
Software Engineering Processes
for Self-Adaptive Systems

Jesper Andersson1, Luciano Baresi2, Nelly Bencomo3, Rogério de Lemos4,
Alessandra Gorla5, Paola Inverardi6 and Thomas Vogel7

1 Department of Computer Science, Linnaeus University, Växjö, Sweden
2 Dipartimento di Elettronica e Informazione, Politecnico di Milano, Italy

3 INRIA Paris, Rocquencourt, France
4 University of Kent, UK

5 Faculty of Informatics, University of Lugano, Switzerland
6 Dipartimento di Informatica, Università dell’Aquila, Italy

7 Hasso Plattner Institute at the University of Potsdam, Germany

Abstract. In this paper, we discuss how for self-adaptive systems some
activities that traditionally occur at development-time are moved to run-
time. Responsibilities for these activities shift from software engineers to
the system itself, causing the traditional boundary between development-
time and run-time to blur. As a consequence, we argue how the tradi-
tional software engineering process needs to be reconceptualized to dis-
tinguish both development-time and run-time activities, and to support
designers in taking decisions on how to properly engineer such systems.

Furthermore, we identify a number of challenges related to this re-
quired reconceptualization, and we propose initial ideas based on process
modeling. We use the Software and Systems Process Engineering Meta-
Model (SPEM) to specify which activities are meant to be performed
off-line and on-line, and also the dependencies between them. The pro-
posed models should capture information about the costs and benefits
of shifting activities to run-time, since such models should support soft-
ware engineers in their decisions when they are engineering self-adaptive
systems.

1 Introduction

Traditional software engineering research primarily focuses on development ac-
tivities for high-quality software, rather than maintenance or evolution [29].
Meanwhile, the software engineering community has accepted that software must
continuously adapt and evolve according to ever changing requirements to re-
main useful for the user [26,27]. This awareness has led to iterative, incremental,
and evolutionary software engineering processes [4,9,19,20,23,35,43], rather than
strictly sequenced phases of requirements engineering, design, implementation,
and testing, as perceived by the waterfall model [38].

However, such approaches to change software do not meet the requirements of
many modern context and self-aware, mission-critical, or ultra-large-scale soft-
ware systems [17,31]. Context and self-aware systems require timely changes in

This is a post-peer-review, pre-copyedit version of an article published in Lecture Notes in Computer
Science Vol. 7475. The final authenticated version is available online at: https://doi.org/10.1007/
978-3-642-35813-5_3.

https://doi.org/10.1007/978-3-642-35813-5_3
https://doi.org/10.1007/978-3-642-35813-5_3

52 J. Andersson et al.

response to changing environments, changes in the system itself, or in its goals.
The inherent delay in traditional change processes is for these systems unsat-
isfactory. Mission-critical systems have to operate continuously. In traditional
change processes, changes are deployed during scheduled down-times and, as a
consequence, continuous operation is not possible. Ultra-large-scale systems are
highly complex, which makes human-driven change activities difficult and ex-
pensive, or even infeasible in practice due to the size and inherent complexity
that impede a complete shutdown of the system in order to change it. Thus, we
may conclude that using a traditional change process for these kinds of systems
holds the risk of the system failing to meet its specification with respect to timely
reaction to changes and continuous operation.

These risks have led to the development of novel means of risk mitiga-
tion that change software in terms of self-adaptation [14]. Self-adaptive be-
havior implies that certain development and change activities are shifted from
development-time to run-time, while reassigning the responsibility for these
activities from software engineers or administrators to the system itself. The
new time-of-change timeline [11] that is, when a change takes place, covers
development-time, deployment-time and run-time. A consequence of this recon-
ceptualization of the time-of-change is that the traditional boundary between
development-time and run-time blurs, which requires a complete reconceptu-
alization of the software engineering process [3,7,21,22], where the traditional
perspective that separates development-time and run-time is revisited. The ra-
tionale is that for self-adaptive software systems the typical software-process
mapping from (1) software life-cycle phases [32] (e.g., development, deploy-
ment, operation, or evolution) and (2) software engineering disciplines [32]
(e.g., requirements engineering, design, implementation, verification, etc.), and
software-process activities (e.g., elicitation, prioritization and validation of re-
quirements), onto a, (3) time-of-change timeline is not valid anymore. As an
example, the disappearing boundary between development-time and run-time
does not allow software changes to be decoupled from the running system any-
more. Buckley et al. propose a taxonomy with a number of dimensions to classify
software change [11]. Even though the proposed taxonomy appears to be suf-
ficiently comprehensive, we argue that a more fine-grained perspective on the
timeline is required for the class of self-adaptive software systems. This new
perspective corresponds to a new dimension, which considers the blur and de-
scribes where, with respect to the self-adaptive system, change activities take
place. With respect to the self-adaptive system, we refer to activities performed
externally as off-line activities and to change activities performed internally as
on-line activities8.

The main contributions of this article is the identification and description of
a number of challenges related to the required reconceptualization of software
engineering processes for self-adaptive systems, and its impact on how to en-
gineer such systems. We propose software process modeling as a corner-stone

8 The notions of on-line and off-line we introduce are distinct from their traditional
notions in the field of algorithm theory.

Software Engineering Processes for Self-Adaptive Systems 53

component to be used in a modeling and evaluation framework for self-adaptive
software systems.

A reconceptualization of software engineering processes requires (1) the defi-
nition of abstractions for off-line and on-line activities, the identification of the
entities subject to change by these new activities and the dependencies in-between
such activities and, as a consequence, (2) the complete understanding of the im-
pact of design decisions related to off-line activities over on-line activities, and
vice versa. We argue that engineering self-adaptive software is about defining a
software process which defines the scope for a system’s self-adaptive behavior
(by means of on-line activities) and proposes new variants to the mapping afore
mentioned. However, scoping introduces a number of additional challenges.

We address these challenges with our second contribution, process modeling for
engineering self-adaptive software systems. We propose an approach based on the
Software & Systems Process Engineering Meta-Model Specification (SPEM) [32].
Explicit processes models manifest how a system is developed and evolved, which
promotes a better understanding of self-adaptive software systems and the re-
lationships to software engineering processes. In addition, it promotes commu-
nication, reuse, and reasoning that may in the long-term be automated [33].
Altogether this improves support for comprehension and decision making when
engineering self-adaptive systems. The adoption of process modeling for self-
adaptive software systems engineering involves a number of challenges: (1) The
new concepts (on-line and off-line activities, and their dependencies) have to be
supported by the process modeling language. (2) Likewise, concepts and models
must capture the relative value of activities (costs & benefits) since they in-
fluence the scoping of a self-adaptive system’s activities. Due to dependencies
between the engineering process (off-line activities) and the self-adaptive system
(on-line activities), we must develop and use (3) new integrative design and mod-
eling techniques [6] that support both, process and product engineering. These
techniques must support designers in scoping the self-adaptation mechanism,
decisions that should be based on value and balance costs and benefits.

The remainder of this article is organized as follows. In Section 2, we introduce
an illustrative example, which is used to define and motivate the problems this
article is targeting. Section 3 discusses a number of challenges related to the
problems in more depth. Based on these discussions, we outline a software process
modeling approach for engineering self-adaptive software systems in Section 4. In
Section 5, we discuss important challenges that remain to make process modeling
a viable tool in self-adaptive software systems engineering. We discuss related
work in Section 6, and conclude and outline a research agenda for the proposed
direction in Section 7.

2 Revising the System Life-Cycle

In this section, we introduce a specific perspective concerning self-adaptive soft-
ware systems, which is the characterization of their life-cycle and the challenges
to support this life-cycle by effective software processes. With self-adaptive

54 J. Andersson et al.

Managing Subsystem
Adaptation Logic

Managed Subsystem
Domain Logic
(Controllable)

Environment
(Non-controllable)

Self-Adaptive Software System

Fig. 1. A Conceptual Architecture for Self-Adaptive Software Systems [1]

software systems as our focal point, we revisit and revise the typical software sys-
tem’s life-cycle, pin-pointing explicit and implicit relationships between software
engineering processes and a deployed self-adaptive software system.

The essential characteristic of a self-adaptive software system is its ability to
autonomically evolve and adapt its behavior dynamically in response to changes
to system requirements, the system itself, or the system’s operational environ-
ment. The evolution and adaptation mechanisms should preserve the essence
of the system behavior by continuously providing an acceptable implementa-
tion of the system’s core requirements. The scope of this paper does not require
a distinction between evolution and adaptation, the focus is whether software
changes are enacted off-line or on-line and, as a consequence, a precise definition
of software evolution and software adaptation is beyond the scope of this paper.

To frame evolution and adaptation mechanisms, Figure 1 depicts a concep-
tual architecture for self-adaptive software systems [1]. An important property
of this architecture is the disciplined split, which promotes separation of con-
cerns. A Managing Subsystem implements the Adaptation Logic that manages
a Managed Subsystem, which implements the Domain Logic. The adaptation
logic implements a control loop in line with the monitor-analyze-plan-execute
(MAPE) loop [24], which evolves and adapts the domain logic. Domain func-
tionality and the system’s core requirements are implemented by the domain
logic. The self-adaptive system operates in a non-controllable environment that
may merely be observed by the adaptation logic, while the domain logic may
both observe and affect the environment. Moreover, the architecture allows for
additional managing subsystems that adapt adaptation logic in other managing
subsystems. This may be used to describe, for example, the goal management
layer in Kramer and Magee’s layered architecture [25] or hierarchical control in
autonomic computing [24]. This characterization of self-adaptive systems pro-
motes evolution and adaptation mechanisms realized by the adaptation logic to
first class computations that have to be supported side by side with domain logic
computations, while seamlessly interleaving with the running system.

In a typical software process for conventional software systems, evolution
and adaptation are performed after the initial development and deployment, and
they usually encompass all process disciplines from requirements engineering to

Software Engineering Processes for Self-Adaptive Systems 55

deployment. This indicates that timely changes are not prioritized. In a self-
adaptive software system the situation is different. The evolution and adapta-
tion activities realized by the adaptation logic are in place because requirements
change frequently and timely reactions are essential. Self-adaptive software sys-
tems autonomically perform activities on-line and at run-time that originally
have been carried out manually and off-line. This change to a process does not
affect all process activities, and thus, understanding relationships and depen-
dencies between (off-line) software process activities and (on-line) evolution and
adaptation activities is a great challenge. Before systematically analyzing chal-
lenges concerning life-cycles and software processes for self-adaptive systems and
the engineering of such systems, we present an illustrative example that we use
throughout paper.

2.1 Illustrative Example: Automatic Workarounds

Automatic Workarounds (AW) is a technique that enhances applications with
self-adaptation capabilities that deal with functional failures at run-time [12,13].
When applications fail, either because there is a fault in the application itself
or in one of the libraries used by the application, the AW technique attempts
to mask the fault and thus, to avoid the corresponding failures, while providing
the core domain functionality.

The technique is based on the hypothesis that software systems usually of-
fer several “equivalent operations” that provide the same core functionalities in
different realizations. If an operation fails, the AW mechanism exploits this in-
trinsic redundancy to automatically find workarounds and apply an alternative
equivalent sequence of operations. Consider for example a container component
that implements one operation to add a single element, and one operation to
add several elements. To add two elements, it is possible to add either one el-
ement after the other, or to add them both at the same time. If one of these
options causes a failure at run-time, the AW technique attempts to execute the
equivalent sequence of operations as the alternative option to mask the fault.

We depict the AW technique’s principal concepts and mechanisms in Figure 2.
An application component invokes an operation provided by another component
(caller and called component, respectively). If an invocation causes a failure,
the AW technique implemented by the adaptation logic handles this failure at
run-time by first looking for a sequence of operations which is equivalent to
the failing invocation. Having found an equivalent sequence of operations, the
adaptation logic enacts an adaptation that automatically invokes this sequence
of operations. If the alternative execution does not cause a failure, a success-
ful workaround has been found and the application proceeds as if the original
failure never occurred. Otherwise, the adaptation logic continues testing other
equivalent sequences until an alternative is either successfully executed or until
all equivalent sequences have been tested unsuccessfully. In the latter case, the
failure is reported to the caller component. To address these reported failures,
developers have to fix the fault either by fixing the faulty component or by man-
ually identifying and providing valid workarounds to the AW adaptation logic.

56 J. Andersson et al.

Caller component

Automatic
Workarounds

layer

Called component

automatic
workaround

failure

no
workaround

equivalent
sequences

get equivalent sequence

look for
equivalent
sequenceexecute

equivalent
sequence

Fig. 2. The Automatic Workarounds technique

In a typical software process, the bug report filled by a user would be the
starting point of a long manual effort to deal with run-time failures. Developers
would need to identify and analyze the root causes of the problem, identify and
implement a patch for the fault, and finally deploy a patch or re-deploy the
complete application. The AW technique aims at automating and shifting these
activities at run-time to the adaptation logic. This will provide for more timely
responses to failures without the need to stop and re-deploy the application.

2.2 A Refined Life-Cycle Perspective

As mentioned above, a self-adaptive software system performs regular software
process activities while the system is running. In Figure 3, we illustrate how a
software process and its activities interact with a running self-adaptive software
system. The left-hand side of the figure depicts a staged life-cycle model inspired
by Rajlich and Bennett [35]. The stages cover the initial development of the self-
adaptive system and traditional evolution and adaptation activities performed
off-line. Off-line activities work on artifacts, such as design models or source code
in a product repository and not directly on the running system. The final stage,
Phaseout covers the shutdown and decommission of the self-adaptive system.

At first sight, and focusing on the left-hand side of the figure, this process
looks identical to a traditional software process. However, note it interacts with
the running self-adaptive system. This interaction takes place through on-line
activities associated with evolution and adaptation, which constitute the self-
adaptive system’s adaptation logic. Using run-time representations of the self-
adaptive system, on-line activities evolve and adapt the domain logic or other
adaptation logic while the system is operational in providing services (illustrated
by the right-hand side of Figure 3). Interactions and dependencies between off-
line and on-line activities, depicted by bidirectional arrows, are specific for life-
cycle models targeting self-adaptive systems.

In order to provide a more in-depth analysis of the interactions between a
software process and a running self-adaptive system, more detailed descriptions
of activities and their interactions are required. We introduce and discuss a
timeline, illustrated in Figure 4, which represents a life-cycle instance for a self-

Software Engineering Processes for Self-Adaptive Systems 57

Phaseout

Evolution & Adaptation

Initial Development

Running Self-adaptive System

Off-line On-line

Domain
Logic

Evolution
&

Adaptation

Adaptation
Logic

Product
Repository

Fig. 3. A Life-cycle Model for Self-Adaptive Software System

adaptive system that uses an automatic workaround (AW) approach for the
adaptation logic and its development process. The timeline view contains two
graphs and interaction points. The top-most graph depicts the activity level (y-
axis) in the development process and a number of specific off-line activities over
time (x-axis). We see how the activity level varies over the life-cycle. The life-
cycle is divided into the three distinct stages: initial development, evolution and
adaptation, and phaseout. The bottom-most graph depicts the service level for
the self-adaptive AW system over time (x-axis). The variations in the graph are
due to events, external or internal to the system. For example, on-line activities
initiated by the adaptation logic or the development processes (maintenance &
evolution activities). The timeline in Figure 4 suggests that the running system
acts as a stakeholder with a specific role in the development process, as it actively
affects software development and maintenance [2]. However, for the case of self-
adaptive systems, this is also true for on-line activities. We may now identify and
characterize a number of scenarios where off-line and on-line activities interact,
as depicted by the labeled situations in Figure 4.

The first stage, initial development, develops a first version of the self-adaptive
software system by a number of off-line activities. In the context of the AW ap-
proach, software engineers develop the application’s domain logic. To enhance
the application with the AW technique, they have to provide an initial list of
equivalent sequences for application operations with known workarounds, which
is an off-line development activity. This also exemplifies how self-adaptation ca-
pabilities influence the initial development. Having completed the initial develop-
ment, the system is ready for deployment. An initial deployment (cf. situation j1
in Figure 4) puts the system into operation, which is illustrated by the step in
the system’s service level. The initial deployment activity is captured by the
first interaction point. Interaction points indicate that off-line activities impact
on-line activities or vice versa.

When the system instance is running, the evolution and adaptation stage
starts. As we consider self-adaptive software systems, adaptations and evolution
may be initiated and controlled by off-line (process) activities as well as on-

58 J. Andersson et al.

time

Initial Development Evolution & Adaptation Phaseout

Development
Process

Legend

Off-line activity

On-line activity

Interaction point

activity level

1 2 4 5 6 73

Running System

service level

X Situation

time

Fig. 4. Timeline View on a Process and a Running Self-Adaptive Software System

line (adaptation logic) activities. This is illustrated by six additional situations
following initial deployment (situation j1) in Figure 4.

Situation j2 illustrates how changes by off-line evolution or adaptation ac-
tivities are subsequently enacted to the running system by on-line activities. An
on-line update deploys new or updated domain logic components. For these com-
ponents, the lists of equivalent sequences and thus, the adaptation logic, have to
be updated by the developer to preserve AW behaviors. In the scenario we de-
scribe, the system’s service level is affected negatively after the new deployment
due to probable faults in the new components.

However, if corresponding failures occur, they are handled by the AW technique
as sketched by situation j3 , thanks to previous off-line efforts to maintain the list
of equivalent sequences. The AW technique monitors failures in the application,
and it is able to deal with them by successfully applying workarounds. This brings
the system into a state with improved service level. This situation exemplifies
on-line adaptations, which are often enabled by preceding off-line activities.

Nevertheless, the AW technique might not be able to cope with arbitrary
failures that continuously affect the system’s service level negatively (cf. sit-
uation j4). This is the case when the AW technique does not find a valid
workaround (first on-line activity in situation j4), i.e., all available equivalent
sequences have been tested without success, and as a consequence the failure
recurs. In this case, the second on-line AW activity in this situation notifies

Software Engineering Processes for Self-Adaptive Systems 59

developers who enact an off-line process to deal with the failures, e.g., by man-
ually correcting the fault and maintaining the list of equivalent sequences. This
situation shows how on-line activities interact with and trigger off-line activities.

If the application is re-engineered off-line, an on-line update may be too
complex, hence not feasible. Such radical changes to a system are captured in
situation j5 by off-line evolution activities followed by a deployment. In this
situation the running system is shutdown and the new release deployed (similar
to situation j1), which affects the system’s availability and thus, its service
level. Situation j6 highlights the case when off-line activities evolve or adapt
on-line (adaptation logic) activities followed by enacting these changes to the
running system. In context of the AW adaptation logic, at any point in time
developers may identify and specify new equivalent sequences, which is an off-
line activity that tunes the AW mechanism. Through on-line activities, these
new sequences are injected into the AW knowledge and these sequences may
be used in subsequent adaptations of the domain logic. Finally, situation j7
illustrates the complete shutdown and decommission as part of the phaseout
stage, since a decision has been made to discontinue the system. The shutdown
and decommission activities, which are planned and initiated off-line, terminate
the life-cycle of the system and with some delay the process life-cycle.

Evolution and adaptation activities performed in-between interaction points are
in general carried out on-line if they are controlled by the adaptation logic. In con-
trast, they are carried out off-line if they are controlled by human-driven process
activities on product repository artifacts from the initial development stage (cf. Fig-
ure 3). In this context, interaction points synchronize off-line and on-line activities
or artifacts. As an example, situation j6 illustrates that on-line activities can be
evolved and adapted off-line, and a subsequent dynamic update synchronizes these
off-line changes to the corresponding on-line activities in the adaptation logic.

3 Processes for Self-adaptive Software Systems

As we discussed previously, software processes for self-adaptive systems have spe-
cial characteristics due to their integration with the running system by automat-
ing a set of process activities in the system’s adaptation logic. This automation
and integration define the self-adaptation scope, i.e., the self-adaptation capabil-
ities of the system. In the case of the automatic workarounds approach example,
this set covers activities that handle functional run-time failures, but not ac-
tivities that go beyond the specific idea of workarounds, such as repairing the
faults causing the failures (cf. Section 2.1). Therefore, we distinguish between
on-line activities, which are change activities realized and performed by the sys-
tem’s adaptation logic, and off-line activities, which are realized and performed
externally to the self-adaptive system (cf. Figure 3). Self-adaptation does not
make typical (off-line) activities redundant. In fact, a process has to support
both off-line and on-line activities. Furthermore, it has to consider dependencies
in between both kinds of activities.

Currently, software processes merely focus on the initial development and off-
line evolution and adaptation of the system. The automation and integration

60 J. Andersson et al.

require a dramatic change of the concepts associated with traditional software
processes. The software process reconceptualization is, therefore, the first of the
major challenges we have identified. We believe that a process reconceptual-
ization is essential to effectively and efficiently engineer self-adaptive software
systems. We provide a more detailed account for this challenge and its sub-
challenges below in Section 3.1.

The outcome of the reconceptualization of software processes should lead to
a life-cycle model that conveys a strong intertwining between the on-line and
off-line activities and thus, between the self-adaptive system and its engineering
process. We identify this as our second major challenge. Achieving effectiveness
and efficiency in both is indeed a challenge that for instance includes deciding
which activities should be performed on-line and which not. Design decisions of
having activities either off-line or on-line should be motivated by the costs and
the relative contribution to a product’s value. In Section 3.2, we discuss related
ideas and research challenges.

3.1 The Need of Reconceptualizing Software Processes

As mentioned above, traditionally software processes take the perspective that
process activities can be either performed at development-time or at run-time.
However, recently it has been advocated that due to the distinct features of self-
adaptive systems, these type of systems require a reconceptualization of their
software processes [3,7,21,22]. We already took the initial steps to modify the
perspective on process activities in Section 2 by distinguishing between on-line
and off-line activities rather than development-time and run-time activities.

Although on-line and off-line activities perform in different contexts, they
are not independent from each other, as it is illustrated by the interactions in
Figure 4. Therefore, an effective process for self-adaptive software systems should
support both kinds of activities together with the interactions and dependencies.

In order to consider on-line activities, they must be lifted to the abstrac-
tion level of software processes. Up to now, on-line activities are only explicitly
addressed by self-adaptive systems’ designs that describe the adaptation logic.
Thus, they are represented in software design models, but not in process models.
Hence, to fully capture a software process for self-adaptive systems, on-line activ-
ities must be first class entities of processes, and they must be explicitly reflected
in process models. It is therefore important to integrate the process models with
the self-adaptive system design models in order to seamlessly capture off-line
and on-line activities in a process.

Alongside on-line activities, on-line roles and work products need to be ad-
dressed by processes too. The adaptation logic of the self-adaptive system is
responsible for performing on-line activities, since it assigns on-line process roles
to the system. In a self-adaptive system, on-line activities will manipulate work
products that are representations of the executing system. Thus, the process has
to consider the running system, and more specifically the abstractions that reify
adaptation and domain logic as work products of a process.

Software Engineering Processes for Self-Adaptive Systems 61

Having a side by side process support for on-line and off-line activities requires
that work products and roles as well as dependencies between them are explicit.
For instance, this is required to use dependencies to enable interactions between
on-line and off-line activities or to synchronize on-line and off-line work products.
Neglecting dependencies would split the process into two subprocesses that may
drift apart, what could prevent controlled coevolution of the system and process.

3.2 Engineering Self-adaptive Software System with Effective
Process Support

The application of a reconceptualized process, in the way we have proposed
above, requires support at the process level to effectively and efficiently engineer
self-adaptive software systems. In fact, one of the consequences is that software
engineers will have to face even more choices when engineering a self-adaptive
system, as they have to decide on how to assign activities to off-line or on-line.
Such engineering decisions have to be predictable and based on thorough value-
based analysis of decision alternatives with well-understood consequences. Thus,
we argue that decisions should be guided by models that represent both the costs
and the benefits of having an activity performed either on-line or off-line together
with the resulting dependencies. Such models should support engineers in making
optimal decisions. In self-adaptive systems, some design decisions regarding the
system’s domain logic are delayed or revisited at run-time. The rationale for this
delay is uncertainty, which in turn is a consequence of an information deficit [42].
For example, in the automatic workarounds approach, faults in the domain logic
are not known at development-time, and thus, adaptation logic is integrated to
cope with failures at run-time that are caused by such unknown faults. Thus,
self-adaptation promotes shifting the tasks of traditional off-line activities, such
as dealing with run-time failures, to on-line activities.

However, at the same time self-adaptation capabilities introduce additional
uncertainty. When engineers leave design decision open to be resolved or revis-
ited at run-time, it will be difficult to have all required information at hand
that is required to make decisions with predictable consequences when design-
ing a process and system. Thus, supporting the decision process and to deal
with this type of uncertainty requires means to understand, specify, and reason
about process activities, process roles, process work products, and dependencies.
Such means must be provided at the process level, since any design decision con-
cerning the self-adaptation scope affects the process, and any design decisions
concerning the process influences the self-adaptation scope. Concretely, such de-
cisions determine whether activities are performed on-line or off-line, and hence,
whether they will become part of the adaptation logic or be handled off-line.

Moreover, such decisions must be based on the contribution to the product’s
value as perceived by its stakeholder using well-defined criteria that refer to ac-
tivities, roles, work products, and dependencies. Such criteria specify costs and
benefits for different design alternatives and support software engineers in mak-
ing design decisions. For example in the automatic workarounds (AW) approach,
using the AW technique to automatically deal with run-time failures induces ad-

62 J. Andersson et al.

ditional costs for development (the equivalent sequences of operations must be
specified by software developers), but it leads to the benefit of a more robust
system, because the system is able to recover from run-time failures instead
of crashing. The technique also introduces a performance penalty at run-time.
Thus, a solid understanding of value, and useful ways to trade-off competing
costs or benefits for the process and system together are required.

Besides issues concerning the design of self-adaptive systems and their pro-
cesses, the supporting methods, techniques, and tools utilized by the activities
are an additional parameter in the equation. Shifting activities from off-line to
on-line requires that the underlying methods, techniques, and tools are adapted,
optimized, or newly developed in order to be applicable on-line. This will result
in a plethora of support alternatives for activities, and each alternative will have
an associated value, possibly unique, for every given project and stakeholder. For
example, an incremental solution to validation and verification can be efficient
enough to be used on-line, but it might not provide the same degree of accu-
racy as a solution designed for off-line usage. Effective and efficient engineering
requires that such value parameters are seamlessly integrated in the engineering
process that codesigns on-line and off-line activities to define a process and the
complementary adaptation logic in the managing system.

4 Process Modeling for Self-adaptive Software Systems

In this section, we discuss a framework, based on software process modeling,
that may help in engineering self-adaptive software systems. This requires that
process modeling languages support the new concepts, like on-line and off-line
activities, that originate from the reconceptualization discussed above. Thereby,
process modeling also helps in grasping and understanding the reconceptual-
ization of processes because process models make these concepts explicit. In
addition, we discuss a number of remaining research challenges, primarily con-
cerned with the development and application of a process modeling language for
engineering self-adaptive software systems’ processes.

In general, a process is a mechanism to achieve a goal in a systematic way, like
following instructions to assemble a product, or following office procedures. Like-
wise, performing engineering activities to develop and evolve a software product
constitutes a process [33]. How a process is carried out is specified by a process
model that defines a partially ordered set of what is done when and where and by
whom [16,36]. Thus, assembly instructions, office procedures, or descriptions of
software engineering activities are process models, and such models materialize
the corresponding processes. This materialization enables human understanding,
coordination, and communication, and it supports the analysis, improvement,
reuse, execution, or in general the management of processes [16,33,36].

To leverage such benefits of process modeling in the software engineering
field, several modeling languages have been proposed to describe software pro-
cesses [16]. One example of such modeling languages is the Software & Systems
Process Engineering Meta-Model Specification (SPEM) [32]. In this paper, we

Software Engineering Processes for Self-Adaptive Systems 63

Role Activity WorkProductperforms >
1..

output >
**

input >
**

responsible for >
1..

Fig. 5. A Conceptual View on the SPEM Meta-Model

have adopted SPEM for illustrating the concepts being discussed due to its
flexibility, extensibility, and suitability for model-based engineering. The SPEM
specification explicitly defines a modeling language by means of a meta-model
for describing software development processes. Having an explicit definition of a
modeling language, it is possible to discuss and extend the language. As discussed
and demonstrated below, extending the language is required for addressing the
concepts that originate from the reconceptualization of processes for the case of
self-adaptive systems. We are not aware of any process modeling language that
supports these concepts as first class elements and provides a rigorous under-
pinning for model-based engineering approaches.

4.1 SPEM-Based Process Modeling

By defining a meta-model, SPEM provides a modeling language to specify soft-
ware development methods and processes, and offers an initial support for con-
figuring and enacting processes in concrete projects. However, the language is
generic, since it is meant to support the modeling of processes that span from the
waterfall model to agile approaches. Thus, the language supports only the basic
and abstract concepts that are present in any development approach. These ab-
stract concepts are depicted in Figure 5, which shows a conceptual and partial
view on the SPEM meta-model.

Using this meta-model, we are able to describe a workflow of Activities that
are performed by Roles and that have WorkProducts as input or output. Activ-
ities can be related to other activities by passing work products along activities,
i.e., an output of one activity is the input for another activity. Finally, responsi-
bilities for work products can be assigned to roles. Moreover, the SPEM language
provides several elements to represent phases, iterations, and milestones. Finally,
SPEM allows to specify different forms of dependencies, e.g., between activities
or between work products, primarily to cover relations between activities or
composition and impact relations between work products. However, we do not
further describe such advanced elements, as they are not critical for the specific
challenges that this paper is addressing.

Below, we discuss how we have extended the basic concepts defined by the
SPEM language with additional concepts that originate from the reconceptual-
ization of software processes for the specific case of self-adaptive systems. This
makes the additional concepts explicit in process models, and it helps to tackle
challenges in engineering self-adaptive software systems (cf. Section 5). In the
following section, we use our extended version of the SPEM language to model
the process of the automatic workarounds approach, and we show how these

64 J. Andersson et al.

Role Activity WorkProductperforms >
1..

output >
**

input >
**

responsible for >
1..

ProcessElement

<<Stereotype>>
On-line

<<Stereotype>>
Off-line

Dependency

2..*
*Cost

Benefit
1

*

*

Fig. 6. Extended SPEM Meta-Model for Processes of Self-adaptive Systems

models can support and manifest the reconceptualization of a software process
for self-adaptive systems.

4.2 Reconceptualization of SPEM-Based Process Modeling

As discussed above, the reconceptualization of software processes to address
self-adaptive systems requires a new dimension for classifying activities. This
dimension allows for a distinction between on-line and off-line situations, which,
however, requires to make dependencies between on-line and off-line situations
explicit and manageable. Moreover, costs and benefits of alternative on-line and
off-line activities must be considered, as they guide the engineering and influence
the designs of processes and systems. Therefore, as depicted in Figure 6, we ex-
tended the basic meta-model defined by SPEM with additional concepts. In the
scope of this paper, these extensions, as well as the meta-models should be con-
sidered at the conceptual level, and not at the technical level as a definitive and
fully specified modeling language. Thus, we do not discuss how the extensions
could be best implemented or realized within the complete meta-model defined
in the SPEM specification [32].

To keep the extensions to the original meta-model (cf. Figure 5) simple and
generic, we have added the ProcessElement as a common super meta-class for the
role, activity, and work product meta-classes. All further extensions refer to this
ProcessElement and thus, they refer to all three concepts of role, activity, and work
product. First of all, the On-line and Off-line stereotypes have been defined for pro-
cess elements to clearly define whether any process element occurs on-line or off-
line. More precisely, if the stereotype is associated with a role, it indicates whether
the role is part of the self-adaptive system (on-line) or not (off-line). For a work
product, it indicates whether such a work product is produced or generally used
on-line or off-line. Likewise, applying the stereotypes to activities, process models
may clearly distinguish whether any activity is performed on-line or off-line.

Moreover, we extended the SPEM modeling language with the concept of
Dependency that relates two or more arbitrary process elements. This notion
of dependency is more amenable and flexible for conceptual discussions than
the specific possibilities provided by SPEM to cover, e.g., dependencies between

Software Engineering Processes for Self-Adaptive Systems 65

activities or between work products. However, to implement these extensions
within the SPEM meta-model, the already existing means to specify dependen-
cies should be considered. Providing a generic notion of such concepts makes
arbitrary dependencies, such as the different forms of interactions between on-
line and off-line activities shown in Section 2, explicit in process models. As an
example, being able to perform an activity on-line might require that another
activity is in place off-line, which constitutes a dependency.

Finally, Costs and Benefits can be associated with any process element. This
supports design decisions concerning the scoping of on-line and off-line activities,
and should give answers to questions such as: “What are the costs and benefits
of performing this activity on-line, in contrast to performing it off-line, and what
other activities are affected or even required for the on-line and off-line variants?”

We now provide an example of how the extended SPEM language can be
used to model the process of an application that relies on the AW approach for
achieving self-adaptation, as described in Section 2.1. Figure 7 provides a high-
level, structural view of the approach. This view includes all the core concepts of
the SPEM language, which are the Roles, the Activities, and the WorkProducts.

Roles are depicted by actor icons, activities by rounded rectangles, and work
products by document artifacts. As discussed above, these process elements can
be stereotyped with Off-line or On-line to mark whether they belong to the
off-line or on-line part of the process, respectively. Finally, dependencies are
represented by rectangles connected to the interdependent process elements.

As shown in Figure 7, there are two roles in the AW approach: the AW Layer
and the Developer. Both roles perform activities that have work products as
input or output. The AW layer as the adaptation logic is part of the running
self-adaptive system, and thus it is an on-line role. It monitors the execution
of the application, i.e., the Domain Logic, on-line. If a Failure occurs, and it
has been detected, the AW layer is in charge of either selecting a workaround,
if any is known from previous executions, or searching for equivalent sequences,
if no workaround is known. Thereby, the Application Code with workarounds is
either selected or created by integrating the promising Equivalent sequences into
the domain logic’s Application code. Finally, the AW layer enacts the adjusted
application code and thus the adaptation by executing a known workaround or
the equivalent sequences in an attempt to find a valid workaround.

The developer is an off-line role that maintains the list of equivalent sequences
for the components of the domain logic. If the AW layer does not manage to find a
valid workaround automatically, the developer fixes the related faults in the fail-
ing components and deploys the patched component to the running system. This
requires that the maintained list of equivalent sequences for this component is up-
dated in the AW layer for future on-line use. This update synchronizes the list of
Equivalent sequences maintained off-line by the developer with the list of Equiva-
lent sequences used on-line by the AW layer. This tackles the To be synchronized
dependency between these two work products. Instead of hiding such dependen-
cies in activities, they should be made explicit in the process models. Otherwise,
they might get lost when the process and its activities change or evolve.

66 J. Andersson et al.

Activity

WorkProduct

<<On-line>>

AW Layer
<<Off-line>>

Developer

<<On-line>>

Monitor failures

<<On-line>>

Select workaround

<<On-line>>

Search for
equivalent
sequences

Role

<<On-line>>

Execute
workaround

<<On-line>>

Execute
equivalent
sequence

performs >

input >
<<Off-line>>

Fix fault

<<Off-line>>

Maintain
equivalent
sequences

Deploy
patched

component

Update
equivalent
sequences

<<Off-line>>

Application
code

<<Off-line>>

Equivalent
sequences

<<On-line>>

Equivalent
sequences

<<On-line>>

Application
code

<<On-line>>

Application Code
With workarounds

<<On-line>>

Failure

output >

input >

input >

< input

< input output > < input

input/
output

>

input/
output

>
< input

< input

Dependency
To be synchronized

<<On-line>>

Domain Logic

Legend

output >

performs >

Fig. 7. Roles, Activities, and WorkProducts in the Automatic Workarounds approach

In addition to structural aspects, as depicted in Figure 7, the process behav-
ior also needs to be specified. The original SPEM language allows to integrate
external languages for behavior modeling, like UML Activity diagrams (cf. [32]).
Likewise, the extended SPEM language we are proposing does not define its
own behavior modeling formalism but uses UML activity diagrams. For our AW
approach, Figure 8 depicts a UML activity diagram representing the workflow
of activities for the case when a failure occurs and needs to be resolved.

The activity diagram represents the evolution and adaptation stage in the
process timeline (cf. Figure 4) for a system that relies on the AW approach. The
model consists of two partitions, one for each role, namely the AW layer and the
developer. Each partition contains the activities performed by the corresponding
role, and the model defines the workflow of activities within and across partitions
respectively roles. The roles and activities used in the activity diagram are the
same as in the structural process view depicted in Figure 7.

The AW layer monitors the status of the application to detect failures. When
a failure occurs, it selects a workaround if any is already available from previous
executions. If a workaround is available, the AW layer executes it immediately on-
line. If no workaround is known, then the AW layer looks for equivalent sequences,
and once it selects one, the selected sequence is executed. If the execution of the
workaround or the equivalent sequence causes another failure, the loop continues
until either one equivalent sequence does not cause any failure, or until there are
no more equivalent sequences to try. In the last case, the developer has to fix
the fault and maintain the list of equivalent sequences, which is followed by
deploying the patched component and updating the list of equivalent sequences
to make the off-line changes available to the AW layer in the running system.

In this section, we have shown that modeling processes for self-adaptive sys-
tems using an extended SPEM language lifts the concepts that originate from

Software Engineering Processes for Self-Adaptive Systems 67

<<On-line>>
AW Layer

<<Off-line>>
Developer

<<On-line>>
Monitor failures

<<On-line>>
Select workaround

[failure occurs]

known
workaround?

<<On-line>>
Search for
equivalent
sequences

no

<<On-line>>
Execute

workaround
yes

more equivalent
sequences?

<<On-line>>
Execute

equivalent
sequence

yes

<<Off-line>>
Fix fault

no

<<Off-line>>
Maintain

equivalent
sequences

Deploy
patched

component

Update
equivalent
sequences

Fig. 8. Workflow of Activities in the Automatic Workarounds approach

the reconceptualized life-cycle to the abstraction level of software processes.
This makes it possible to take a software process perspective on engineering
self-adaptive systems, which is helpful in tackling the challenges related to the
engineering of self-adaptive software systems.

5 Engineering Challenges

With the modeling aspect of the framework in place, we may shift focus to de-
sign, decision making, and reasoning. One of the key challenges we have identified
in the engineering of self-adaptive systems is to partition the process activities
effectively between off-line and on-line activities. As mentioned in the previ-
ous section, these activities may have costs and benefits associated to help in
defining a process for each specific self-adaptive system that brings value to its
stakeholders. Value here has a broad meaning that should encompass a num-
ber of aims: the system goals (quantitative and qualitative), the uncertainty
that characterizes the execution environment (that defines the scope of adap-
tation) [42], the resource constraints of the execution environment (to support
on-line activities), and the availability of accessing remote resources (to sup-
port off-line activities). This requires quantitative reasoning capabilities at the
process definition level that shall suitably be complemented with stochastic rea-
soning to properly take into account the uncertainty dimension of the problem.
As an illustration of the principles and practices in such reasoning support, we

68 J. Andersson et al.

use Value-Based Software Engineering (VBSE) [6]. Biffl et al. argue that VBSE
supports better software engineering decisions, providing an economic perspec-
tive where value bridges separation of concerns employed to manage complexity,
thus allowing for achieving global optimums. The output of a software engineer-
ing process, the software system, has a number of goals associated. The purpose
of an engineering process is to derive a solution, which optimizes the value (re-
lated to goals) of the product under current conditions. Engineering processes
are characterized by their predictable outcomes, i.e., decisions made in a process
have well-known consequences. Another characteristic is the continuous search
for alternative solutions and an exhaustive evaluation of alternative solutions to
provide sufficient knowledge on which decisions will be based.

The reconceptualization of software process activities, which allows some
activities to migrate from off-line to on-line, dissolves a previously crisp boundary
that separated software processes and the running system. This implies that the
two may not be treated as separate concerns by an engineering process. Applying
a value-based perspective on engineering a self-adaptive software system requires
an understanding of value and that value is a main driver for the design and
implementation of software processes for self-adaptive software systems and the
systems themselves. Differently from how commonly intended in VBSE, cost
in our context mainly concerns the impact of the activity in terms of resource
consumption of the system’s execution environment, e.g., computational time,
memory use, etc. Benefit is the measure of the impact of the activity in terms
of the system’s goal, e.g., verification, graceful adaptation in presence of faults,
etc. Value is the measure of the degree of satisfaction of the system’s goals that
can be achieved with the defined costs/benefits process tradeoffs.

VBSE is centered around Theory W [8] that aims at making all stakeholders
in a project winners. VBSE suggests four supporting theories to “achieve and
maintain a win-win state” [6, p. 19]; dependency theory, utility theory, decision
theory, and control theory. Theory W and VBSE are developed with a process
model which maintains watertight partitions between software processes and the
running system. Our hypothesis is that the reconceptualization discussed above
will impact VBSE in a fundamental way. However, the proposed approach where
activities are modeled in a uniform way paves the way for customizing VBSE
for developing self-adaptive software systems.

The first step in VBSE and Theory W is the identification of success-critical
stakeholders (SCS). SCS are highly-important stakeholders and a project “will
succeed if and only if it makes winners of [the project’s] success-critical stake-
holders” [6, p. 18]. It should be clear from the above discussion that in engi-
neering a self-adaptive software system, the system itself is a SCS. Indeed, the
extension proposed to the process modeling framework supports that the sys-
tem is an SCS by making run-time roles, activities, and work-products explicit.
At the same time, the execution environment characteristics, its resources and
operational constraints, including its potential uncertain variability, represent
another SCS. Depending on the self-adaptive system, the users of the system
may represent another crucial SCS, they may, for example, define the acceptable

Software Engineering Processes for Self-Adaptive Systems 69

behavioral variability of the system. The next step in VBSE identifies what is
required to make a SCS a winner. Utility theory will play an important role here
and may be used to define value on a level of detail where individual activities
may define their win conditions. However, roles, activities, and work-products
are not for free. We discussed the issue of relative cost above, and annotating
process entities with costs will be essential in the next step where SCS should
agree upon realization plans that will make all SCS winners. Eventually these
plans will be implemented, a procedure which should be controlled to guarantee
that the final products make all SCS winners.

The research challenge in this area is to formulate a VBSE theory and pro-
cess for engineering self adaptive systems. We have described above some specific
extensions to the SPEM meta-model that support value-based engineering. The
ProcessElement in Figure 6 are annotated with collections of Cost and Benefit
attributes. These concepts will represent the relative contribution of a specific
Role, Activity, or WorkProduct to a value. The underlying idea with assign-
ing costs and benefits to process elements is of course to use this knowledge in
engineering activities. With the extended SPEM language, engineers are pro-
vided with the means to model and reason about how to design evolution and
adaptation activities in a system. Distinguishing off-line activities and on-line
activities opens up a design space where engineers may have several alternatives
and eventually select the alternative that contributes relatively the most to the
stakeholders’ values. We illustrate some specific research challenges below using
references from the automatic workaround example.

The first research challenge is to provide the means for expressing value,
that is the costs and benefits. In the model we proposed, we describe off-line
and on-line activities in an analogous way including cost and benefit attributes.
This is an extremely simple approach to model value. We must develop ways
for expressing stakeholder specific values in a way that they are useful for rea-
soning, evaluation, and eventually decision making. For example, the automatic
workaround mechanism replaces a number of roles, activities, and work products.
However it is not clear how to annotate these with costs, benefits, or any other
type of value, neither for the process elements in the automatic workaround nor
for its traditional, equivalent, off-line realization.

If we succeed in defining a value-framework for engineering self-adaptive soft-
ware systems, engineers can reason about design alternatives, evaluate, and make
predictable decisions about the relative contribution to the overall value. How-
ever, it is not clear how to reason about and evaluate alternatives in a structured
manner. This takes us to the second challenge, we need to design new reason-
ing and evaluation techniques, potentially based on the large body of existing
value-based design methods, for instance [15]. The design of a system’s adapta-
tion subsystem will require that engineers decide if and which activity should
be performed off-line or on-line. Consider for example the Maintain equivalent
sequences activity in Figure 7. It is performed by a Developer. However, it is
not unlikely that future evolution of the AW mechanism provides for additional
alternative realizations of this activity, for instance, by means of other automatic

70 J. Andersson et al.

on-line activities. In that situation, engineers have a selection of alternatives to
choose from in order to select the combination with the greatest relative contri-
bution to the stakeholders’ values.

Another challenge associated with processes for self-adaptive software systems
is the fact that processes need to be generated dynamically at run-time since
changes affecting the system, its context and goals may require their adaptation.
This may imply that depending on the system’s operational conditions, different
processes can be generated by changing their activities or workflows. Moreover,
since off-line and on-line activities might influence each other, it is important
to consider how the initial development-time design rationale can affect the
processes being generated at run-time, and vice versa. Finally, it is also crucial
to incorporate into off-line activities the decisions being made during run-time
since they would provide insightful knowledge about the operational profile of
the system.

6 Related Work

Different researchers like Finkelstein and Blair et al. [7] or Inverardi and
Tivoli [21,22] have also identified the need for new software engineering
paradigms suggesting a reconceptualization of software processes. Among oth-
ers, this is motivated by the blurring boundary between development-time and
run-time as discussed in [3,7]. This is inline with the motivation for our work
in this paper on revising the life-cycle and processes for self-adaptive software
systems.

Challenges for software evolution are also discussed by Mens et al. who specif-
ically state that “[I]t is important to investigate how the notion of software
change can be integrated into the conventional software development process
models” [30, p. 17]. They consider agile or in general iterative and incremental
development processes as promising approaches to integrate support for change
in the life-cycle. In contrast to this paper, they do not focus on life-cycle or
process issues related to changes by means of self-adaptation or related to the
blurring boundary between development-time and run-time. Likewise, Buckley
et al. [11] or McKinley et al. [28] clearly distinguish between changes performed
statically at development-time or dynamically at run-time. This is based on a
traditional view on a system life-cycle, while we promote a refined view that
primarily considers on-line and off-line changes or in general on-line and off-line
process activities. In this context, by on-line and off-line we refer to different
ways changes are carried out, but not whether the running system’s domain logic
provides service or not while being changed (cf. availability dimension in [11]).

Salehie and Tahvildari [39] discuss research challenges for the specific case
of self-adaptive software, but not from a process view. They briefly consider a
developing phase and an operating phase for self-adaptive systems, while the de-
veloping phase determines the adaptation capabilities in the operational phase.
However, these phases are not used for discussing the challenges and in partic-
ular, this distinction into these two phases is similar to the traditional view on
life-cycles exclusively separating development-time and run-time.

Software Engineering Processes for Self-Adaptive Systems 71

Gacek et al. [18] view evolution and adaptation as processes that include
roles, artifacts etc., which is similar to our work. They propose a self-adaptation
reference process that consists of two iteratively interacting processes. The inner
adaptation process addresses the component control and change management
layers of the reference architecture by Kramer and Magee [25], while the outer
evolution process relates to the goal management layer. The authors conceptually
discuss how a manual or partially automated evolution process guides an auto-
mated adaptation process by interactions between these two processes. These
interactions seem to be similar to the interaction points between on-line and
off-line process activities that we discussed in the context of Figure 4. However,
Gacek et al. focus on discussing the co-existence of self-adaptation and tradi-
tional change management or evolution, but they do not discuss implications on
software engineering processes or system life-cycles as this paper does.

Other approaches investigating software processes for self-* systems and espe-
cially for adaptive multi-agent systems cover only the development of such sys-
tems and not the whole life-cycle [34,37]. This means that the adaptation mech-
anisms are exclusively considered as part of the system to be developed, but not
as a part of the life-cycle process itself. Thus, both approaches [34,37] describe
processes or methodologies that specify the development of the systems including
the development of the adaptation mechanisms. In contrast, besides consider-
ing adaptation mechanisms as part of a self-adaptive system, we also lift the
adaptation mechanisms to the process level by treating the adaptation logic as
a process role and the tasks performed by the adaptation logic as process activi-
ties. Consequently, we address processes that describe the whole system life-cycle
comprising the development as well as the adaptation and evolution of the sys-
tem. Nevertheless, one commonality between our work and [34,37] is the usage
of the same process modeling language, namely SPEM, though we conceptually
extended SPEM due to the required reconceptualization of software processes.

Our work is also motivated by the fact that approaches to modern or self-
adaptive software systems do not design comprehensive software processes span-
ning on-line and off-line activities for their approaches, and they just shift specific
typical process activities to the system in order to be performed on-line. For ex-
ample, Brenner et al. [10] equips components with mechanisms to test them
on-line, which shifts typical validation and verification activities and efforts to
the run-time. Another example is the work of Bencomo et al. [5] who consider a
self-adaptive system as a dynamic software product line that determines prod-
uct configurations on-line and at run-time, while for traditional product lines
the configurations are determined off-line and usually before deployment. Such
approaches can benefit from our work since we provide initial means to model
and analyze processes that cover both on-line and off-line activities. This might
help other approaches to engineer their systems with effective process support.

Another initiative associated with processes for self-adaptive software sys-
tems is the dynamic generation of plans at run-time [40,41]. A key factor moti-
vating this work was how to deal with the uncertainty related to changing goals,
unexpected resource conditions, and unpredictable environments when manag-

72 J. Andersson et al.

ing the adaptation of software systems. This has shown particularly relevance
when applied to the generation of plans for managing the integration testing of
self-adaptive systems [41], which is a process that involves to calculate integra-
tion order, generate stubs and test cases, and perform the actual tests. Although
this work is restricted to on-line activities, it would be interesting to consider
how off-line activities could affect the automatic generation of plans, and how
cost and benefit could be integrated with the decision making of selecting the
most appropriate plan.

7 Conclusion and Future Work

The actual support for self-adaptation throughout the entire life-cycle of self-
adaptive software systems requires a reconceptualization of the way they are en-
gineered. Therefore, we presented a first integrated view of the problem, suitable
abstractions for off-line and on-line process activities, and details of major chal-
lenges concerning the reconceptualization of software processes for self-adaptive
software systems. Moreover, for tackling the challenges related to the engineer-
ing of self-adaptive software systems, we proposed an approach based on process
modeling and value-based software engineering. An essential part of this approach
is the intertwining of a self-adaptive software system and its software process.

As future work, we plan to elaborate the reconceptualization of software
processes for self-adaptive systems, e.g., by investigating the impact of the on-
line/off-line perspective on state-of-the-art approaches, methods, and techniques
to design software processes and to engineer self-adaptive systems. Having more
profound knowledge about reconceptualized software processes, we can work on
formalizing the modeling language to fully capture a process and its system. A
formal language is the prerequisite for automated analysis that follows the theory
of value-based software engineering. Therefore, we have to adapt this theory to
address specifics of self-adaptive systems and processes for such systems. For
instance, we need to think about benchmarks and special-purpose metrics to
assess processes and the corresponding self-adaptive systems as well as their
values based on costs and benefits. How can we say that a given process is
better than another one at identifying, designing, implementing, and running
the on-line and off-line process activities for a system?

Besides these initial directions, a possible research agenda should in par-
ticular comprise the following elements. We need to better understand how to
elicit functional and non-functional requirements of self-adaptive systems, espe-
cially, on how these should be associated with on-line and off-line activities and
their dependencies. This could lead to a model-driven solution for the develop-
ment, deployment, adaptation, and evolution of these system. We also need to
better understand the dependencies between self-adaptation and software evo-
lution since the former does not imply replacing the latter. This requires clear
definitions of (self-)adaptation and evolution, and how both can be seamlessly
integrated in a self-adaptive system’s process. For example, there might be the
need for understanding how to evolve the system based on its run-time adapta-

Software Engineering Processes for Self-Adaptive Systems 73

tions. Experiences from the adaptations performed in the past may offer useful
knowledge for the evolution of the system.

All these research directions promote our ultimate goal of effectively and
efficiently engineering self-adaptive systems with proper software process sup-
port. Thereby, the process perspective should leverage systematic approaches to
engineering self-adaptive systems, which have predictable outcomes concerning
effectiveness and efficiency.

Acknowledgment. This paper is the result of stimulating discussions among
the authors and other participants, especially Bojan Cukic, Oscar M. Nierstrasz,
Sooyong Park, and Dennis B. Smith, during the seminar on Software Engineering
for Self-Adaptive Systems at Schloss Dagstuhl in October 2010 (http://www.
dagstuhl.de/10431).

References

1. Andersson, J., de Lemos, R., Malek, S., Weyns, D.: Reflecting on self-adaptive
software systems. In: Proc. of the ICSE Workshop on Software Engineering for
Adaptive and Self-Managing Systems (SEAMS’09). pp. 38–47. IEEE Computer
Society (2009)

2. Bai, X., Huang, L., Zhang, H.: On scoping stakeholders and artifacts in software
process. In: Munch, J., Yang, Y., Schafer, W. (eds.) New Modeling Concepts for
Today’s Software Processes. LNCS, vol. 6195, pp. 39–51. Springer (2010)

3. Baresi, L., Ghezzi, C.: The disappearing boundary between development-time and
run-time. In: Proc. of the FSE/SDP workshop on Future of software engineering
research (FoSER’10). pp. 17–22. ACM, New York (2010)

4. Beck, K.: Embracing Change with Extreme Programming. IEEE Computer 32(10),
70–77 (1999)

5. Bencomo, N., Sawyer, P., Blair, G., Grace, P.: Dynamically adaptive systems are
product lines too: Using model-driven techniques to capture dynamic variability
of adaptive systems. In: Thiel, S., Pohl, K. (eds.) Proc. of the 12th International
Software Product Line Conference (SPLC’08), Second Volume (Workshops). pp.
23–32. Lero Int. Science Centre, University of Limerick, Ireland (2008)

6. Biffl, S., Aurum, A., Boehm, B., Erdogmus, H., Grünbacher, P. (eds.): Value-Based
Software Engineering. Springer (2006)

7. Blair, G., Bencomo, N., France, R.B.: Models@run.time: Guest Editors’ Introduc-
tion. IEEE Computer 42(10), 22–27 (2009)

8. Boehm, B.W., Ross, R.: Theory-W Software Project Management Principles and
Examples. IEEE Trans. Softw. Eng. 15(7), 902–916 (1989)

9. Boehm, B.W.: A Spiral Model of Software Development and Enhancement. IEEE
Computer 21(5), 61–72 (1988)

10. Brenner, D., Atkinson, C., Malaka, R., Merdes, M., Paech, B., Suliman, D.: Re-
ducing verification effort in component-based software engineering through built-in
testing. Information Systems Frontiers 9(2), 151–162 (2007)

11. Buckley, J., Mens, T., Zenger, M., Rashid, A., Kniesel, G.: Towards a taxonomy
of software change. Journal of Software Maintenance and Evolution: Research and
Practice 17(5), 309–332 (2005)

http://www.dagstuhl.de/10431
http://www.dagstuhl.de/10431

74 J. Andersson et al.

12. Carzaniga, A., Gorla, A., Perino, N., Pezzè, M.: Automatic workarounds for web
applications. In: Proc. of the 18th ACM SIGSOFT International Symposium on
Foundations of Software Engineering (FSE’10). pp. 237–246. ACM, New York
(2010)

13. Carzaniga, A., Gorla, A., Pezzè, M.: Self-healing by means of automatic
workarounds. In: Proc. of the ICSE Workshop on Software Engineering for Adap-
tive and Self-Managing Systems (SEAMS’08). pp. 17–24. ACM, New York (2008)

14. Cheng, B.H., Lemos, R., Giese, H., Inverardi, P., Magee, J., Andersson, J., Becker,
B., Bencomo, N., Brun, Y., Cukic, B., Serugendo, G.D.M., Dustdar, S., Finkelstein,
A., Gacek, C., Geihs, K., Grassi, V., Karsai, G., Kienle, H.M., Kramer, J., Litoiu,
M., Malek, S., Mirandola, R., Müller, H.A., Park, S., Shaw, M., Tichy, M., Tivoli,
M., Weyns, D., Whittle, J.: Software Engineering for Self-Adaptive Systems: A
Research Roadmap. In: Cheng, B.H., Lemos, R., Giese, H., Inverardi, P., Magee,
J. (eds.) Software Engineering for Self-Adaptive Systems. LNCS, vol. 5525, pp.
1–26. Springer (2009)

15. Clements, P., Kazman, R., Klein, M.: Evaluating Software Architectures: Methods
and Case Studies. Addison-Wesley, Boston, MA (2001)

16. Curtis, B., Kellner, M.I., Over, J.: Process modeling. Commun. ACM 35(9), 75–90
(1992)

17. Gabriel, R.P., Northrop, L., Schmidt, D.C., Sullivan, K.: Ultra-large-scale systems.
In: OOPSLA ’06: Companion to the 21st ACM SIGPLAN symposium on Object-
oriented programming systems, languages, and applications. pp. 632–634. ACM,
New York, NY, USA (2006)

18. Gacek, C., Giese, H., Hadar, E.: Friends or foes?: a conceptual analysis of self-
adaptation and it change management. In: Proc. of the ICSE Workshop on Software
Engineering for Adaptive and Self-Managing Systems (SEAMS’08). pp. 121–128.
ACM, New York (2008)

19. Gilb, T.: Evolutionary development. SIGSOFT Softw. Eng. Notes 6(2), 17 (1981)
20. Gilb, T.: Evolutionary Delivery versus the waterfall model. SIGSOFT Softw. Eng.

Notes 10(3), 49–61 (1985)
21. Inverardi, P.: Software of the Future Is the Future of Software? In: Montanari, U.,

Sannella, D., Bruni, R. (eds.) Trustworthy Global Computing. LNCS, vol. 4661,
pp. 69–85. Springer (2007)

22. Inverardi, P., Tivoli, M.: The Future of Software: Adaptation and Dependability.
In: De Lucia, A., Ferrucci, F. (eds.) Software Engineering. LNCS, vol. 5413, pp.
1–31. Springer (2009)

23. Jacobson, I., Booch, G., Rumbaugh, J.: The unified process. IEEE Software 16(3),
96–102 (1999)

24. Kephart, J.O., Chess, D.M.: The vision of autonomic computing. IEEE Computer
36(1), 41–50 (2003)

25. Kramer, J., Magee, J.: Self-managed systems: an architectural challenge. In: Future
of Software Engineering (FOSE’07). pp. 259–268. IEEE Computer Society (2007)

26. Lehman, M.M.: Software’s Future: Managing Evolution. IEEE Software 15(01),
40–44 (1998)

27. Lehman, M.M., Belady, L.A. (eds.): Program evolution: processes of software
change. Academic Press Professional, Inc., San Diego, CA, USA (1985)

28. McKinley, P., Sadjadi, S.M., Kasten, E.P., Cheng, B.H.C.: Composing Adaptive
Software. IEEE Computer 37(7), 56–64 (2004)

29. Mens, T.: Introduction and Roadmap: History and Challenges of Software Evolu-
tion, chap. 1. Software Evolution, Springer (2008)

Software Engineering Processes for Self-Adaptive Systems 75

30. Mens, T., Wermelinger, M., Ducasse, S., Demeyer, S., Hirschfeld, R., Jazayeri, M.:
Challenges in software evolution. In: Proc. of the 8th International Workshop on
Principles of Software Evolution (IWPSE’05). pp. 13–22. IEEE Computer Society
(2005)

31. Northrop, L., Feiler, P.H., Gabriel, R.P., Linger, R., Longstaff, T., Kazman, R.,
Klein, M., Schmidt, D.: Ultra-Large-Scale Systems: The Software Challenge of the
Future. Software Engineering Institute, Carnegie Mellon University, Pittsburgh,
PA (2006)

32. Object Management Group (OMG): Software & Systems Process Engineering
Meta-Model Specification (SPEM), Version 2.0 (2008)

33. Osterweil, L.J.: Software processes are software too. In: Proc. of the 9th Interna-
tional Conference on Software Engineering (ICSE’87). pp. 2–13. IEEE Computer
Society, Los Alamitos (1987)

34. Puviani, M., Serugendo, G.D.M., Frei, R., Cabri, G.: Methodologies for self-
organising systems: A spem approach. In: Proc. of the IEEE/WIC/ACM Inter-
national Joint Conference on Web Intelligence and Intelligent Agent Technology
(WI-IAT’09) - Volume 02. pp. 66–69. IEEE Computer Society (2009)

35. Rajlich, V.T., Bennett, K.H.: A Staged Model for the Software Life Cycle. IEEE
Computer 33(7), 66–71 (2000)

36. Rolland, C.: Modeling the requirements engineering process. In: Markus, A.F.,
Jaakkola, H., Tadahiro, K., Kangassalo, H. (eds.) Information Modelling and
Knowledge Bases V: Principles and Formal Techniques: Results of the 3rd
European-Japanese Seminar, Held in Budapest, Hungary, May 31-June 3, 1993.
pp. 85–96. IOS Press (1994)

37. Rougemaille, S., Migeon, F., Millan, T., Gleizes, M.P.: Methodology fragments
definition in spem for designing adaptive methodology: A first step. In: Luck, M.,
Gomez-Sanz, J. (eds.) Agent-Oriented Software Engineering IX, LNCS, vol. 5386,
pp. 74–85. Springer, Berlin (2009)

38. Royce, W.: Managing the Development of Large Software Systems: Concepts and
Techniques. In: Proc. IEEE WESTCON. IEEE Computer Society Press (1970),
reprinted in Proc. of the 9th International Conference on Software Engineering
(ICSE’87), pages 328-338, IEEE Computer Society

39. Salehie, M., Tahvildari, L.: Self-adaptive software: Landscape and research chal-
lenges. ACM Trans. Auton. Adapt. Syst. 4(2), 1–42 (2009)

40. da Silva, C.E., de Lemos, R.: Using dynamic workflows for coordinating self-
adaptation of software systems. In: Proceedings of the 2009 ICSE Workshop on
Software Engineering for Adaptive and Self-Managing Systems (SEAMS 2009). pp.
86–95. IEEE Computer Society, Washington, DC, USA (2009)

41. da Silva, C.E., de Lemos, R.: Dynamic plans for integration testing of self-adaptive
software systems. In: Proceedings of the 6th International Symposium on Software
Engineering for Adaptive and Self-Managing Systems (SEAMS 2011). pp. 148–157.
ACM, New York, NY, USA (2011)

42. Welsh, K., Sawyer, P.: Understanding the scope of uncertainty in dynamically
adaptive systems. In: Wieringa, R., Persson, A. (eds.) Requirements Engineering:
Foundation for Software Quality. LNCS, vol. 6182, pp. 2–16. Springer (2010)

43. Yau, S.S., Colofello, J.S., MacGregor, T.: Ripple effect analysis of software main-
tenance. In: Proc. of the 2nd International Conference on Computer Software and
Applications (COMPSAC’78). pp. 60–65. IEEE Computer Society (1978)

	Software Engineering Processes for Self-Adaptive Systems

