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Abstract— This paper presents methods and results in modelling wind turbine dynamic radar signatures in the near-field. 

The theoretical analysis begins with the simpler case of modelling wind turbine blades as rectangular plates. The theoretical 

radar signature for the wind turbine in the near-field is formulated and its main peculiarities are investigated. Subsequently, 

the complex shape of the blades is considered and the corresponding radar signatures are modelled. Theoretical modelling is 

confirmed for both cases via experimental testing in laboratory conditions. It is shown that the experimental results are in 

good accordance with the theoretically predicted signatures.  

Index Terms—wind turbine monitoring, Doppler radar 

 

I. INTRODUCTION 
The interaction between radar and wind turbines (WTs) has drawn the increased attention of 

researchers for a number of years. These structures introduce strong radar clutter which affects the 

operation of radars in surveillance, air and maritime traffic control, weather monitoring, etc. [1]-[7], 

which may be located several km from a wind farm site. For this reason, the radar research 

community has dedicated substantial efforts in understanding and mitigating WT radar returns. 

References [8]-[10] are examples of the work done in numerical modelling of turbines that analyse 

the effects of the wind farms to the radar and navigation systems performance. Investigations [11]-

[18]  use experimental data to study WTs radar cross-section (RCS) and investigate methods to 

mitigate it. Finally, [19]-[23] are examples of research focused on the suppression of WT radar 

returns through signal processing. 

Another common factor in such work is that it usually considers that the radar is in the far-field of 

the WT blades, meaning that the distance between the radar sensor and the WT is significantly 
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longer than the length of its blades. In the majority of traditional radar applications (such as 

surveillance), where WT’s are regarded as clutter, this assumption may well hold. 

However, this paper takes a different view of the WT/radar interaction, where the above 

assumption cannot be made. Rather than treating a WT as radar clutter, it is instead considered as a 

radar target. The reasoning behind this is that radar signatures obtained by WT blades in motion, 

presumably analysed in the time-frequency (or micro-Doppler) domain, may contain information on 

their structural integrity. Therefore, rather than suppressing them, it may be possible to analyse 

them instead to detect or possibly classify their type of fault automatically.  

One of the major motivations for considering such a system is that WTs rapidly increase in size 

and complexity [24]. This means that of course radar clutter becomes more problematic, but also 

implies that these large structures become increasingly more difficult and expensive to maintain 

[25]. To tackle the latter problem, WTs currently employ a number of different sensors, installed 

directly on their blades, and operating at different physical principles (e.g. accelerometers, strain 

gauges, displacement sensors etc) to persistently monitor WT’s unattended and detect different 

structural faults [26]-[28]. The problem with this approach is that a number of these sensors are 

required for each blade. For example, only displacement sensors should be spaced by typically 1 m 

along a blade [29]. With wind turbine blade lengths currently up to 130 m, such methods become 

increasingly inefficient. On the other hand, a radar sensor with a broad coverage could monitor 

larger segments of a blade compared to traditional sensors, while at the same time operating at 

entirely different physical principles. In addition, as it is based on reflections from the WT blades, it 

may directly measure issues such as blade erosion or build-up of ice, which is currently difficult 

with existing monitoring tools.    

A conceptual radar system that may ultimately be used for this purpose is shown in Fig. 1. It 

involves a compact, short-range Doppler radar secured on the body (presumably the tower or the 

nacelle) of the WT. The system has a low-gain antenna illuminating a large part (or the whole) of a 

WT blade. The sensor can then analyse returns from the blades in motion to identify potential 
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structural faults.   

 
Fig. 1: The concept of compact radar sensors for WT structural monitoring. 

 
 

At the same time, as a new system concept the appropriate feasibility study should be conducted, 

where a number of fundamental issues should be understood and solved. So far, it has been 

experimentally demonstrated that such a system can automatically classify different types of major 

blade faults [30]. The next problem to consider is an understanding of the radar signatures recorded 

by the sensor as the blades rotate, i.e. how they vary in the time and time-frequency domain. This is 

because if an understanding of how the corresponding radar signatures relate to physical aspects of 

healthy blades and their motion could be obtained, this could be the reference point for identifying 

faulty blades. Our interest lies on micro-Doppler signatures rather than RCS since it may be more 

sensitive to blade faults.  

Nevertheless, as the distance between the sensor and a blade is now comparable to the length of 

the blade, the sensor operates in the near-field of the WT. This means that not only current far-field 

models do not hold [31]-[32], but also the complex shape of the blades becomes more significant. 

Furthermore, in published work on radar reflections from WTs (see [3], [9], [10] and [33]), a 

common practice is to use CAD models of WT blades in commercial electro-magnetic (EM) 

simulators to determine their RCS in static conditions. Although such practice is technically 

possible here for near-field simulations, it was not preferred for a number of reasons. First of all, the 

objective of this paper is to model the Doppler signature of WT blades as they rotate, rather than 

their RCS. Secondly, the final goal of our research is to use dynamic behaviours derived here as a 

model for characterising faulty blades, where computationally expensive EM simulations could well 
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turn out to be impractical. The concepts described in this paper, therefore, could be potentially 

extended to monitor the dynamic behaviour of other rotating mechanical parts in the near-field, 

such as helicopter rotor blades, for example. 

The aim of this paper is to derive models for healthy WT blade signatures in the near-field and 

analyse them so that this knowledge can be directly applied to our system concept or similar. Both 

the time domain and joint time-frequency domain signatures are extracted. A theoretical model for 

the simpler case where blades are assumed to be flat plates is presented in the first part of Section II. 

In the second part, the more realistic scenario that takes into account the complex shape of the 

blades is considered. Section III describes an experimental setup in laboratory conditions to verify 

theoretical modeling, and experimental results are compared to the theoretical expectations.   

II. THEORETICAL MODEL 

A. Flat blades 
 

As a first step, WT blades are assumed flat, whose brief analysis was first considered in [34]. 

Regarding to the broader radar system parameters, the transmitted signal is a monotonic waveform, 

transmitted continuously (CW mode), as the intended system is a compact, low-cost Doppler radar 

(Section I). The radar antenna size is low-gain and is of the order of the radar wavelength, λ. This 

means that its far-field begins at a few wavelengths and therefore, over small, localised regions of 

the WT blade, the incident field may be considered a plane wave whose time dependence is 𝑒𝑒−𝑗𝑗𝑗𝑗𝑗𝑗. 

This assumption should be valid in practice, as it is envisaged that the radar sensor is mounted on 

the body of the WT and therefore its distance from the blades would be in the order of several 

meters. 

This method models a WT blade as a group of scattering centres (Fig. 2). It considers the received 

signal from each individual point in the WT as the time-shifted replica of the transmitted signal, that 

is 

𝑠𝑠𝑅𝑅(𝑡𝑡) = 𝑠𝑠𝑇𝑇�𝑡𝑡 − 𝑡𝑡𝑟𝑟(𝑡𝑡)� = 𝑒𝑒𝑗𝑗𝑗𝑗0�𝑗𝑗−𝑗𝑗𝑟𝑟(𝑗𝑗)� = 𝑠𝑠𝑇𝑇(𝑡𝑡) ∙ 𝑒𝑒−𝑗𝑗𝑗𝑗0𝑗𝑗𝑟𝑟(𝑗𝑗) 

(1) 
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where the time delay is defined by 𝑡𝑡𝑟𝑟(𝑡𝑡) = 2𝑟𝑟 (𝑡𝑡) 𝑐𝑐⁄  and 𝑟𝑟(𝑡𝑡) is the distance to the radar from a 

point-scatterer. 

The overall return from the body is then the coherent sum of all individual signal returns. This 

first model is used as a stepping stone in understanding the dynamics of the radar signature of a 

wind turbine in the near-field, as well as the relationship to the its mechanical properties [34]. It is 

further noted that multi-bounce, diffraction or WT tower structure effects are not taken into account 

here.  The radial distance 𝑟𝑟𝑞𝑞,𝑛𝑛𝑛𝑛(𝑡𝑡) from a single point on the q-blade (𝑞𝑞 = 1,2,3) to the radar is 

given by: 

𝑟𝑟𝑞𝑞;𝑛𝑛𝑛𝑛(𝑡𝑡) = �𝑅𝑅𝑁𝑁2 + 𝐿𝐿𝑛𝑛𝑛𝑛2 + 2𝐿𝐿𝑛𝑛𝑛𝑛𝑍𝑍𝑁𝑁𝑐𝑐𝑐𝑐𝑠𝑠 �Ω𝑡𝑡 + 𝛼𝛼𝑛𝑛𝑛𝑛 +
2𝜋𝜋
3

(𝑞𝑞 − 1)� 

(2) 

where all the parameters included are showed in Fig. 2. The relative height between the radar and 

the wind turbine is 𝑍𝑍𝑁𝑁. The position of a scattering point on the blade is given by 𝑙𝑙𝑛𝑛 and 𝑑𝑑𝑛𝑛 which 

formed the distance 𝐿𝐿𝑛𝑛𝑛𝑛 = �𝑙𝑙𝑛𝑛2 + 𝑑𝑑𝑛𝑛2  . The extra angle 𝛼𝛼𝑛𝑛𝑛𝑛 = 𝑠𝑠𝑠𝑠𝑠𝑠−1 𝑑𝑑𝑚𝑚
𝐿𝐿𝑛𝑛𝑚𝑚

 is added to the phase 

Ω𝑡𝑡 + 2𝜋𝜋
3

(𝑞𝑞 − 1) . Finally, the radial distance from the radar to the centre of rotation of the hub is 

given 𝑅𝑅𝑁𝑁. 
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(a)                                                               (b) 

Fig. 2: (a) Scattering centres model of a rectangular blade. (b) Geometry of the wind turbine/radar system. 
 

Therefore, from expression (1), the signal from a single scattering centre after quadrature 

demodulation is expressed by: 

𝑠𝑠𝑅𝑅;𝑞𝑞𝑛𝑛𝑛𝑛(𝑡𝑡) = 𝑒𝑒−𝑗𝑗
4𝜋𝜋
𝜆𝜆 �𝑅𝑅𝑁𝑁

2+𝐿𝐿𝑛𝑛𝑚𝑚2 +2𝐿𝐿𝑛𝑛𝑚𝑚𝑍𝑍𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐�Ω𝑗𝑗+𝛼𝛼𝑛𝑛𝑚𝑚+
2𝜋𝜋
3 (𝑞𝑞−1)� 

(3) 

and the full signal of a single blade is given by the addition of all the (𝑠𝑠,𝑚𝑚) scattering centres: 

𝑠𝑠𝑅𝑅;𝑞𝑞(𝑡𝑡) = � � 𝑒𝑒−𝑗𝑗
4𝜋𝜋
𝜆𝜆 �𝑅𝑅𝑁𝑁

2+𝐿𝐿𝑛𝑛𝑚𝑚2 +2𝐿𝐿𝑛𝑛𝑚𝑚𝑍𝑍𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐�Ω𝑗𝑗+𝛼𝛼𝑛𝑛𝑚𝑚+
2𝜋𝜋
3 (𝑞𝑞−1)�

𝑛𝑛=(𝑀𝑀−1)
2

𝑛𝑛=−(𝑀𝑀−1)
2

𝑛𝑛=𝑁𝑁−1

𝑛𝑛=0

 

(4) 

The literature on the characterisation of WTs radar signature has assumed a far-field 

approximation for both the transmitted and received signals. This approach neglects the term 

𝐿𝐿𝑛𝑛𝑛𝑛2 𝑅𝑅𝑁𝑁2⁄  in equation (4), leading to a 𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐(∙) form of the backscattered signal. Examples of the 

work done on WT radar signature using this approach can be seen in [4]. In particular, [4] contains 

the spectrogram of actual wind turbines and shows the appearance of an inclined flash. As it will be 

shown, this inclined flash is directly associated to the neglected term in the signal. Fig. 3 compares 

the signal (4) to the corresponding far-field one. For the sake of comparison, the simulation 

parameters are very similar to the parameters of an experimental setup within an anechoic chamber 

(see Section III.A), designed to test theoretical models derived in the paper. These parameters are 

specified in Table 1. 

Simulation parameters of flat blades 

Blade length 𝑙𝑙𝑏𝑏 0.5 m 

Blade width 𝑑𝑑𝑏𝑏 0.03 m 

Height of the hub 
respect to the radar 𝑍𝑍𝑁𝑁 0.5 m 
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Radial distance 
from the radar to the 

hub 
𝑅𝑅𝑁𝑁 3.75 m 

Rotational speed Ω 10 rad/s 

Radar transmitting 
frequency 𝑓𝑓0 24 GHz 

 
Table 1: Parameters of the simulation with flat rectangular blades. 

 
In both cases, two maxima appear over one blade revolution. In the case of the near-field signal, 

the two maxima are wide and contain a series of maxima and minima before dropping until a flat 

region at the middle of the signal. The symmetry with respect to the vertical line that passes through 

the centre of rotation is the reason why two pulses take place in Fig. 3. It can be demonstrated that 

in the near-field case, the centre of the first of these wide maxima takes place at approximately 

 

𝑡𝑡𝑐𝑐 =
1
Ω
𝑐𝑐𝑐𝑐𝑠𝑠−1 �

−𝑙𝑙𝑏𝑏
2𝑍𝑍𝑁𝑁

� 

(5) 

 

Fig. 3: Far and near field time-domain signature of a single flat blade. The simulation parameters are: 𝑙𝑙𝑏𝑏 × 𝑑𝑑𝑏𝑏 = 0.5𝑚𝑚 × 0.03𝑚𝑚 , 𝑍𝑍𝑁𝑁 = 0.5𝑚𝑚, 
𝑅𝑅𝑁𝑁 = 3.75𝑚𝑚, Ω = 10 𝑟𝑟𝑟𝑟𝑑𝑑 𝑠𝑠⁄ , 𝑓𝑓0 = 24𝐺𝐺𝐺𝐺𝐺𝐺. 
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The complete backscattered signal of a wind turbine is the sum of the three blade signals: 

𝑠𝑠𝑅𝑅(𝑡𝑡) = � � � 𝑒𝑒−𝑗𝑗
4𝜋𝜋
𝜆𝜆 �𝑅𝑅𝑁𝑁

2 +𝐿𝐿𝑛𝑛𝑚𝑚2 +2𝐿𝐿𝑛𝑛𝑚𝑚𝑍𝑍𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐�Ω𝑗𝑗+𝛼𝛼𝑛𝑛𝑚𝑚+
2𝜋𝜋
3 (𝑞𝑞−1)�

𝑛𝑛=(𝑀𝑀−1)
2

𝑛𝑛=−(𝑀𝑀−1)
2

𝑛𝑛=𝑁𝑁−1

𝑛𝑛=0

3

𝑞𝑞=1

 

(6) 

One full period 𝑇𝑇 = 2𝜋𝜋
Ω
𝑠𝑠 of the signal (6) is plotted in Fig. 4. The simulations parameters are the 

same used in Table 1. It consists of a train of pulses of period  2𝜋𝜋
3Ω
𝑠𝑠, the time it takes to a blade to 

sweep the angular shift between two consecutive blades, 2𝜋𝜋
3
𝑟𝑟𝑟𝑟𝑑𝑑. 

 

Fig. 4: Time-domain signature over one period of a wind turbine whose blades are modelled as plates. The simulation parameters are:𝑙𝑙𝑏𝑏 × 𝑑𝑑𝑏𝑏 =
0.5𝑚𝑚 × 0.03𝑚𝑚, 𝑍𝑍𝑁𝑁 = 0.5𝑚𝑚, 𝑅𝑅𝑁𝑁 = 3.75𝑚𝑚, Ω = 10 𝑟𝑟𝑟𝑟𝑑𝑑 𝑠𝑠⁄ , 𝑓𝑓0 = 24𝐺𝐺𝐺𝐺𝐺𝐺. 

 

Fig. 4 also shows that each pulse in the full signal is the combination of two single-blade signals. 

The explanation for this is geometrically visualized in Fig. 5. The first blade will contribute 

considerably to the total signal when it is at the angular positionΩ𝑡𝑡𝑐𝑐, the centre of its first 

maximum. The second blade will have reached the symmetrical position at a time immediately 

before. Consequently, the two near individual pulses produce a wide and intense response in the full 

signal. The contribution of the third blade can be neglected as it is in a position of small signal 

amplitude. The particular configuration of these pulses will depend on the geometrical parameters 

of the system. 
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Fig. 5: Positions of maximum backscattered energy. 
 

 
In order to obtain an analytical expression for the spectrum, the square root in (4) can be 

approximated by a Taylor series to obtain 

 

𝑠𝑠𝑅𝑅;𝑞𝑞(𝑡𝑡) = � � 𝑒𝑒−𝑗𝑗
4𝜋𝜋
𝜆𝜆 �𝑅𝑅𝑁𝑁

2 +𝐿𝐿𝑛𝑛𝑚𝑚2 +2𝐿𝐿𝑛𝑛𝑚𝑚𝑍𝑍𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐�Ω𝑗𝑗+𝛼𝛼𝑛𝑛𝑚𝑚+
2𝜋𝜋
3 (𝑞𝑞−1)�

𝑛𝑛=(𝑀𝑀−1)
2

𝑛𝑛=−(𝑀𝑀−1)
2

𝑛𝑛=𝑁𝑁−1

𝑛𝑛=0

≅ � � 𝑒𝑒
−𝑗𝑗4𝜋𝜋𝜆𝜆 𝑅𝑅𝑁𝑁�1+

𝐿𝐿𝑛𝑛𝑚𝑚2

2𝑅𝑅𝑁𝑁
2 +

𝐿𝐿𝑛𝑛𝑚𝑚𝑍𝑍𝑁𝑁
𝑅𝑅𝑁𝑁
2 𝑐𝑐𝑐𝑐𝑐𝑐�Ω𝑗𝑗+𝛼𝛼𝑛𝑛𝑚𝑚+

2𝜋𝜋
3 (𝑞𝑞−1)��

𝑛𝑛=(𝑀𝑀−1)
2

𝑛𝑛=−(𝑀𝑀−1)
2

𝑛𝑛=𝑁𝑁−1

𝑛𝑛=0

 

𝑠𝑠𝑅𝑅;𝑞𝑞(𝑡𝑡) = � � 𝐶𝐶𝑛𝑛𝑛𝑛𝑒𝑒
𝑗𝑗𝑘𝑘𝑛𝑛𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐�Ω𝑗𝑗+𝛼𝛼𝑛𝑛𝑚𝑚+

2𝜋𝜋
3 (𝑞𝑞−1)�

𝑛𝑛=(𝑀𝑀−1)
2

𝑛𝑛=−(𝑀𝑀−1)
2

𝑛𝑛=𝑁𝑁−1

𝑛𝑛=0

 

(7) 

where 𝐶𝐶𝑛𝑛𝑛𝑛 ≡ 𝑒𝑒
−𝑗𝑗4𝜋𝜋𝜆𝜆 𝑅𝑅𝑁𝑁�1+

𝐿𝐿𝑛𝑛𝑚𝑚
2

2𝑅𝑅𝑁𝑁
2 � and 𝑘𝑘𝑛𝑛𝑛𝑛 ≡ −4𝜋𝜋𝐿𝐿𝑛𝑛𝑚𝑚𝑍𝑍𝑁𝑁

𝜆𝜆𝑅𝑅𝑁𝑁
. The form of the last expression in (7) allows 

the invoking of the Jacobi-Anger expression to write 

𝑠𝑠𝑅𝑅;𝑞𝑞(𝑡𝑡) ≅ � � � 𝐶𝐶𝑛𝑛𝑛𝑛𝐽𝐽𝑝𝑝(𝑘𝑘𝑛𝑛𝑛𝑛)𝑒𝑒𝑗𝑗𝑝𝑝�Ω𝑗𝑗+𝛼𝛼𝑛𝑛𝑚𝑚+
2𝜋𝜋
3 (𝑞𝑞−1)�

∞

𝑝𝑝=−∞

𝑛𝑛=(𝑀𝑀−1)
2

𝑛𝑛=−(𝑀𝑀−1)
2

𝑛𝑛=𝑁𝑁−1

𝑛𝑛=0

= � � � 𝐶𝐶𝑛𝑛𝑛𝑛𝐽𝐽𝑝𝑝(𝑘𝑘𝑛𝑛𝑛𝑛)𝑒𝑒𝑗𝑗𝑝𝑝𝛼𝛼𝑛𝑛𝑚𝑚𝑒𝑒𝑗𝑗𝑝𝑝
2𝜋𝜋
3 (𝑞𝑞−1)𝑒𝑒𝑗𝑗𝑝𝑝Ω𝑗𝑗

∞

𝑝𝑝=−∞

𝑛𝑛=(𝑀𝑀−1)
2

𝑛𝑛=−(𝑀𝑀−1)
2

𝑛𝑛=𝑁𝑁−1

𝑛𝑛=0

 

(8) 
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where 𝐽𝐽𝑝𝑝 are the Bessel functions of first order. By grouping the coefficients that do not depend on 

time under a single coefficient 𝜒𝜒𝑛𝑛𝑛𝑛𝑝𝑝, the signal adopts a simpler form: 

𝑠𝑠𝑅𝑅;𝑞𝑞(𝑡𝑡) ≅ � � � 𝜒𝜒𝑛𝑛𝑛𝑛𝑝𝑝 ∙
∞

𝑝𝑝=−∞

𝑒𝑒𝑗𝑗𝑝𝑝Ω𝑗𝑗
𝑛𝑛=(𝑀𝑀−1)

2

𝑛𝑛=−(𝑀𝑀−1)
2

𝑁𝑁−1

𝑛𝑛=0

 

(9) 

whence it can be concluded that the spectrum of the backscattered signal from a single point on the 

blade consists of an infinite number of side-band lines at definite frequencies 

𝑝𝑝Ω − 𝜔𝜔 = 0 ↔ 𝑓𝑓𝑝𝑝 =
Ω

2𝜋𝜋
𝑝𝑝 

(10) 

where 𝑝𝑝 is the integer of the Jacobi-Anger expansion (8). It is assumed that the radar provides In-

phase and Quadrature (I/Q) outputs after mixing the received signal with the carrier frequency 𝑓𝑓0, 

so the actual spectral lines are situated at 𝑓𝑓0 ± 𝑝𝑝 Ω
2𝜋𝜋

. Fig. 6 shows the spectrum calculated after 

several rotation cycles by applying a Fourier Transform on (4). For the simulation, the exact 

expression (4) has been used. 

 

(a) 
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(b) 

Fig. 6: (a) One side Spectrum of a single flat blade. (b) Detail of the spectral lines in the spectrum. Ω = 10 𝑟𝑟𝑟𝑟𝑑𝑑 𝑠𝑠⁄   
 

The amplitude of the frequencies in the spectrum depends on the Bessel functions 𝐽𝐽𝑝𝑝(𝑘𝑘𝑛𝑛𝑛𝑛). The 

argument of these functions depend on the value of 𝑘𝑘𝑛𝑛𝑛𝑛 which ultimately depends on the specific 

physical parameters of the system wind turbine/radar. If 𝑘𝑘𝑛𝑛 ≪ 1, which is a far-field situation, only 

𝐽𝐽0 and 𝐽𝐽±1 are relevant; the spectrum is then formed by few spectral lines. On the other hand, if 

𝑘𝑘𝑛𝑛 ≫ 1, there will be various significant side-band lines. This second case is a near-field situation 

and the spectrum will be formed by a great number of spectral lines, although the number is finite 

and the maximum frequency that appear in the spectrum will be related to the velocity of tip. 

 
The joint time-frequency transforms can be used to fully characterise the time-varying frequency 

content of the signal (6). The best-known of these transformations is the so-called short time Fourier 

transform (STFT) which consists in dividing the time-domain signal into various segments and take 

the Fourier transform of each of them  [35]-[36]. Its definition is 

𝑆𝑆𝑇𝑇𝑆𝑆𝑇𝑇(𝑡𝑡,𝑓𝑓) = �𝑠𝑠(𝑡𝑡′)𝑤𝑤(𝑡𝑡′ − 𝑡𝑡)𝑒𝑒−𝑗𝑗2𝜋𝜋𝑓𝑓𝑗𝑗′𝑑𝑑𝑡𝑡′ 

(11) 

The window 𝑤𝑤(𝑡𝑡) selects part of received signal 𝑠𝑠(𝑡𝑡) and calculates its spectrum. The squared 

magnitude of equation (7) is the so-called spectrogram [37] 
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𝑆𝑆𝑝𝑝𝑒𝑒𝑐𝑐𝑡𝑡𝑟𝑟𝑐𝑐𝑆𝑆𝑟𝑟𝑟𝑟𝑚𝑚(𝑡𝑡,𝑓𝑓) = |𝑆𝑆𝑇𝑇𝑆𝑆𝑇𝑇(𝑡𝑡,𝑓𝑓)|2 

(12) 

Fig. 7 represents the spectrogram of the signal (4); the simulations parameters are those presented 

in Table 1. It is derived using blocks of data equal to 7680 samples each, using a Gaussian window 

and a 5% overlap between consecutive blocks. The sinusoidal pattern in the spectrogram 

corresponds to returns from the blade tip for two revolutions. A bright flash due to the maximum 

backscattered energy at 𝑡𝑡𝑐𝑐 can be observed and, as it was mentioned, it is inclined and not vertical 

as the far-field models predicted. Frequencies between 0 − 50𝐺𝐺𝐺𝐺 appear to give stronger echoes 

than those at higher frequencies. The relative power of the frequencies is related to the spectrum 

which ultimately depends on the geometrical parameters of the system. For example, in Fig. 6a it 

can be seen that the power of frequencies higher than 50𝐺𝐺𝐺𝐺 decreases rapidly, as is the case on the 

spectrogram of Fig. 7. The maximum intensity in the spectrogram takes place at around the 

mentioned 50𝐺𝐺𝐺𝐺 which correspond to maximum in the spectrum at the same frequency (Fig. 6a). 

 

Fig. 7: Spectrogram of a single blade. The simulation parameters are:𝑙𝑙𝑏𝑏 × 𝑑𝑑𝑏𝑏 = 0.5𝑚𝑚 × 0.03𝑚𝑚, 𝑍𝑍𝑁𝑁 = 0.5𝑚𝑚, 𝑅𝑅𝑁𝑁 = 3.75𝑚𝑚, Ω = 10 𝑟𝑟𝑟𝑟𝑑𝑑 𝑠𝑠⁄ , 
𝑓𝑓0 = 24𝐺𝐺𝐺𝐺𝐺𝐺. 

 

B. Curved blades 

Having established an understanding of the signature of a flat blade, the analysis can now proceed 

to the more realistic case. Actual wind turbine blades have a curved contour in order to optimise 

their aerodynamic functioning [38]. It is this complex shape that determines the scattered 
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electromagnetic energy.            

In the flat blades case, the amplitude of the return wave from a scattering centre is not important 

in relative terms. All the points lie on the same plane, so there are no major differences in the 

backscattered energy between nearby scattering centres. This is the reason why, as will be shown in 

Section III, the scattering centres model accurately represents the experimental signal of a flat 

blade. That model only takes into account the phase that affects the signal. Therefore, to move to 

the realistic shape of the blades, it becomes necessary to complete the theoretical framework to 

include the effects of the amplitude on the backscattered signal. 

The typical approach to this problem would have been to use the physical optics approximation 

𝐽𝐽𝑐𝑐��⃗ = 2𝑠𝑠 × 𝐺𝐺𝚤𝚤𝑛𝑛𝑐𝑐��������⃗ where 𝐺𝐺𝚤𝚤𝑛𝑛𝑐𝑐��������⃗ is the incident magnetic field intensity – examples of this method applied 

to the scattering of a rectangle plate can be found in [39]. In the derivation of the far-field 

expressions, it is assumed that the far field region begins at r = 2D²/λ where D is the largest 

dimension of the radiation source, given that D is larger than the wavelength. However, the size of 

the sources considered here will be several times smaller than the wavelength. Also in this paper, 

the existence of currents on the blade surface is assumed in first place. The idea is to calculate the 

fields produced by these currents at the observation point, where the radar is placed. The incident 

field that induces the surface currents is phase-modulated through the radial distance r that varies 

with time due to rotating blade surface.  This situation differs from the case in [39] where the author 

assumes a time-harmonic incident field and a static scattering surface. The phase-modulated 

incident field might be somehow included in this approach, but the calculations would be more 

complicated and might not have analytic solutions. 

The idea of the theoretical framework develop here is to obtain the WT radar signal from EM first 

principles. This include a detailed understanding of the physics of the problem and aspects like the 

time varying phase of the incident field through the radial distance. The reasoning presented here 

recovers the expression (4) (including the 2r/c term typical of the monostatic case) from first 

principles but with a non constant amplitude. 
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The assumption of plane wave illumination is still valid. The incident field will excite the charges 

on the blade surface producing a current density 𝐽𝐽𝑆𝑆���⃗  on it. This surface current will have certain 

amplitude depending on the blade material and the intensity of the incident field. The dependence of 

time of the current would be 𝑒𝑒−𝑗𝑗𝑗𝑗𝑗𝑗 if the blade were not moving. Due to the rotation of the blade, 

this current density will oscillate in time with a delay given by 𝑟𝑟(𝑗𝑗)
𝑐𝑐

, where 𝑟𝑟(𝑡𝑡) is the radial distance 

from the radar to a specific point on the blade, that is 

𝐽𝐽𝑐𝑐(�⃗�𝑥, 𝑡𝑡) = 𝐽𝐽𝑐𝑐(�⃗�𝑥) ∙ 𝑒𝑒−𝑗𝑗𝑗𝑗�𝑗𝑗−
𝑟𝑟(𝑗𝑗)
𝑐𝑐 � 

(13) 

where �⃗�𝑥are the coordinates of the current density in certain coordinate system. In the case that this 

system is placed at the centre of rotation, the coordinates �⃗�𝑥would be the vector 𝐿𝐿�⃗ 𝑛𝑛𝑛𝑛 already 

introduced and 𝑟𝑟(𝑡𝑡) = �𝑅𝑅�⃗ 𝑁𝑁 − 𝐿𝐿�⃗ 𝑛𝑛𝑛𝑛�. 

The current density 𝐽𝐽𝑆𝑆���⃗ can be considered as forming a vector field defined on the 2-D surface 

𝑆𝑆(Fig. 8). In general terms, a vector field on a surface is defined as a smooth map between that 

surface 𝑆𝑆and the tangent bundle 𝑇𝑇𝑆𝑆 (the collection of all tangent spaces at 𝑆𝑆) with the attribute that 

for each point 𝑃𝑃 on 𝑆𝑆there is a vector associated that lies in 𝑇𝑇𝑆𝑆𝑃𝑃, the tangent space at 𝑃𝑃 [40]. At 

each point on 𝑆𝑆, a vector 𝐽𝐽𝑆𝑆���⃗  can be defined on the corresponding tangent plane building thus a 

vector field which has a physical meaning. For a sufficient smooth surface, as it is the case of the 

WT blade, the vectors 𝐽𝐽𝑆𝑆���⃗  in the neighbourhood of a point 𝑃𝑃 can be considered to lie on the same 

tangent plane 𝑇𝑇𝑆𝑆𝑃𝑃. Therefore, the blade can be divided into flat regions where particular charge and 

current density distributions are present. These currents are the sources of the electromagnetic fields 

that produce the total backscattered wave detected by the radar. The linearity of Maxwell’s 

equations guarantees that the total field is the result of the superposition of these individual 

contributions. 
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Fig. 8: Current density vector at point 𝑃𝑃. 𝐽𝐽𝑆𝑆��⃗  is tangential to the blade surface and lies on the tangent plane 𝑇𝑇𝑆𝑆𝑃𝑃. This current density vector can be 
expanded by the tangent plane basis {𝑒𝑒1̂, 𝑒𝑒2̂}. 

 

The method suggested in this paper consists on treating each radiating source independently and 

add them in order to form the total signal at the radar position. Two consequences can be inferred 

from this idea. On the one hand, a far-field approximation can be assumed as the distance to the 

observation point is much larger than the size of the individual, elementary sources; the calculations 

will be thus highly simplified. On the other hand, these calculations can be performed in a 2D 

Euclidean space instead of dealing with curved surfaces. 

The aim now is to build the tangent bundle 𝑇𝑇𝑆𝑆or, more precisely, to construct the individual 

tangent spaces𝑇𝑇𝑆𝑆𝑃𝑃at each point on the blade and associate to each one the corresponding current 

distribution  𝐽𝐽𝑆𝑆���⃗ . To do this, the tangent plane at any point 𝑃𝑃, 𝑇𝑇𝑆𝑆𝑃𝑃,is expanded by a basis 

{𝑒𝑒1̂(𝑃𝑃), 𝑒𝑒2̂(𝑃𝑃)} which are the tangent vectors at the blade point P in the 𝑥𝑥1, 𝑥𝑥2 directions, the 

generalised coordinates that parametrise the surface as it can be seen in Fig. 9. The normal vector to 

the surface and the basis vectors are mutually perpendicular. Any vector lying on 𝑇𝑇𝑆𝑆𝑃𝑃is a linear 

combination of the vectors {𝑒𝑒1̂(𝑃𝑃), 𝑒𝑒2̂(𝑃𝑃)}, so the current density 𝐽𝐽𝑆𝑆���⃗ can be written in terms of this 

basis. In order to evaluate the resultant fields at the radar position, a global Cartesian coordinates 

system is placed at the centre of rotation as Fig. 8 shows. The basis {𝑒𝑒1̂(𝑃𝑃), 𝑒𝑒2̂(𝑃𝑃)} is defined at 

each point 𝑃𝑃 ∶= (𝑥𝑥′, 𝑦𝑦′, 𝐺𝐺′) on the blade given by the vector𝐿𝐿�⃗ 𝑛𝑛𝑛𝑛. Fig. 9 represents the basis 
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{𝑒𝑒1̂(𝑃𝑃), 𝑒𝑒2̂(𝑃𝑃)} at different points on the blade surface. The orientation of these vectors varies along 

the profile of the blade.   

 

Fig. 9: Vectors of the tangent planes basis at different points along the blade surface. 
 

The electromagnetic fields created by each elementary scattering area can be determined by 

calculating the vector potential 𝐴𝐴(�⃗�𝑥, 𝑡𝑡) , whose solution in the Lorentz gauge is [41] 

𝐴𝐴(�⃗�𝑥, 𝑡𝑡) =
𝜇𝜇0
4𝜋𝜋

�𝑑𝑑𝑠𝑠′�𝑑𝑑𝑡𝑡′
𝐽𝐽𝑆𝑆���⃗ (�⃗�𝑥′, 𝑡𝑡′)

|𝑟𝑟(𝑡𝑡) − �⃗�𝑥′|
𝛿𝛿 �𝑡𝑡′ +

|𝑟𝑟(𝑡𝑡) − �⃗�𝑥′|
𝑐𝑐

− 𝑡𝑡� 

(14) 

where 𝜇𝜇0 is the permeability of free space. The coordinates �⃗�𝑥′ evaluate the charge and current 

density distributions on the tangent plane 𝑇𝑇𝑆𝑆𝑃𝑃. The vector 𝑟𝑟(𝑡𝑡) is the radial distance between the 

radar and a specific point on the blade and its modulus is 𝑟𝑟(𝑡𝑡). The Dirac delta function 𝛿𝛿 accounts 

for the correct time delayed in the signal. The transmitted radar signal will be incident on the blade 

at a certain angle due to the geometrical configuration of the system and/or the curvature of the WT 

blade. Therefore, the signal will reach different points at distinct phases which means that separated 

parts of the blade will experience different field intensities and orientations. Consequently, a 

complex charge and current distribution will be induced over the blade. The current amplitude 

𝐽𝐽𝑐𝑐(�⃗�𝑥′)must vary over each flat area considered as a source in order to satisfy the boundary 

conditions between different regions. 

After substituting the current distribution (13) into the vector potential (14), the latter can be 
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written as 

𝐴𝐴(𝑟𝑟(𝑡𝑡), 𝑡𝑡) =
𝜇𝜇0
4𝜋𝜋

�𝑑𝑑𝑠𝑠′�𝑑𝑑𝑡𝑡′
𝐽𝐽𝑆𝑆���⃗ (�⃗�𝑥′)𝑒𝑒−𝑗𝑗𝑗𝑗�𝑗𝑗

′−𝑟𝑟(𝑗𝑗)
𝑐𝑐 �

|𝑟𝑟(𝑡𝑡) − �⃗�𝑥′|
𝛿𝛿 �𝑡𝑡′ +

|𝑟𝑟(𝑡𝑡) − �⃗�𝑥′|
𝑐𝑐

− 𝑡𝑡� 

(15) 

Any disturbance in the radiated electromagnetic fields will propagate at 𝑐𝑐, so the propagation time 

is approximately in the order of 𝑡𝑡𝑑𝑑 = 𝑟𝑟
𝑐𝑐

10−8𝑠𝑠. The variation in the charge and current density 

distributions due to the rotation of the blade is of the order of 𝑡𝑡𝑟𝑟 = 1
Ω

10−1𝑠𝑠. Therefore, the 

elementary sources are practically static during the propagation of the electromagnetic fields. Once 

the radial distance 𝑟𝑟(𝑡𝑡) is known for each point, the current density in (13) can be considered as an 

independent radiating source that oscillates deterministically in time producing electric and 

magnetic fields that propagate through space. Therefore, the radial distance enters into the equation 

(15) just depending on the time 𝑡𝑡 and no extra delay is necessary to take into account inside 𝑟𝑟(𝑡𝑡). 

After evaluating the delta function in equation (11), the vector potential is given by 

𝐴𝐴(𝑟𝑟(𝑡𝑡), 𝑡𝑡) = 𝜇𝜇0𝑒𝑒
−𝑗𝑗𝑗𝑗�𝑗𝑗−𝑟𝑟(𝑗𝑗)

𝑐𝑐 � �𝑑𝑑𝑠𝑠′ 𝐽𝐽𝑆𝑆���⃗ (�⃗�𝑥′)
𝑒𝑒−𝑗𝑗𝑘𝑘�𝑟𝑟(𝑗𝑗)−�⃗�𝑥′�

4𝜋𝜋|𝑟𝑟(𝑡𝑡) − �⃗�𝑥′|
 

(16) 

The so-called Green’s function 

𝐺𝐺(𝑟𝑟(𝑡𝑡), �⃗�𝑥′) ≡
𝑒𝑒−𝑗𝑗𝑘𝑘�𝑟𝑟(𝑗𝑗)−�⃗�𝑥′�

4𝜋𝜋|𝑟𝑟(𝑡𝑡) − �⃗�𝑥′|
 

(17) 

can be introduced in order to write the vector potential (12) as 

𝐴𝐴(𝑟𝑟(𝑡𝑡), 𝑡𝑡) = 𝜇𝜇0𝑒𝑒
−𝑗𝑗𝑗𝑗�𝑗𝑗−𝑟𝑟(𝑗𝑗)

𝑐𝑐 � �𝑑𝑑𝑠𝑠′ 𝐽𝐽𝑆𝑆���⃗ (�⃗�𝑥′)𝐺𝐺(𝑟𝑟(𝑡𝑡), �⃗�𝑥′) 

(18) 

The fields are given only in terms of the spatial derivatives of 𝐴𝐴(𝑟𝑟(𝑡𝑡), 𝑡𝑡), so the phase 𝑒𝑒−𝑗𝑗𝑗𝑗𝑗𝑗can 

be ignored in the subsequent calculations. This will lead to an expression of the backscattered 

electric field whose phase is the one predicted by the SCM and the amplitude will depend on the 
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point of the blade and its orientation respect to the radar position. 

The exact expansion of the Green function 𝐺𝐺(𝑟𝑟, �⃗�𝑥′) for points outside the source allows writing 

the vector potential (18) in spherical coordinates as [41] 

𝐴𝐴(𝑟𝑟) = 𝑗𝑗𝜇𝜇0𝑘𝑘𝑒𝑒𝑗𝑗𝑘𝑘𝑟𝑟�ℎ𝑙𝑙
(1)(𝑘𝑘𝑟𝑟)𝑌𝑌𝑙𝑙𝑛𝑛(𝜃𝜃,𝜑𝜑)

𝑙𝑙,𝑛𝑛

�𝑑𝑑𝑠𝑠′𝐽𝐽𝑐𝑐��⃗ (𝑟𝑟′)𝑗𝑗𝑙𝑙(𝑘𝑘𝑟𝑟′)𝑌𝑌𝑙𝑙𝑛𝑛(𝜃𝜃′,𝜑𝜑′) 

(19) 

where the dependence with time of the observation position has been omitted to simplify the 

notation and 𝑘𝑘 = 𝜔𝜔 𝑐𝑐⁄ . The terms ℎ𝑙𝑙
(1)(𝑘𝑘𝑟𝑟) and 𝑗𝑗𝑙𝑙(𝑘𝑘𝑟𝑟′) are the spherical Hankel and Bessel 

functions and 𝑌𝑌𝑙𝑙𝑛𝑛(𝜃𝜃,𝜑𝜑) are the so-called spherical harmonics. If only the first term 𝑙𝑙 = 0 (and 

𝑚𝑚 = 0) of the series (19) is retained, the vector potential becomes 

𝐴𝐴(𝑟𝑟) = 𝑗𝑗𝜇𝜇0𝑘𝑘𝑒𝑒𝑗𝑗𝑘𝑘𝑟𝑟 �ℎ0
(1)(𝑘𝑘𝑟𝑟)𝑌𝑌00(𝜃𝜃,𝜑𝜑)�𝑑𝑑𝑠𝑠′𝐽𝐽𝑐𝑐��⃗ (�⃗�𝑥′)𝑗𝑗0(𝑘𝑘𝑟𝑟′)𝑌𝑌00(𝜃𝜃′,𝜑𝜑′)� 

(20) 

The isotropic spherical harmonics are 

𝑌𝑌00(𝜃𝜃,𝜑𝜑) = 𝑌𝑌00(𝜃𝜃′,𝜑𝜑′) =
1

√4𝜋𝜋
 

(21a) 

On the other hand, the Hankel and Bessel functions corresponds to 

ℎ0
(1)(𝑘𝑘𝑟𝑟) =

𝑒𝑒𝑖𝑖𝑘𝑘𝑟𝑟

𝑗𝑗𝑘𝑘𝑟𝑟
 

(21b) 

𝑗𝑗0(𝑘𝑘𝑟𝑟′) =
𝑠𝑠𝑠𝑠𝑠𝑠𝑘𝑘𝑟𝑟′
𝑘𝑘𝑟𝑟′

 

(21c) 

Expression (21c) can be in general approximated by 𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐(𝑘𝑘𝑟𝑟′) ≈ 1 as the maximum value of the 

source size 𝑟𝑟′ is several times smaller than the wavelength. This approximation will be as closer to 

1as the size of the source decreases. This will depend on the incident angle of the transmitted field. 

In the present case of study, the maximum value of 𝑟𝑟′ is of the order of 𝜆𝜆 6⁄  which gives a range for 
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the value of (21c) of 0.86 − 1. In order to obtain an analytical expression for the integral (20) and 

to avoid interpolating the measured points, the Bessel function will be approximated by 1. There is 

missing information since this approximation is equivalent to consider a smaller source without 

filling the gap between two measured points by interpolating an extra source. However, the 

comparison between theoretical and experimental results will validate the appropriateness of this 

assumption. 

Introducing the expressions (21a)-(21c) in (20), the vector potential can be written as 

𝐴𝐴(𝑟𝑟) =
𝜇𝜇0
4𝜋𝜋

𝑒𝑒𝑗𝑗2𝑘𝑘𝑟𝑟

𝑟𝑟
�𝑑𝑑𝑠𝑠′𝐽𝐽𝑐𝑐��⃗ (𝑟𝑟′) 

(22) 

This last expression of the vector potential can also be obtained by setting |𝑟𝑟(𝑡𝑡) − �⃗�𝑥′| = 𝑟𝑟 in (16). 

The dependence of 𝐴𝐴(𝑟𝑟) only on the radial distance implies that the electromagnetic fields will 

depend on 𝑟𝑟 as well. Any angular dependence will appear as a result of the cross-products necessary 

to calculate 𝐸𝐸�⃗ (𝑟𝑟) and 𝐵𝐵�⃗ (𝑟𝑟). Furthermore, due to fact that the vector potential rolls off as 𝑟𝑟−1 (22), 

the fields will present the same behaviour as expected in the radiation zone (higher orders will be 

discarded). 

The expression for the current distribution is not known, so the surface integral in (18) cannot be 

calculated analytically. However, the integral can be written 

𝐴𝐴(𝑟𝑟) =
−𝜇𝜇0
4𝜋𝜋

𝑒𝑒𝑗𝑗2𝑘𝑘𝑟𝑟

𝑟𝑟
�𝑑𝑑𝑠𝑠′�⃗�𝑥′ �𝛻𝛻 ∙ 𝐽𝐽𝑐𝑐��⃗ (�⃗�𝑥′)� 

(23) 

which suggests the use of the continuity equation: 𝛻𝛻 ∙ 𝐽𝐽𝑐𝑐��⃗ = −𝜕𝜕𝜕𝜕
𝜕𝜕𝑗𝑗

. As it was already mentioned, the 

incident electric field creates a complex charge and current distribution over the blade. The charge 

distribution, as in the case of the current in (13), will have the form 

𝜌𝜌(�⃗�𝑥′, 𝑡𝑡) = 𝜌𝜌(�⃗�𝑥′)𝑒𝑒−𝑗𝑗𝑗𝑗�𝑗𝑗−
𝑟𝑟(𝑗𝑗)
𝑐𝑐 � 

(24) 
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Using these distributions, the continuity equation becomes 

𝛻𝛻 ∙ �𝐽𝐽𝑐𝑐��⃗ (�⃗�𝑥′)𝑒𝑒−𝑗𝑗𝑗𝑗�𝑗𝑗−
𝑟𝑟(𝑗𝑗)
𝑐𝑐 �� =

−𝜕𝜕
𝜕𝜕𝑡𝑡

�𝜌𝜌(�⃗�𝑥′)𝑒𝑒−𝑗𝑗𝑗𝑗�𝑗𝑗−
𝑟𝑟(𝑗𝑗)
𝑐𝑐 �� 

(25) 

Notice though that the spatial derivatives are performed on the source coordinates �⃗�𝑥′ and do not 

affect the radial distance in the exponential. Consequently, after ruling out the common exponential, 

expression (25) can be written 

𝛻𝛻 ∙ 𝐽𝐽𝑐𝑐��⃗ (�⃗�𝑥′) = 𝑗𝑗𝜔𝜔𝜌𝜌(�⃗�𝑥′) �1 +
Ω𝐿𝐿𝑛𝑛𝑛𝑛𝑍𝑍𝑁𝑁

𝑐𝑐
𝑠𝑠𝑠𝑠𝑠𝑠Ω𝑡𝑡
𝑟𝑟(𝑡𝑡)

� 

(26) 

Substituting the divergence of the current distribution in expression (23), the vector potential 

becomes 

𝐴𝐴(𝑟𝑟) =
−𝜇𝜇0
4𝜋𝜋

𝑒𝑒𝑗𝑗2𝑘𝑘𝑟𝑟

𝑟𝑟
�𝑑𝑑𝑠𝑠′�⃗�𝑥′𝑗𝑗𝜔𝜔𝜌𝜌(�⃗�𝑥′) �1 + Ω𝐿𝐿𝑛𝑛𝑛𝑛𝑍𝑍𝑁𝑁

𝑠𝑠𝑠𝑠𝑠𝑠Ω𝑡𝑡
𝑐𝑐𝑟𝑟

�

= −𝑗𝑗
𝑘𝑘

4𝜋𝜋𝑐𝑐𝜀𝜀0
𝑒𝑒𝑗𝑗2𝑘𝑘𝑟𝑟

𝑟𝑟
�⃗�𝑝 �1 + Ω𝐿𝐿𝑛𝑛𝑛𝑛𝑍𝑍𝑁𝑁

𝑠𝑠𝑠𝑠𝑠𝑠Ω𝑡𝑡
𝑐𝑐𝑟𝑟

� 

(27) 

where �⃗�𝑝 ≡ ∫𝑑𝑑𝑠𝑠′�⃗�𝑥′𝜌𝜌(�⃗�𝑥′) is the electrostatic electric dipole. The second term in parenthesis in 

expression (27) produces a contribution of order 𝑟𝑟−2. Since only the radiation contribution to the 

fields will be considered, those that vary with 𝑟𝑟−1, a sufficient accurate approximation of the vector 

field is 

𝐴𝐴(𝑟𝑟) = −𝑗𝑗
𝑘𝑘

4𝜋𝜋𝑐𝑐𝜀𝜀0
𝑒𝑒𝑗𝑗2𝑘𝑘𝑟𝑟

𝑟𝑟
�⃗�𝑝 

(28) 

The total electric field vector, after recovering the oscillation in time, is derived in the Appendix 

and finally it can be written as 

𝐸𝐸�⃗ (𝑟𝑟, 𝑡𝑡) =
3
2
𝑘𝑘2

𝜋𝜋𝜀𝜀0

(𝑟𝑟 × �⃗�𝑝) × 𝑟𝑟
𝑟𝑟

𝑒𝑒−𝑗𝑗𝑗𝑗�𝑗𝑗−
2𝑟𝑟
𝑐𝑐 � 
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(29) 

The modulus of the electric dipole |�⃗�𝑝| in (29) would, in principle, depend on the material of the 

blade surface and the strength of the incident field. The orientation of the dipole will be aligned to 

the current orientation and this last one possesses the orientation of the electric field. Therefore, the 

dipole is seen as a vector that slowly rotates on the tangent plane of that specific point and rapidly 

oscillates with time. On the other hand, as the blade moves, 𝑟𝑟(𝑡𝑡) also changes its orientation. 

Consequently, the movement of the blade produces a time-varying relative angle between the 

source and the direction of observation. The cross-products in expression (29) take into account 

only the component that is perpendicular to the line of sight, as it must be. As the relative 

orientation between 𝑟𝑟 and �⃗�𝑝 varies, the strength of the backscattered signal will also change. 

An expression for the rotation of the dipole is now necessary to complete the theoretical 

framework. In order to do this, the polarisation of the incident electric field has to be defined. The 

monostatic radar used for experimental measurements is linearly vertical polarised. Therefore, the 

dipole will point in the same direction and will rotate on the tangent plane as the blade moves as 

Fig. 10 shows, and only the vertical component of the field (29) will be taken into account. At this 

stage it should be stated that a natural extension of the models in this paper could be to consider 

their full polarimetric implementation.  

A rotating dipole can be obtained by superimposing two perpendicular oscillating dipoles. The 

frequency of oscillation must be the angular velocity of the blade. In order to compare the 

theoretical expression with the experimental signal, the components of the electric dipole on the 

tangent plane in terms of the basis vectors𝑒𝑒1̂(𝑃𝑃), 𝑒𝑒2̂(𝑃𝑃) should be, for the specific electric field 

polarization, 

�⃗�𝑝 = 𝑝𝑝0[−𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡 ⋅ 𝑒𝑒1̂(𝑃𝑃) + 𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝑡𝑡 ⋅ 𝑒𝑒2̂(𝑃𝑃)] 

(30) 

which is a rotation opposite to the blade spinning. The specific value for 𝑝𝑝0 does not affect the 

final result in relative terms as long as it is the same for all the points. 
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Fig. 10: Orientation of the electric dipole as the blade rotates. 
 

The contribution of all the sources on the blade will produce the total field at the radar position: 

 

𝐸𝐸�⃗ 𝑗𝑗𝑐𝑐𝑗𝑗𝑡𝑡𝑙𝑙 = �𝐸𝐸�⃗𝑛𝑛(𝑟𝑟𝑛𝑛, 𝑡𝑡)
∀𝑛𝑛

=
3
2
𝑘𝑘2

𝜋𝜋𝜀𝜀0
�

(𝑟𝑟𝑛𝑛 × �⃗�𝑝𝑛𝑛) × 𝑟𝑟𝑛𝑛
𝑟𝑟𝑛𝑛

𝑒𝑒−𝑗𝑗𝑗𝑗�𝑗𝑗−
2𝑟𝑟𝑛𝑛
𝑐𝑐 �

∀𝑛𝑛

 

(31) 

The intensity of the total field will change as a result of the different amplitude of the sources at 

different blade positions. As desired, an expression for the amplitude of the backscattered wave has 

been obtained. 

Expression (4) can be recovered from (31) if, as it was mentioned at the beginning of this section, 

there are no major differences in the energy backscattered from different parts of a flat blade. This 

is equivalent to assume that the amplitude in (31) is almost the same for all the points and therefore 

𝐸𝐸�⃗ 𝑗𝑗𝑐𝑐𝑗𝑗𝑡𝑡𝑙𝑙 =
3
2
𝑘𝑘2

𝜋𝜋𝜀𝜀0
�

(𝑟𝑟𝑛𝑛 × �⃗�𝑝𝑛𝑛) × 𝑟𝑟𝑛𝑛
𝑟𝑟𝑛𝑛

𝑒𝑒−𝑗𝑗𝑗𝑗�𝑗𝑗−
2𝑟𝑟𝑛𝑛
𝑐𝑐 �

∀𝑛𝑛

≈ 𝐶𝐶 ⋅ 𝑒𝑒−𝑗𝑗𝑗𝑗�𝑗𝑗−
2𝑟𝑟𝑛𝑛
𝑐𝑐 � 

(32) 

The simulation results obtained for curved blades are similar to the flat blades case, although they 

present particular characteristics. Therefore, the analysis of the radar signature predicted by (32) 

will be done together with the experimental results in section III which will also show the 
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justification for developing a more realistic case. 

III. EXPERIMENTAL VERIFICATION 

A. Experimental set-up 

Several experiments with scaled WTs were performed in order to confirm the theoretical models. 

Fig. 11a shows the aluminum flat blades built to verify the theoretical results obtained in section II. 

The length of each one of the blades is 𝑙𝑙𝑏𝑏 = 0.5𝑚𝑚 while its width is 𝑑𝑑𝑏𝑏 = 0.03𝑚𝑚. For the returns 

from real blades, an off-the-shelf small wind turbine (~0.5m blade length) was used (Fig. 11b). Its 

blades were covered with aluminum paint to improve their reflectivity. 

At this stage it is worth mentioning that this set of experiments does not represent a scaled 

anechoic chamber experiment in the traditional sense, where there is a scaling ratio between 

frequency and target size. The reason for this is that at this early stage in the research of the 

overarching problem of trying to detect WT faults, there is no set recommendation on the frequency 

to be used (even the 24 GHz considered here could ultimately be used), where at the same time WT 

blade lengths could vary from a few tens of meters to more than 120m. Instead, the experimental 

setup was built to test the major objective of this paper, which is the modelling of WT radar 

signatures in the near field, with a CW radar device and WTs of an appropriate size for the anechoic 

chamber. 

 

(a) 
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(b) 

Fig. 11: Wind turbine blades used during the experiments: (a) flat blades; (b) curved blades. 
 

During experimentation, the scaled models were placed inside an anechoic chamber where their 

radar signatures were recorded. To set their rotational velocity at a known value, a DC motor was 

attached to the the WT. The radar was a 24 GHz Doppler radar with I/Q digital outputs and a 

sampling frequency of 44.1 kHz, with the unambiguous Doppler range being half the sampling 

frequency [42]. The experimental set-up is sketched in Fig. 12 and the experimental parameters are 

listed in Table 2. 

Experimental parameters of flat blades 

Blade length 𝑙𝑙𝑏𝑏 0.5 m 

Blade width 𝑑𝑑𝑏𝑏 0.03 m 

Height of the hub 
respect to the radar 𝑍𝑍𝑁𝑁 0.5 m 

Radial distance 
from the radar to the 

hub 
𝑅𝑅𝑁𝑁 3.7 m 

Rotational speed Ω 

Medium velocity:     
4.6 rad/s 

Maximum velocity: 
9.4 rad/s 

Radar transmitting 
frequency 𝑓𝑓0 24 GHz 

 

24 
 



Table 2: Experimental parameters of the experiment with flat rectangular blades. 
 
 

 

(a) 

 

(b) 
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Fig. 12: (a) Sketch of the experimental set-up. (b) Experimental set-up in the anechoic chamber 
 

In order to compare the experimental signature of the real blades (Fig. 11b) to the theoretical 

model of Section II, a CAD model of one of the blades was  manually created. The system used to 

obtain the coordinates of different points on the blade is displayed in Fig. 13a. The separation 

between two points in the x and y direction was 4𝑚𝑚𝑚𝑚 maximum which is equivalent to 𝜆𝜆 3⁄ 𝑚𝑚. The 

height or z coordinate was measured with the help of a calliper. The blade surface can then be 

represented by a set of points with three components: height and directions along and transversal to 

the blade. The result is shown in Fig. 13b. The expression derived in (29) was applied to each of 

these points to obtain the theoretical signal. The radar antenna transmits and receives in horizontal 

polarization, so only the component 𝐸𝐸𝑥𝑥in equation (29) was used to simulate the signal. 

A low-pass filter was applied to the recorded radar signatures to remove high frequency noise. 

Additionally, the Doppler radar contains a Butterworth high-pass filter, so the same filter was 

applied to the theoretical signals of (4) and (29) for comparison with experimental results. A block 

diagram of the experimental signal processing is shown in Fig. 14. 

The correlation coefficient between the theoretical signature, 𝐴𝐴, and the experimental one, 𝐵𝐵, was 

used to assess the accuracy of the theoretical models. This correlation coefficient is defined as: 

𝑟𝑟𝑐𝑐𝑐𝑐𝑐𝑐𝑓𝑓𝑓𝑓 =
∑ ∑ �𝐴𝐴𝑛𝑛𝑛𝑛 − �́�𝐴��𝐵𝐵𝑛𝑛𝑛𝑛 − �́�𝐵�𝑛𝑛𝑛𝑛

��∑ ∑ �𝐴𝐴𝑛𝑛𝑛𝑛 − �́�𝐴�
2

𝑛𝑛𝑛𝑛 � �∑ ∑ �𝐵𝐵𝑛𝑛𝑛𝑛 − �́�𝐵�
2

𝑛𝑛𝑛𝑛 �
 

(32) 

where �́�𝐴 and �́�𝐵 are the mean value of the signals. 

B. Results for flat blades 

Fig. 15a shows the comparison between the experimental and theoretical time-domain signatures of 

a single flat blade. The correlation coefficient between both signatures is 0.92. The experimental 

signal presents the characteristics predicted by the analysis of equation (4): two symmetric wide 

peaks forming a train of pulses whose duration is 2𝜋𝜋 Ω⁄ s, the rotational period. 
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(a) 

 

(b) 

Fig. 13: (a) Set-up built to measure the blade profile. (b) Real blade and the CAD model obtained. 
 

 

Fig. 14: Block diagram of the methodology used to compare simulations and experimental results. 
 

The dip in both signatures at their centres is due to the high-pass filter of the radar. All plots are 
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normalized to their respective highest intensity (hence the maximum of 0 dB). 

 

(a) 

 

(b) 

Fig. 15: Theoretical and experimental time-domain signatures. 𝑙𝑙𝑏𝑏 × 𝑑𝑑𝑏𝑏 = 0.5𝑚𝑚 × 0.03𝑚𝑚, 𝑍𝑍𝑁𝑁 = 0.47𝑚𝑚, 𝑅𝑅𝑁𝑁 = 3.77𝑚𝑚, , 𝑓𝑓0 = 24𝐺𝐺𝐺𝐺𝐺𝐺. (a) One 
blade, Ω=4.6 rad/s; (b) Three blades, Ω=9.4 rad/s 

 

The case of three blades is displayed in Fig. 15b. The features of time-domain signature is also 

well-predicted by the theoretical model. The correlation coefficient in this case is 0.89. The signal is 

formed by a train of pulses separated in time 2𝜋𝜋 3Ω⁄ 𝑠𝑠, as predicted by the theoretical analysis. As it 

was described at the beginning of Section II, the individual backscattered signals of two blades 

combine to form one single return in the three blades signature. Therefore, the inevitable physical 

differences between the blades themselves produces discrepancies among the returns in the 

experimental signal. The time-domain signature replicates itself every 2𝜋𝜋 Ω⁄ 𝑠𝑠, the period of one 

full turbine revolution. 
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The other relevant part of the analysis is the joint time-domain frequency of the signal or micro-

Doppler signature. The graphs in Fig. 16 correspond to the theoretical and experimental 

spectrograms of a single flat blade. From Fig. 16b it can be verified that the period of the signal is 

that given by the SCM, i.e 𝑇𝑇 = 2𝜋𝜋
Ω

= 2𝜋𝜋
9.4

= 0.668𝑠𝑠. As it was predicted in equation (5), when the 

blade reaches its position of maximum backscattered energy, the micro-Doppler signature presents 

an intense response. This instant of time is given by 𝑡𝑡𝑐𝑐 = 1
Ω
𝑐𝑐𝑐𝑐𝑠𝑠−1 �−𝑙𝑙𝑏𝑏

2𝑍𝑍𝑁𝑁
� = 0.227𝑠𝑠. The comparison 

with the theoretical spectrogram shows that this flash occurs at 45𝐺𝐺𝐺𝐺 approximately and it is 

inclined. This behaviour has been observed in previous investigations done on WT radar signature, 

e.g. [4]. In particular, the theoretical approach in [4] consisted in eliminating the term 𝐿𝐿𝑛𝑛𝑛𝑛2 𝑅𝑅𝑁𝑁2⁄  from 

a similar equation like (6). The paper [4] contains the spectrogram of an actual WT and shows the 

appearance of an inclined flash. As This phenomenon is directly associated to the neglected term 

𝐿𝐿𝑛𝑛𝑛𝑛2 𝑅𝑅𝑁𝑁2⁄ . In this research, the SCM reproduce this behaviour when the quadratic term is conserved.   

The lower frequencies also exhibits intense level of power as predicted. In the experimental 

micro-Doppler, the trace of the tip present in the theoretical signature, can also be seen above the 

45Hz bright point. 

 

(a) 
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(b) 

Fig. 16: Micro-Doppler signature of a single flat blade. 𝑙𝑙𝑏𝑏 × 𝑑𝑑𝑏𝑏 = 0.5𝑚𝑚 × 0.02𝑚𝑚, 𝑍𝑍𝑁𝑁 = 0.47𝑚𝑚, 𝑅𝑅𝑁𝑁 = 3.77𝑚𝑚,  𝑓𝑓0 = 24𝐺𝐺𝐺𝐺𝐺𝐺, Ω = 9.4 𝑟𝑟𝑟𝑟𝑑𝑑 𝑠𝑠⁄ . (a) 
Theoretical signature; (b) Experimental signature. 

 

Fig. 17 shows the theoretical and experimental spectrograms of the WT. The pattern observed in 

the case of a single blade (Fig. 16) replicates itself here three times each period. This means that no 

complicated electromagnetic effects are observed and each blade generates its own individual 

signature. However, part of the individuals signals overlap on the spectrogram producing a dense 

graph where the clear sinusoidal trace of Fig. 16 cannot be distinguished. Note that two different 

rotational velocities have been used to generate Fig. 16 (9.4 rad/s) and Fig. 17 (4.6 rad/s), as defined 

in Table 1.  

 

(a) 
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(b) 

Fig. 17: Micro-Doppler signature of the full WT with flat blades. (a) Theoretical signature. (b) Experimental signature. Experimental parameters: 
𝑙𝑙𝑏𝑏 × 𝑑𝑑𝑏𝑏 = 0.50𝑚𝑚 × 0.03𝑚𝑚, 𝑍𝑍𝑁𝑁 = 0.48𝑚𝑚, 𝑅𝑅𝑁𝑁 = 3.75𝑚𝑚, , 𝑓𝑓0 = 24𝐺𝐺𝐺𝐺𝐺𝐺, Ω = 4.6 rad/s 

 

The results presented in the figures above are difficult, if possible at all, to compare to existing 

experimental results such as those in [12] and [17], as they are focused on monostatic and bistatic 

measurements in the far-field whereas our results focus on monostatic measurements in the near-

field. However, some comments could be made on qualitative aspects of the results obtained here.  

For example, the theoretical spectrogram of Fig. 17a predicts the same intensity in both upper and 

lower halves of the graph, as expected from the symmetry of the WT with respect to the vertical 

axis. If the alignment is not perfect during the measurement, part of the energy is scattered away 

from the radar in one side of the turbine and towards the radar in the symmetric side. Even if the 

alignment was perfect, this phenomenon would still be more pronounced if the blades were curved, 

as will be discussed in more detail in the next section. 

C. Results for curved blades 

The simulated and experimental time-domain signals of a single curved blade can be seen in Fig. 

18. In this case, one of the peaks present in the flat blade signature has disappeared. The reason for 

that can be attributed to the fact, when curved blades are used, the symmetry of the system is 

broken. As Fig. 19 sketches, the blade, at the position of maximum reflectivity, does not backscatter 

the energy in the same direction. Therefore, the received amplitude will decrease when the blade, 

due to its curvature, scatters energy away from the radar. This phenomenon is predicted by the 
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theoretical equation (39) with a correlation coefficient of 0.92. 

 

Fig. 18: Comparison between theoretical and experimental time-domain signatures. 
 

 

Fig. 19: Schematic mechanism of turbine blade backscatter reflection.  
 

Finally, a comparison between the theoretical and experimental spectrograms is displayed in Fig. 

20. The two sides of the experimental micro-Doppler graph differ in the power/frequency levels. 

This can be explained by the energy scattered away from the radar by the curved blade. The same 

behavior can be observed in the theoretical signature. An intense response takes place at around 

50𝐺𝐺𝐺𝐺 in the experimental spectrogram. This is similar to the case of flat blades. The reason for this 

is that the moment at which the flash takes place depends on the geometrical parameters of the set-

up which were the same in the case of the flat and curved blades. 

32 
 



 

(a) 

 

(b) 

Fig. 20: Micro-Doppler signature of a single curved blade. (a) Theoretical signature. (b) Experimental signature. 
 

The shape of the spectrograms in Fig. 20 is not as simple as the one corresponding to a flat blade. 

As it can be seen from equation (8), the amplitude of each frequency will depend in general on the 

physical parameters of the set-up. The curved shape introduces a complex dependence of these 

amplitudes on geometrical properties of the blade. Even so, the resemblance between the theoretical 

and experimental results is clear. 

The graphs in Fig. 21 corresponds to the micro-Doppler signature of the full WT. Both the 

theoretical and experimental spectrograms display a similar pattern. In the experimental case, it is 
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clear how the pattern replicates itself every 𝑇𝑇 = 2𝜋𝜋
Ω

= 2𝜋𝜋
9.4

= 0.67𝑠𝑠. Again, the separation in time 

between each individual signal is 𝑇𝑇3 = 2𝜋𝜋
3Ω

= 2𝜋𝜋
3∙9.4

= 0.22𝑠𝑠. The characteristic blade flash can be 

observed at 75𝐺𝐺𝐺𝐺 in both the theoretical and experimental spectrograms.  

 

(a) 

 

(b) 

Fig. 21: Comparison between theoretical and experimental micro-Doppler signatures. Three curved blades. Experimental parameters: 𝑙𝑙𝑏𝑏 = 0.50𝑚𝑚, 
𝑍𝑍𝑁𝑁 = 0.48𝑚𝑚, 𝑅𝑅𝑁𝑁 = 3.70𝑚𝑚, 𝑓𝑓0 = 24𝐺𝐺𝐺𝐺𝐺𝐺 and Ω=9.4 rad/s. 

 

IV. CONCLUSIONS AND FUTURE WORK 
This paper has presented a method of describing wind turbine radar signatures in the near-field. A 

theoretical model has been developed to characterise radar returns from moving wind turbine blades 

which can take into account the complexity of their shape. The model was tested in ideal and 

controlled, but representative experimental conditions within an anechoic chamber, showing a 

correlation coefficient of ~0.9 between theoretical and experimental results. The good agreement 
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between theory and experiment confirms the validity of the theoretical framework. It should also be 

stated here that this work is not limited to WTs, but could potentially be applied to monitoring other 

rotating objects with short-range radar sensors, such as helicopter rotor blades. 

Future work can be split into a number of areas. The natural extension of work reported in this 

manuscript is to move from the controlled environment of the anechoic chamber to outdoor trials 

with real wind turbines, to investigate the accuracy of our models in real conditions. In addition, 

polarimetric acquisitions could be performed to better understand whether there is added value in 

this extra degree of freedom. Finally, the model developed here can now be used to understand 

radar signatures of faulty blades in the near-field, and how the corresponding signal properties may 

be used to diagnose or classify a wind turbine fault using a short-range radar sensor in the vicinity 

of the turbine blades. In recent published work, the model has been able to accurately describe 

emulated WT blade faults [30] such as chipped blades, however more work is needed to fully 

understand the signal properties associated with less straightforward faults such as blade bending.      

APPENDIX A 

 The electric and magnetic field can be obtained through their relations with the vector 

potential (28). The magnetic field 𝐵𝐵�⃗  is, in terms of the vector potential, 

𝐵𝐵�⃗ (𝑟𝑟) = 𝛻𝛻 × 𝐴𝐴(𝑟𝑟) 

(A.1) 

which is valid everywhere in space. 

In order to obtain the expression of the electric field in terms of 𝐴𝐴(𝑟𝑟), Ampere’s law can be 

invoked. Outside the source (where the radar is placed), the rotational of the magnetic field is given 

by 

𝛻𝛻 × 𝐵𝐵�⃗ (𝑟𝑟, 𝑡𝑡) = 𝜇𝜇0 �𝐽𝐽𝑐𝑐��⃗ + 𝜀𝜀0
𝜕𝜕𝐸𝐸�⃗ (𝑟𝑟, 𝑡𝑡)
𝜕𝜕𝑡𝑡

� = 0 +
1
𝑐𝑐2
𝜕𝜕𝐸𝐸�⃗ (𝑟𝑟, 𝑡𝑡)
𝜕𝜕𝑡𝑡

 

(A.2) 

The time dependence of 𝐵𝐵�⃗ (𝑟𝑟, 𝑡𝑡) and 𝐸𝐸�⃗ (𝑟𝑟, 𝑡𝑡) will be the same as the current distribution, that is 
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𝐵𝐵�⃗ (𝑟𝑟, 𝑡𝑡) = 𝐵𝐵�⃗ (𝑟𝑟) ∙ 𝑒𝑒−𝑗𝑗𝑗𝑗�𝑗𝑗−
𝑟𝑟
𝑐𝑐� 

𝐸𝐸�⃗ (𝑟𝑟, 𝑡𝑡) = 𝐸𝐸�⃗ (𝑟𝑟) ∙ 𝑒𝑒−𝑗𝑗𝑗𝑗�𝑗𝑗−
𝑟𝑟
𝑐𝑐� 

(A.3) 

Introducing the previous expressions into (A.2), Ampere’s law can be written as 

𝛻𝛻 × �𝐵𝐵�⃗ (𝑟𝑟) ∙ 𝑒𝑒−𝑗𝑗𝑗𝑗�𝑗𝑗−
𝑟𝑟
𝑐𝑐�� =

1
𝑐𝑐2

𝜕𝜕
𝜕𝜕𝑡𝑡
�𝐸𝐸�⃗ (𝑟𝑟) ∙ 𝑒𝑒−𝑗𝑗𝑗𝑗�𝑗𝑗−

𝑟𝑟
𝑐𝑐�� 

(A.4) 

The detailed calculations will not be shown in this paper. After manipulating (A.4) and discarding 

terms that roll off as 𝑟𝑟−1, because the fields already decay at that rate, the electric field in terms of 

the magnetic field can be written 

𝐸𝐸�⃗ (𝑟𝑟) = 𝑐𝑐 �
𝑗𝑗
𝑘𝑘
𝛻𝛻 × 𝐵𝐵�⃗ (𝑟𝑟) − 𝑟𝑟 × 𝐵𝐵�⃗ (𝑟𝑟)� 

(A.5) 

where 𝑟𝑟 is the unit vector in the direction of the line of sight. The first term in (A.5) simply 

expresses that an electric field is the source of a magnetic field; this term appears in the case of 

sinusoidal time-varying targets. The second term can be related to the rotational motion. As the 

blade rotates, the charge distribution experiences an extra movement that contributes to the 

variation of the magnetic field and, consequently, the production of an electric field. Both terms 

present the correct direction of the electric field for plane wave propagation: right angle to the 

direction of propagation. 

Finally, the electric and magnetic fields can be expressed in terms of the vector potential by 

𝐵𝐵�⃗ (𝑟𝑟) = 𝛻𝛻 × 𝐴𝐴(𝑟𝑟) 

(A.6a) 

𝐸𝐸�⃗ (𝑟𝑟) = 𝑐𝑐 �
𝑗𝑗
𝑘𝑘
𝛻𝛻 × �𝛻𝛻 × 𝐴𝐴(𝑟𝑟)� − 𝑟𝑟 × �𝛻𝛻 × 𝐴𝐴(𝑟𝑟)�� 

(A.6b) 

Using the expression obtained for the vector potential in the magnetic field equation: 
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𝐵𝐵�⃗ (𝑟𝑟) = 𝛻𝛻 × 𝐴𝐴(𝑟𝑟) = −𝑗𝑗
𝑘𝑘

4𝜋𝜋𝑐𝑐𝜀𝜀0
𝛻𝛻 × �

𝑒𝑒𝑗𝑗2𝑘𝑘𝑟𝑟

𝑟𝑟
�⃗�𝑝� = −𝑗𝑗

𝑘𝑘
4𝜋𝜋𝑐𝑐𝜀𝜀0

�𝛻𝛻 �
𝑒𝑒𝑗𝑗2𝑘𝑘𝑟𝑟

𝑟𝑟
� × �⃗�𝑝 +

𝑒𝑒𝑗𝑗2𝑘𝑘𝑟𝑟

𝑟𝑟
𝛻𝛻 × �⃗�𝑝�

= −𝑗𝑗
𝑘𝑘

4𝜋𝜋𝑐𝑐𝜀𝜀0
𝛻𝛻 �

𝑒𝑒𝑗𝑗2𝑘𝑘𝑟𝑟

𝑟𝑟
� × �⃗�𝑝 

(A.7) 

where the fact that the electric dipole does not depend on the observation coordinates is implied. 

After performing the gradient in (A.7) and keeping only terms of order 𝑟𝑟−1, the magnetic field 

becomes 

𝐵𝐵�⃗ (𝑟𝑟) =
𝑘𝑘2

2𝜋𝜋𝑐𝑐𝜀𝜀0
𝑒𝑒𝑗𝑗2𝑘𝑘𝑟𝑟

𝑟𝑟
𝑟𝑟 × �⃗�𝑝 

(A.8) 

Similar calculations in the electric field expression (A.6b) produce: 

𝐸𝐸�⃗ (𝑟𝑟) =
𝑘𝑘2

2𝜋𝜋𝜀𝜀0
𝑒𝑒𝑗𝑗2𝑘𝑘𝑟𝑟

𝑟𝑟
��2 �1 −

1
𝑗𝑗𝑘𝑘𝑟𝑟

� (𝑟𝑟 × �⃗�𝑝) × 𝑟𝑟 − 𝑗𝑗
1
𝑘𝑘𝑟𝑟

[�⃗�𝑝 + 𝑟𝑟(�⃗�𝑝 ∙ 𝑟𝑟)]� + (𝑟𝑟 × �⃗�𝑝) × 𝑟𝑟� 

(A.9) 

and if only terms that fall of as 𝑟𝑟−1 are conserved 

𝐸𝐸�⃗ (𝑟𝑟) =
3
2
𝑘𝑘2

𝜋𝜋𝜀𝜀0
𝑒𝑒𝑗𝑗2𝑘𝑘𝑟𝑟

𝑟𝑟
(𝑟𝑟 × �⃗�𝑝) × 𝑟𝑟 

(A.10) 
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