the 486 

P-h diagram in Fig. 17. For each intercooling stage, a certain amount of heat is recovered while that 487 

remaining is ejected into the environment. A simple sCO2 rather the recuperative sCO2 cycle is integrated 488 

to generate power, due to a low outlet temperature of the turbine (T12CO2). 489 

 

Fig. 17. Pathway of CO2 in the proposed pressurization process. 
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The integrated sCO2 cycle generates a net power of 982.61 kW, with a cycle efficiency (ηCycle) of 491 

9.01% and a heat source temperature around 400 K. Furthermore, the new design utilized the CO2 prior to 492 

storage, with no additional working fluid inventory required to operate the cycle. Table 8 summarizes the 493 

state of CO2 and R290, with the HP installed after the third stage. 494 

Table 8. State properties of CO2 and R290 in the proposed pressurization process. 495 

State Fluid 
Temperature 

[K] 
Pressure [kPa] 

Enthalpy 

[kJ/kg] 

1CO2 CO2 303.16 190 2.54 

2CO2 CO2 402.45 570 90.46 

3CO2
/ CO2 348.74 570 40.17 

3CO2 CO2 303.16 570 -0.95 

4CO2 CO2 403.03 1710 85.27 

5CO2
/ CO2 340.74 1710 24.47 

5CO2 CO2 303.16 1710 -12.15 

6CO2 CO2 404.51 5130 68.83 

7CO2
/ CO2 324.74 5130 -25.01 

7CO2 CO2 303.16 5130 -57.65 

8CO2 CO2 288.50 5130 -265.75 

9CO2 CO2 306.74 20000 -244.00 

9CO2
/ CO2 306.74 20000 -244.00 

9CO2
// CO2 306.74 20000 -244.00 

10CO2 CO2 394.14 20000 -35.47 

10CO2
/ CO2 391.21 20000 -41.31 

10CO2
// CO2 390.47 20000 -42.80 

11CO2 CO2 392.33 20000 -39.06 

12CO2 CO2 318.87 7500 -71.04 

13CO2 CO2 303.16 7500 -215.00 

14CO2 CO2 320.17 15000 -201.70 

1Refr R290 288.50 642.91 595.3 

2Refr R290 313.17 1079.26 626.6 

3Refr R290 303.16 1079.26 279.4 

4Refr R290 283.50 642.91 279.4 

 496 

4. Performance comparison based on equivalent work: 497 

After optimizing the capture and pressurization process, the WEq,PC is calculated using Eq. (8). 498 

Table 9 summarizes the power consumptions of the base and proposed case, as well as the ɸNet. The 499 

performance of the proposed system is reported at the optimized conditions. As Table 9 shows, the new 500 

design successfully reduces the boiler duty from 3.36 to 2.65 GJ/TonneCO2. The modifications to the 501 

capture process include optimizing the split ratio in the splitter, adding a heat exchanger as the stripper 502 

inter-heater and adding a compressor for the HP. The optimization of the split ratio reduces the reboiler’s 503 
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heat duty by achieving a better thermal match within the overhead heat exchanger and the economizer. For 504 

the stripper inter-heater, the condensate from the reboiler served as the heating utility and no additional heat 505 

source was required. The new capture process design involves an additional compressor in the HP, as 506 

discussed in section 3.1.2, which results in an additional electric power consumption of 1112 kW. The 507 

detailed thermodynamic state properties of the complete proposed system are provided in the supplementary 508 

material (Appendix A and B). 509 

The electric power requirement for CO2 pressurization was reduced from 16691 to 14708 kW using 510 

the sCO2 cycle-integrated HP liquefaction and pressurization system. The proposed CCS design results in 511 

a significant saving of ɸNet = 15.8% in equivalent work. The ɸNet shows the unified impact of heat and 512 

electric power, while the individual saving on the heat duty and electric power is 21.1% and 5.22%, 513 

respectively. This study is concerned with minimizing energy expenditure for the CCS process, which 514 

improves the prospects of CCS systems being deployed in the power plant sector. However, the reduction 515 

in energy consumption is achieved by adding a heat exchanger and a compressor to the capture process and 516 

assisting the compression chain with a HP refrigeration cycle and sCO2 cycle. The proposed pressurization 517 

system has the advantage of reducing a CO2 compressor stage, however, it involves an additional HP and 518 

sCO2 cycle footprint. To quantify the economic behavior of the proposed system would require detailed 519 

cost modeling of the capture process, the CO2 compression chain and HP system components. The current 520 

paper focuses on the energy expenditure of the proposed system, while the future outlook entails an 521 

economic assessment of the proposed design.  522 

 523 

Table 9. Performance indicators of the base and the proposed system. 524 

 

Reboiler 

Heat Duty 

[GJ/Tonne

CO2] 

Electric 

Power in 

Capture 

Process 

[kW] 

CO2 

Compre-

ssion 

[kW] 

CO2 

Pump 

[kW] 

HP 

Compressor 

[kW] 

sCO2 

Power 

[kW] 

Equival-

ent Work 

Baseline 

Case (BC) 
3.36 N/A 16691 N/A N/A N/A 0.974 

Proposed 

Case (PC) 
2.65 1112 13465 1149 1077 983 0.820 

 525 

5. Conclusion 526 

 This study designed and evaluated a novel carbon capture and storage process configuration. The 527 

proposed configuration successfully reduced the energy expenditure of the carbon capture and storage 528 
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process by enhancing heat integration. During the capture process, effective heat integration was achieved 529 

by incorporating three stripper modifications, namely: lean vapor compression, rich solvent splitting with 530 

vapor heat recovery and reboiler condensate heat recovery using an inter-heater stripper in a single 531 

flowsheet. The power required for the CO2 pressurization was reduced by assisting the multistage 532 

compressors with a heat pump system. The multistage compressors then increased then CO2 pressure to the 533 

level needed for liquefaction. The CO2 was then liquefied in the heat pump system and subsequently 534 

pumped to the required pressure. To improve the CO2 pressurization process, intercooling heat lost during 535 

multistage compression was recovered by integrating the heat pump-assisted pressurization scheme with a 536 

supercritical CO2 power cycle. 537 

 The performance of the proposed configuration was evaluated for a range of key operating 538 

parameters, i.e. split fraction (from 0.65 to 0.74), flash pressure (from 1.0 to 1.6 bar), stripper inter-heater 539 

location (from 2 to 18 stages) and flow rate (1000 to 3000 kmol/hr), as well as CO2 liquefaction pressure 540 

(1710 and 5130 kPa), and the low pressure level of the supercritical CO2 cycle (from 70 to 100 bar). The 541 

parametric investigation results indicated the energy expenditure of the proposed configuration was 542 

minimized at the optimum values of the split fraction, flash pressure, stripper inter-heater location, stripper 543 

inter-heater flow rate, CO2 liquefaction pressure, and pressure ratio across supercritical CO2 cycle turbine. 544 

The performance of the proposed configuration at the optimized conditions was quantified in terms of 545 

equivalent work and it was concluded that 15.8% saving in equivalent work compared to the conventional 546 

carbon capture and storage process was achieved using the proposed process configuration. The proposed 547 

process configuration demonstrates technical superiority by significantly reducing the energy consumption 548 

of both the sequestration and pressurization processes. However, this study has focused on the potential 549 

energy savings without considering the capital costs of the proposed modifications, which should be taken 550 

into account to ascertain the economic viability of the proposed design. 551 
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