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I. ABSTRACT

This paper proposes the exploitation of the Kullbalck-
Leibler divergence to characterise the uncertainty of the
tracking error for general stochastic systems without con-
straints of certain distributions. The general solution to the
fully probabilistic design (FPD) of tracking error control
problem is firstly stated. Further development then focuses on
the derivation of a randomised controller for a class of linear
stochastic Gaussian systems that is affected by multiplicative
noise. The derived control solution takes the multiplicative
noise of the controlled system into consideration in the
derivation of the randomised controller. The proposed FPD of
the tracking error of the system dynamics is a more legitimate
approach compared to the conventional FPD method. It
directly characterises the main objective of systems control.
The efficiency of the proposed method is then demonstrated
on a flexible beam example where the vibration quenching
in flexible beams is shown to be effectively suppressed.

II. INTRODUCTION

In control systems, the tracking error between the system
output and a predefined desired output is the most commonly
used optimisation signal for the tuning of the parameters of
the system controller [Gaudio et al. 2019], [Gerasimov et al.
2019], [Humaidi and Hameed, 2019], [Wu and Du, 2019],
[Zhou et al. 2020], [Zhou et al. 2017]. When accompanied
with adaptive control [Narendra and Annaswamy, 2005],
[Tao, 2003], [Chen and Jiao, 2010], the approach has been
particularly proven useful to control systems that are affected
by models uncertainty, random noises, and that are operating
under changing environment and have unforeseen varia-
tions in their overall structure. Despite being adaptive and
therefore are expected to deal with the underlying systems
uncertainty, many of the aforementioned methods are based
on the minimisation of the mean square tracking error to
optimise the controller parameters. The minimisation of the
mean square tracking error, also known as tracking error
variance, on the other hand is based on the assumption of
certainty equivalence, therefore, it does not generally yield a
good performance. Thus, for more general stochastic systems
and for systems with functional and models uncertainty,
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the variance of the tracking error cannot be used alone to
represent the performance of the closed-loop system [Yue
and Wang, 2003], [Herzallah, 2007], [Herzallah and Lowe,
2004], [Herzallah and Lowe, 2006], [Herzallah and Lowe,
2003], [Zhang et al. 2016]. As a result, the Kullback-
Leibler divergence [Yu, 2009], [Cliff et al. 2018], [Kulback,
1959] measure has been proposed recently in several control
literatures to characterise the uncertainty of the stochastic
systems dynamics. This is because the Kullback-Leibler
divergence measures the discrepancies between the stochastic
system distributions to their desired distributions rather than
characterises them by their means or variances.

An efficient control approach, known as FPD, that uses
the Kullback-Leibler divergence as a performance measure
for designing randomised controllers has been proposed
in [Karny, 1996], [Herzallah, 2011]. In this approach, the
Kullback-Leibler divergence is used to measure the discrep-
ancy between the joint pdf of the closed loop description
of the systems dynamics and an ideal joint pdf. The main
advantage of the FPD control approach is that it provides
a closed form solution for general description of stochastic
systems without constraints of certain distribution. However,
although a closed form solution can be obtained, the solution
cannot be evaluated analytically due to the multivariate
integration involved in the optimisation process. Besides, in
its original form the FPD control method considers the design
of a randomised controller that shapes the pdf of the system
dynamics. Nonetheless, the characterisation of the pdf of the
system dynamics can be difficult for many real world systems
that work under high levels of uncertainty and stochasticity.
Furthermore, in many real engineering systems the controller
objective is to make the output of the system dynamics
follow a predefined desired output value, thus emphasising
the importance of the tracking error rather than the actual
system output.

As such, this paper follows an alternative approach where
the Kullback-Leibler divergence is defined to be the distance
between the pdf of the joint distribution of the tracking error
and the randomised controller of the controlled system to an
ideal joint distribution function. Therefore, the randomised
controller is designed here to reshape the pdf of the tracking
error of the controlled system rather than the pdf of its dy-
namics. Compared with the existing results on the topic and
the conventional approach of FPD, this alternative approach
has several advantages that have not been reported in the
literature. Firstly, the characterisation of the pdf of tracking
error of the controlled system is normally easier than the
characterisation of the pdf of its dynamics. This is because



when the stochastic dynamics of the controlled system are
estimated accurately, the resulting tracking error of the
system will be small and most likely can be characterised
by a Gaussian pdf. The aforementioned in turn simplifies
the optimisation of the sought randomised controller. Sec-
ondly, the ideal distribution of the tracking error can be
naturally specified by a zero mean distribution. In particular
a Gaussian distribution with zero mean and a presepecified
covariance matrix that determines the allowed fluctuations of
the tracking error around its zero mean value would be ideal.
Furthermore, the FPD method in its original form considers
additive noise only to the system dynamics. Our alternative
solution considers stochastic systems with multiplicative
noises which represent conditions under which most real
world systems operate. Therefore, an additional contribution
of the paper is the consideration of the multiplicative noise
of the stochastic system in the derivation of the randomised
optimal control law. Moreover, the proposed probabilistic
minimisation of the tracking error will be shown to be
particularly useful for solving the vibration control problem
associated with mechanical systems. The vibration control
problem is particularly challenging and is relevant to many
real world control problems including robotic manipulators,
aerospace structures, and biomechanical systems [Simone
et al. 2018], [Pappalardo et al. 2016], [Flores and Barbieri,
2006], [Sohn et al. 2009], [Song and Gu, 2007].

To re-emphasise, this alternative solution of the tracking
error and the extension of the FPD to stochastic systems
with multiplicative noises have not been discussed previously
in the literature. Its theoretical development and numerical
demonstration will be presented for the first time in this
paper.

III. PROBLEM STATEMENT

In the original formulation of the Fully Probabilistic De-
sign, the aim is to derive a randomised controller that shapes
the joint probability density function of the stochastic system
dynamics and the controller. This joint probability density
function of the controller and the dynamics of the stochastic
system represents the complete description of the closed loop
behaviour of the controlled system. However, in some control
applications the system is required to track a predefined
desired trajectory. Thus for these control applications, it
would be more convenient to design the controller such
that it reshapes the pdf of the tracking error as opposed to
the original formulation of reshaping the pdf of the system
dynamics. For the system to be able to track the desired
signal, the controller should be designed such that the pdf
of the tracking error is centred around zero with small
variations. This objective of achieving a narrow distribution
of the tracking error centred around zero error state, implies
that the system has tracked the desired trajectory and at
the same time indicates that the uncertainty in the tracked
trajectory is small. To be more specific, assume that the
stochastic system can be described at each time instant, k
by the following conditional pdf,

s(xk|xk−1,uk−1), (1)

where xk ∈ℜn is the system state, and uk ∈ℜm is the system
input. Define the reference state that the system will be
required to track as xr ∈ℜn, then the system tracking error
should be given by,

ek = xk− xr. (2)

Because the considered system in this paper is stochastic and
subject to random forces and functional uncertainties, only
the probability density function of the state values defined
in (1) can be specified. On the other hand, since the objective
in this paper is to design a randomised controller that shapes
the pdf of the tracking error as a result of the requirements
that the system state tracks a desired set point, the pdf of
the tracking error needs to be assumed to be known which
may be an unrealistic assumption for many real world control
problems. However, the density function of the tracking error
can be obtained from the density function of the system
dynamics using probability theory as follows,

se(xk,xr) = s(ek + xr|ek−1 + xr,uk−1). (3)

In general s(xk|.) is not known in reality, thus needs to be
estimated online utilising the observed data of the controlled
system. The estimation process of this pdf will be explained
in Section IV-B.

Once the pdf of the tracking error is estimated, the ran-
domised controller can be derived by redefining the Kulback
Leibler divergence such that the discrepancy between the
joint pdf of the tracking error and the controller and a
predefined ideal joint pdf is minimised,

D( f || f I) =
∫

f (D) ln
(

f (D)
f I(D)

)
d(D), (4)

where f (D) = ∏
H
k=1 s(ek|ek−1,uk−1)c(uk−1|ek−1),

f I(D) = ∏
H
k=1 sI(ek|ek−1,uk−1)cI(uk−1|ek−1), D =

(e0, . . . ,eH ,u0, . . . ,uH−1), and H is the control horizon.
Following the same approach of the original FPD, the
minimisation of the Kullbak Leibler divergence defined
in (4) can be achieved by recursively solving the backward
recurrence equation that is given in the following proposition.

Proposition 1: The optimal randomised controller
c(uk−1|ek−1) can be obtained by recursively solving
the following recurrence equation [Herzallah, 2011],

− ln(γ(ek−1)) = min
c(uk−1|ek−1)

∫
s(ek|uk−1,ek−1)c(uk−1|ek−1)

×
[

ln
(

s(ek|uk−1,ek−1)c(uk−1|ek−1)
Is(ek|uk−1,ek−1) Ic(uk−1|ek−1)

)
︸ ︷︷ ︸
≡partial cost =⇒U(ek,uk−1)

− ln(γ(ek))︸ ︷︷ ︸
optimal cost-to-go

]
d(ek,uk−1). (5)

Proof : The derivation of the above result can be found
in [Herzallah, 2011].
The optimal randomised controller that minimises the
recurrence equation specified in (5) can then be shown to



be given as specified in the following proposition.

Proposition 2: The pdf of the optimal randomised
controller that minimises the cost to go function (5) is given
by,

c(uk−1 |ek−1 ) =

cI(uk−1 |ek−1 )exp[−β1(uk−1,ek−1)−β2(uk−1,ek−1)]

γ(ek−1)
, (6)

where

γ(ek−1) =
∫

cI(uk−1 |ek−1 )exp[−β1(uk−1,ek−1)

−β2(uk−1,ek−1)]duk−1

β1(uk−1,ek−1) =
∫

s(ek |uk−1,ek−1 )[ln
s(ek |uk−1,ek−1 )

sI(ek |uk−1,ek−1 )
]dek

β2(uk−1,ek−1) =−
∫

s(ek |uk−1,ek−1 ) ln(γ(ek))dek. (7)

Proof : This proposition can be proven by adapting the proof
of Proposition 2 in [Karny, 2006].
Note that the solution of the optimal randomised controller
as specified in this proposition is not restricted by the pdf
that characterises the error or the controller. It provides
the general solution for the randomised controller without
constraints on the required pdfs. However, the evaluation of
the analytic solution for this randomized controller is not
possible except for the special case of linear and Gaussian
pdfs. Therefore, to facilitate the understanding and the ana-
lytical solution of the proposed tracking error based FPD, the
next section will demonstrate the solution to the probabilistic
tracking control for a class of linear stochastic systems with
multiplicative noise.

IV. SOLUTION OF THE PROBABILISTIC TRACKING
CONTROL FOR LINEAR STOCHASTIC SYSTEMS

The theory developed in the previous section will be
applied here to derive the analytic solution of the proba-
bilistic tracking control for linear stochastic systems with
multiplicative noise. Stochastic systems with multiplicative
noises arise naturally in networked control systems where
multiplicative noises are used to model packet loss. Previous
works have considered this class of stochastic systems where
the multiplicative noise is used to model packet loss [Wei
et al. 2013] and time delay [Zhang et al. 2015] that happens
during packet transmission in communication networks. This
is different to parameters uncertainty [Liu et al. 2010], [Lee
et al. 2001], [Xie et al. 1992] where the uncertainty of the
parameters are usually grouped with the parameters of the
state and can be considered stochastic or deterministic. The
development of a robust control solution for these systems
has been a long standing and still unsolved problem.

A. Model Description

Consider a stochastic linear discrete time system with
multiplicative Gaussian noise described by,

xk = Ãxk−1 + B̃uk−1 + D̃xk−1vk−1, (8)

where xk ∈ ℜn is the system state, and uk ∈ ℜm is the
system input as defined before, A, B, D are system matrices
with appropriate dimensions, and vk ∈ ℜ is an independent
Gaussian noise with zero mean and covariance Q.

It should be noted that in real world situations the param-
eters of the stochastic model (8) are not known in general,
thus need to be estimated. However, since the current value
of the system state is affected by noise, its value cannot be
completely specified by the previous control and previous
state values. Therefore, the probabilistic description of the
stochastic model (8) needs be estimated on-line using ob-
served data from the stochastic system dynamics to describe
the probabilistic evolution of the system state. The on-line
estimation process of the stochastic system parameters and
consequently the system state distribution will be discussed
next.

B. Estimation of the Probabilistic Description of the System
Tracking Error

As discussed in the previous section, due to the stochastic
nature of the system dynamics, only the probabilistic de-
scription of the system state can be specified. This can be
obtained by estimating the system parameters of the stochas-
tic equation of the system state given in (8). Therefore, given
our prior knowledge of the linear dynamics of the system and
the fact that it is driven by multiplicative noise, the required
model of the system equation (8) can be assumed to have
the following form,

xk = Axk−1 +Buk−1 +Dxk−1vk−1, (9)

where A, B and D are the estimates of the matrices Ã, B̃
and D̃ respectively. Then these parameters can be estimated
on-line by updating their values at each time instant, k when
a new measurement of the state value becomes available. In
particular, rewrite (9) as follows,

xk =
[

A B D
] xk−1

uk−1
xk−1vk−1

 ,
= ϑ χk−1, (10)

where ϑ =
[

A B D
]
, and χk−1 =[

xk−1 uk−1 xk−1vk−1
]T . Here, χk−1 has dimension

(2n + m)× 1, and ϑ has dimension n× (2n + m), where
n and m are the dimensionality of the state vector and
control input respectively as stated earlier. Then given
a new observation of the system state xk the parameter
vector, ϑ can be estimated. Since the matrix χk−1 is not a
square matrix, the estimation of the parameter vector can
be achieved by first multiplying both sides of (10) by χT

k−1
and then solving for the parameter vector ϑ ,

xkχ
†
k−1 = ϑ , (11)

where χ
†
k−1 is an 1× (2n+m) matrix known as the pseudo-

inverse of χk−1 and is given by,

χ
†
k−1 = χ

T
k−1(χk−1χ

T
k−1)

−1. (12)



Remark 1: As can be seen from Equation (12), the pseudo
inverse matrix does have the property that χk−1χ

†
k−1 = I

where I is the identity matrix. However, note that χk−1χ
†
k−1 6=

I in general. If the matrix χk−1χT
k−1 is singular then Equa-

tion (11) does not have a unique solution. In this case, if the
pseudo inverse is defined as,

χ
†
k−1 = lim

ι→0
χ

T
k−1(χk−1χ

T
k−1 + ιI)−1, (13)

then, the limit can be shown to be always exist and that
the limiting value guarantees the optimal solution of Equa-
tion (11).

Following the estimation of these parameters, the condi-
tional distribution of the system state is shown to be Gaussian
described by,

s(xk|xk−1,uk−1)∼ N
(
Axk−1 +Buk−1,Dxk−1QxT

k−1DT ) ,
(14)

where Axk−1 +Buk−1 is the mean of the state calculated using
the estimated parameters A and B, and Dxk−1QxT

k−1DT is
the covariance of the state calculated using the estimated
parameter D.

For the objective of deriving a randomised controller that
will achieve a narrow tracking error distribution centred
around zero, thus guaranteeing an accurate tracking of the
system state to the desired value, the tracking error distri-
bution needs to be specified. This can be obtained from the
definition of the tracking error given in (2).

The dynamical description of the tracking error can then
be obtained by substituting (9) into (2), which yields,

ek =Axk−1 +Buk−1 +Dxk−1vk−1− xr,

=Aek−1 +Buk−1 +Dxk−1vk−1 +Fxr, (15)

where we have introduced the definition F = A− I. From
Equations (3), (14), and (15), the distribution of the tracking
error is Gaussian with mean µk and covariance Σk specified
as follows,

s
(
ek|uk−1, ek−1

)
∼ N (µk, Σk) (16)

where

µk = Aek−1 +Buk−1 +Fxr (17)
Σk = cov(ek|uk−1, ek−1)

= E{(ek−µk)(ek−µk)
T}

= Dxk−1QxT
k−1DT . (18)

C. Randomised Control Solution

In this section the generalised fully probabilistic control
solution of the tracking problem for the stochastic linear
system with multiplicative noise defined in (8) is derived.
As discussed in earlier sections, the pdf of the system
tracking error is assumed to be unknown, thus estimated
on-line as explained in Section IV-B. The purpose of the
designed controller here is to make the pdf of the track-
ing error s

(
ek|uk−1, ek−1

)
follow a predefined ideal pdf

sI(ek|uk−1, ek−1) and bring the tracking error to zero. Thus,

the ideal distribution of the system tracking error described
by (16) is specified as,

sI(ek|uk−1, ek−1)∼ N (0, Σ2) , (19)

where Σ2 specifies the allowed fluctuations of the tracking
error around its zero mean value. In addition, the ideal dis-
tribution of the sought randomised controller, c(uk−1 |ek−1 )
is taken to be Gaussian with the following form,

cI (uk−1|ek−1)∼ N (µu, Γ) , (20)

where Γ is the covariance matrix of the ideal distribution
of the control input and µu is the mean of the ideal dis-
tribution of the control input. To achieve the objective that
the optimised randomised controller brings the tracking error
between the system state and its desired value to zero, the
mean value of the ideal distribution of the controller, µu is
calculated from (15) to be,

lim
k→∞

[E{ek}] = lim
k→∞

[E{Aek−1}+E{Buk−1}+E{Dxk−1vk−1}

+Fxr],

0 = 0+ lim
k→∞

[E{Buk−1}+Fxr],

lim
k→∞

[E{uk−1}] = µu =−(BT B)−1BT Fxr. (21)

Given the pdf of the tracking error defined in (16) and
the ideal pdfs of the tracking error and controller defined
in (19) and (20) respectively, the performance index for the
class of linear stochastic systems defined in (9) can then be
shown to be given by the following theorem.

Theorem 1: Using the pdf description of the tracking
error dynamics specified by (16), the ideal distribution of
the tracking error dynamics given by (19) and the ideal
distribution of the controller given by (20) in (6) and (7)
gives the following performance index,

− ln(γ (ek)) = 0.5(eT
k Skek +Pkek +wk), (22)

where,

Sk−1 =−AT MkB(Γ−1 +BT MkB)−1BT MT
k A+M2 +AT MkA,

(23)

Pk−1 = 2xT
r (M2 +FT MkA)+PkA

+2µ
T
u Γ
−1(Γ−1 +BT MkB)−1BT MT

k A

−2xT
r FT MkB(Γ−1 +BT MkB)−1BT MT

k A

−PkB(Γ−1 +BT MkB)−1BT MT
k A, (24)

wk−1 = xT
r (M2 +FT MkF−FT MkB(Γ−1 +BT MkB)−1BT MT

k F)

× xr +wk +PkFxr +µ
T
u (Γ

−1−Γ
−1(Γ−1 +BT MkB)−1

Γ
−T )

×µu−0.25PkB(Γ−1 +BT MkB)−1BT PT
k

+2µ
T
u Γ
−1(Γ−1 +BT MkB)−1BT MT

k Fxr

−PkB(Γ−1 +BT MkB)−1BT MT
k Fxr

+µ
T
u Γ
−1(Γ−1 +BT MkB)−1BT PT

k − ln(π)

+ ln((Γ−1 +BT MkB)−1), (25)



and where,

Mk = Σ
−1
2 +Sk,

M2 = DT SkQD. (26)
Proof: The claimed quadratic form of the optimal

performance function specified in (22) can be verified sub-
sequently by backward induction. The proof starts by eval-
uating γ in (7), repeated here,

γ(ek−1) =
∫

cI(uk−1 |ek−1 )exp[−β1(uk−1,ek−1)

−β2(uk−1,ek−1)]duk−1. (27)

This evaluation requires the evaluation of β1 and β2. Starting
with β1,

β1 (uk−1,ek−1) =
∫

s
(
ek|uk−1, ek−1

)
ln

s
(
ek|uk−1, ek−1

)
sI
(
ek|uk−1, ek−1

)dek

=
∫

N(µk, Σk)

(
−0.5ln(|Σk| |Σ2|−1)−0.5(ek−µk)

T (Σk)
−1

× (ek−µk)+0.5ek
T (Σ2)

−1ek

)
dek. (28)

To solve (28), the following rule from [Golub and Meurant,
2009] is required,

ln(det(A1)) = tr(ln(A1)), (29)

where A1 should be a positive definite matrix. Since
(|Σk| |Σ2|−1) is positive definite, the ln(|Σk| |Σ2|−1) term in
(28) can be rewritten as,

ln(|Σk| |Σ2|−1) = ln(
∣∣ΣkΣ2

−1∣∣) = tr(ln(ΣkΣ2
−1)). (30)

Assumption 1: Since the objective of the sought ran-
domised optimal controller is to make the distribution of the
tracking error of the system dynamics as close as possible
to the specified ideal distribution, it is expected that at
steady state the covariance of the tracking error dynamics
will become close to the covariance of the specified ideal
distribution. This means that,∥∥ΣkΣ2

−1− I
∥∥< 1. (31)

Remark 2: Please note that the covariance of the noise,
Q affecting the system will not be too large in real world
systems. This in turns means that Σk = Dxk−1QxT

k−1DT will
not be too large as well. Therefore the above assumption is
a valid assumption. This will be proven numerically in the
numerical results section, Section V.
Based on Assumption 1 and lemma 2.6 from [Hall, 2015],
(30) can be approximated as follows,

tr(ln(ΣkΣ2
−1))≈ tr(ΣkΣ2

−1− I)≈ tr(ΣkΣ2
−1)−n, (32)

where n is the dimension of ek.

Using (32) in (28) and expanding the terms of (28) we
get,

β1(uk−1,ek−1) =
∫

N(µk, Σk)

(
−0.5tr(ΣkΣ2

−1)+0.5n

+0.5ek
T (Σ−1

2 −Σ
−1
k )ek−0.5µ

T
k Σ
−1
k µk + ek

T
Σ
−1
k µk

)
dek,

= 0.5µ
T
k Σ
−1
k µk−0.5tr(ΣkΣ2

−1)+0.5n+0.5
∫

N(µk,Σk)eT
k

× (Σ−1
2 −Σ

−1
k )ekdek. (33)

The last part in (33), 0.5
∫

N(µk,Σk)eT
k (Σ

−1
2 −Σ

−1
k )ekdek can

be evaluated as follows,

0.5
∫

N(µk,Σk)eT
k (Σ

−1
2 −Σ

−1
k )ekdek

= 0.5(tr[Σ−1
2 Σk]−n)+0.5µ

T
k (Σ

−1
2 −Σ

−1
k )µk. (34)

Substitute (34) back into (33), we obtain,

β1 (uk−1,ek−1) =0.5µ
T
k Σ
−1
2 µk. (35)

Similarly, β2 (uk−1,ek−1) can be evaluated as follows,

β2 (uk−1,ek−1) =−
∫

s
(
ek|uk−1, ek−1

)
ln(γ (ek))dek,

=
∫

N (µk, Σk)
[
0.5
(
eT

k Skek +Pkek +wk
)]

dek,

= 0.5µ
T
k Skµk +0.5wk +0.5xT

r M2xr

+0.5eT
k−1M2ek−1 + xT

r M2ek−1 +0.5Pkµk,
(36)

where we have used,

tr(SkΣk) = xT
k−1M2xk−1,

= eT
k−1M2ek−1 + xT

r M2xr +2xT
r M2ek−1, (37)

with M2 =DT SkQD. Thereupon, substituting (35) and (36) in
(27) and collecting the terms that multiply the control input,
uk−1 together yields,

γ (ek−1) =
∫

cI (uk−1 |ek−1)exp[−β1 (uk−1,ek−1)

−β2 (uk−1,ek−1)]duk−1,

= (2π|Γ|)−
1
2 exp

[
−0.5

{
eT

k−1[A
T MkA+M2]ek−1

+wk +2xT
r (F

T MkA+M2)ek−1 +µ
T
u Γ
−1

µu

+PkAek−1 +PkFxr + xT
r (F

T MkF +M2)xr

}]
×
∫

exp
[
−0.5

{
uT

k−1(B
T MkB+Γ

−1)uk−1 +2uT
k−1(−Γ

−1
µu

+BT MkAek−1 +BT MkFxr +0.5BT PT
k )

}]
duk−1. (38)

The integral in (38) can be calculated by completing the
square with respect to uk−1. Consequently γ (ek−1) can be



shown to be given by,

γ(xk−1) = exp
[
−0.5

{
− ln(2π)−0.5ln(|Γ−1 +BT MkB)−1|

+ eT
k−1(−AT MkB(Γ−1 +BT MkB)−1BT MkA

+M2 +AT MkA)ek−1 +{2xT
r (M2 +FT MkA)

+PkA+2µ
T
u Γ
−1(Γ−1 +BT MkB)−1BT MkA

−2xT
r FT MkB(Γ−1 +BT MkB)−1BT MkA

−PkB(Γ−1 +BT MkB)−1BT MkA)}ek−1 +wk

+PkFxr + xT
r (M2 +FT MkF

−FT MkB(Γ−1 +BT MkB)−1BT MkF)xr

+µ
T
u (Γ

−1−Γ
−1(Γ−1 +BT MkB)−1

Γ
−1)µu

−0.25PkB(Γ−1 +BT MkB)−1BT PT
k

+2µ
T
u Γ
−1(Γ−1 +BT MkB)−1BT MkFxr

−PkB(Γ−1 +BT MkB)−1BT MkFxr

+µ
T
u Γ
−1(Γ−1 +BT MkB)−1BT PT

k

}]
. (39)

Note that according to Theorem 1, − ln(γ (ek−1)) =
0.5(eT

k−1Sk−1ek−1 + Pk−1ek−1 + wk−1). Thus equating
quadratic terms, linear terms, and constant terms in (39)
with Sk−1, Pk−1, and wk−1 respectively yields the definitions
stated in Equations (23), (24), and (25). This completes the
proof.

Following the above verification of the quadratic
performance index, the next step is to evaluate the
parameters of the optimal controller distribution that will
make the pdf of the tracking error follow the given ideal pdf.
Based on (6) and (39), the randomised optimal controller
that minimises the Kulback Leibler divergence objective
function is given by the following theorem.

Theorem 2: The optimal randomised controller that min-
imises the Kulback Leibler divergence objective function
subject to the probability density function of the tracking
error defined in (16) and the ideal pdfs of the tracking error
and controller defined in (19) and (20) respectively is given
by,

c(uk−1|ek−1)∼ N (νk−1, Γk−1) , (40)

where,

νk−1 =−Kk−1ek−1−Lk−1 (41)

Kk−1 = Γ
−1
k−1BT MkA (42)

Lk−1 = Γ
−1
k−1(B

T MkFxr +0.5BT PT
k −Γ

−1
µu) (43)

Γk−1 = (Γ−1 +BT MkB), (44)

where νk−1 and Γk−1 are the mean and covariance of
the optimal randomised controller respectively, Kk−1 is the
controller feedback gain, and Lk−1 is a linear shift which
manifests from the considered tracking control problem.

Proof: Substituting Equations (20), (35), (36), and (39)

in (6) yields,

c∗ (uk−1|ek−1) = (2πΓ)−0.5 exp{−0.5µ
T
k Mkµk

−0.5eT
k−1M2ek−1−0.5xT

r M2xr− xT
r M2ek−1−0.5wk

−0.5Pkµk−0.5(uk−1−µu)
T

Γ
−1(uk−1−µu)

+0.5eT
k−1Sk−1ek−1 +0.5Pk−1ek−1 +0.5wk−1}. (45)

Evaluating the independent of uk−1 terms in (45), and
completing the square with respect to the control input, uk−1,
Equation (45) can be further expressed as,

c∗ (uk−1|ek−1) = (2πΓ)−0.5 exp
[
−0.5

{
uT

k−1(B
T MkB

+Γ
−1)uk−1 +2uk−1[BT MkFek−1 +BT MkFxr +0.5BT Pk

−Γ
−1

µu]+ (Γ−1
µu +BT MkFxr +BT MkAek−1 +0.5BT pT

k )
T

× (BT MkB+Γ
−1)−1(Γ−1

µu +BT MkFxr +BT MkAek−1

+0.5BT pT
k )

}]
,

= (2πΓ)−0.5 exp{−0.5[uk−1− (−BT MkAek−1−BT MkFxr

−0.5BT PT
k +Γ

−1
µu)(Γ

−1 +BT MkB)−1]T (Γ−1 +BT MkB)

× [uk−1− (−BT MkAek−1−BT MkFxr−0.5BT PT
k +Γ

−1
µu)

× (Γ−1 +BT MkB)−1]}(Γ−1 +BT MkB)−1 (46)

It can be seen that the mean and covariance of the distribution
given in (46) are the mean and covariance of the optimised
randomised controller as stated in equations (41) and (44)
respectively. This completes the proof.

V. NUMERICAL RESULTS

This section will demonstrate the effectiveness of the
proposed probabilistic minimisation of the tracking error
specified by Theorems 1 and 2 in driving the output of
the system dynamics to a predefined desired output value.
In particular, the theory developed in Section IV is applied
here to a flexible beam system [Flores and Barbieri, 2006]
described by the following equation,

ẋ = Ax+Bu, (47)

where,

A =


0 1 0 0 0 0
0 0 38.1425 0 239.0350 0
0 0 0 1 0 0
0 0 −47.0569 0−271.9385 0
0 0 0 0 0 1
0 0 −6.9241 0 −187.2933 0

 ,

B =
[

0 9.4393 0 −10.7386 0 −1.7135
]T
.

Also, x =
[

θ θ̇ q1 q̇1 q2 q̇2
]T is the beam system

state vector, θ is the angle between the hubs frame and a
global (stationary) reference frame, and qi, i = 1,2 represent
the ith flexible mode.

Since the proposed framework is developed for discrete
time systems, Equation (47) is discretised using the forward
difference method, where the sampling time, h is taken to



be equal to 0.06. In addition, to demonstrate all aspects
of the proposed method, a multiplicative noise is added to
the original deterministic system equation after it has been
discretised. Following the discretisation of Equation (47)
and the addition of the multiplicative noise, the following
equivalent discrete time description which is also modified
by the addition of the multiplicative noise is obtained,

xk = (Ah+ In×n)xk−1 +Bhuk−1 +Dxk−1vk−1, (48)

where, vk is Gaussian noise with zero mean and variance
0.001, vk ∼N (0, 0.001), I is the identity matrix, and where,

D = 10−3


9.0 6.3 −0.2 −5.4 −21.2 −5.7
−4.3 −0.2 8.7 3.5 −1.5 13.1
9.0 19.1 −13.7 −4.4 5.2 2.5
−22.6 21.7 −10.7 −6.4 3.9 −8.1
−5.9 −0.7 11.3 −2.0 1.9 −3.4
1.7 8.4 10.3 −6.4 −3.8 7.0

 ,

is randomly generated.
The objective of the sought randomised controller is then

specified to be of suppressing the quenching vibration in
the beam and stabilising the angle between the hubs frame
and a global (stationary) reference frame, θ at the value
of 1. Therefore, the reference value that the system state
is required to track is taken to be xr = [1,0,0,0,0,0]T .
In addition the system state is assumed to start from the
following initial state values, x0 = [22,0.3,1,0.4,0.5,2]T .

As discussed in Section IV, the parameters of the flexible
beam system equation as specified in (48) are assumed to
be unknown, therefore are estimated online at each time
step. The mean and covariance of the conditional distribution
of the beam system dynamics are then specified using the
estimated parameters as discussed in Section IV. These
estimates of the mean and covariance of the beam system
dynamics are then used in Equations (23) and (24) to evaluate
the Riccati equation, Sk, as well as Pk which are then both
used in (41) to calculate the mean of the control input to be
forwarded to the beam. Also, in the simulation experiment,
the covariance, Σ2 of the ideal distribution of the tracking
error is taken to be 0.01 ∗ In×n. The covariance, Γ of the
ideal distribution of control inputs is taken to be 1. The
simulation results are shown in Figure 1 and Figure 2.
Figure 1 shows the various states of the flexible beam with
their corresponding reference signals. As can be seen from
this figure, all the flexible beam system states are accurately
tracking their corresponding reference states. This can be
confirmed from the magnified figures in Figure 1 which
show the steady state values of the beam states. The tracking
errors are presented in Figure 2, (a), from which it can
also be seen that all the state tracking errors go to zero.
These figures on the other hand show large deviation of
the beam state values from their corresponding reference
values and large tracking errors in the transient period. This
is expected as the parameters of the beam equation which
are estimated online will not have converged to their true
values in this transient period. Once the parameters converge
to their true values the beam states show good tracking to

their corresponding reference values. Also, the control input
as calculated from (41) is shown in Figure 2, (b). The control
input as can be seen from this figure is stable, thus yielding
the required results. Finally, the feedback gain as calculated
from (42) is shown in Figure 3. This figure shows that
all the feedback gains have converged and reached steady
state values. To re-emphasise, the numerical results prove
the efficacy of the proposed probabilistic tracking control
method and show that the mean of tracking error can be
minimised to reach zero value.

VI. CONCLUSION

This paper presented a new framework for the design of
randomised controllers for complex stochastic and uncertain
systems that is based on the minimisation of the Kullback-
Leibler divergence of the tracking error of the controlled
system. The new proposed framework, considers the design
of randomised controllers that take the multiplicative noises
that affect the dynamics of the controlled stochastic system
into consideration in the optimisation process. The theoreti-
cal development of this framework is demonstrated on linear
Gaussian stochastic systems that are affected by multiplica-
tive noises. The theoretical findings was then validated on
controlling the vibration quenching of flexible beams.
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Fig. 1. The state of the simulated flexible beam: (a) state x1, dotted line, and reference state xr1 , solid line. (b) states x2, dotted line, and reference state
xr2 , solid line. (c) states x3, dotted line, and reference state xr3 , solid line. (d) states x4, dotted line, and reference state xr4 , solid line. (e) states x5, dotted
line, and reference state xr5 , solid line. (f) states x6, dotted line, and reference state xr6 , solid line. Small magnified figures show the steady state values
of the beam states.
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Fig. 2. The tracking error of the states and system input of the simulated flexible beam: (a) tracking error of the flexible beam states. (b) the control
input to the flexible beam as calculated from (41).
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