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ABSTRACT 

Purpose 

To evaluate the accuracy and reliability (inter and intra-observer) of a novel method to assess 

multifocal contact lenses (MCLs) centration using a corneal topography unit. 

Method 

Daily-disposable MCLs (Fusion 1 day Presbyo) were fitted on both eyes of the subjects. For 

each lens fit a slit lamp digital picture and videokeratograph image were taken in a rapid but 

randomised sequence. Photo-editing software was used to assess the position of the MCL 

centre with respect to pupil centre as taken from the slit lamp photograph. The position of the 

MCL centre was automatically detected as the point of maximum curvature from the 

videokeratography.  Three further manual and qualitative procedures to detect MCL centre, 

comparing a template of CLs optic zones to the videokeratographic image were performed by 

4 practitioners using 3 different algorithms to represent the topographic map. Each manual 

reading was repeated 3 times. 

Results 

Twenty-two subjects (11 males) aged 22.8±1.9 years (range 20.8-27.0 years) were recruited. 

The accuracy of the 4 topographic assessments in determining the centre coordinates of the 

MCL with respect to SL assessment was good: no differences were found in the left eyes and 

although in the right eyes a more temporal and superior position of MCLs was determined 

(paired t-test, p<0.05) the difference was clinically negligible (0.16±0.36 mm horizontally, 

0.23±0.48 vertically). Amongst the 4 practitioners one-way Anova for repeated measures 

showed no differences for any of the 3 manual assessments. Intra-class correlation coefficient 

was calculated amongst the 3 readings for each manual procedure and was very good 

(between 0.75 and 0.98) in 3 practitioners and moderate (between 0.49 and 0.92) in the 

fourth. 
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Conclusions  

The assessment of MCL centration by performing corneal topography over the MCL is an 

accurate method. Furthermore, inter and intra-practitioner reliability showed by manual 

procedures appeared very good.  
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Introduction 

Since the first soft bifocals contact lens (CL) were produced in 1977 (Lamb and 

Bowden, 2018) many designs of bifocal, multifocal, progressive, and diffractive soft CLs 

have been proposed and introduced to the market to correct presbyopia. In the latest Contact 

Lens and Solutions Summary (White, 2018) there have been 48 different brands of multifocal 

contact lenses (MCL) listed as available in US market. 

All these different designs work on the simultaneous-imaging principle (Charman, 2014). In 

the vast majority of MCLs there is a rotationally symmetric change in the power from the 

optical centre to the edge of the optical zone. This can modify the spherical aberration of the 

ocular system either in a positive direction, in case of centre-distance design MCL, or in 

negative direction in case of centre-near design MCL (Plainis, 2013; Perez-Prados et al, 

2017). The increase in spherical aberration enhances the depth of focus of the eye 

irrespectively of the sign of this change (Bakaraju et al, 2010 even though this depends on the 

interaction with the specific ocular spherical aberration in which the lens is fitted. On the 

other hand, this improvement causes a superimposition of multiple images, more or less 

blurred, on the retina that determines a contrast sensitivity reduction due to a drop in the 

modulation transfer function (MTF) (Bakaraju et al 2010; Nio et al 2002). 

The patient satisfaction with the quality of vision provided by simultaneous-imaging CLs is 

quite different. This wide inter-individual variability can be due to optical, physiological, and 

psychophysical factors that are not simple to predict during the initial MCL fitting (Diec et al 

2017; Zeri et al 2019).  

More recently MCLs with higher positive power towards the edge of the optical zone of the 

lens, almost similar to a centre-distance design MCL for presbyopia, have been proposed to 

compensate for the peripheral hyperopic defocus which has been pointed as one possible 

factor inducing myopia progression (Sankaridurg et al 2011, Walline et al 2013; Sankaridurg 

& Holden, 2014).  

One important factor that can massively impact the effectiveness of the correction and the 

final visual outcomes with MCLs, either fitted for presbyopia correction or myopia control, is 

the centration of the lens (Woods et al 1993). Decentration of a MCL will cause unwanted 

aberrations, mainly represented by coma (Dave, 2015; Perez-Prados et al, 2017). However, a 

certain debate about the optimum reference axis (pupil axes, visual axes, line of sight) on 

which placing the optical centre of a MCLs or the centre of multifocal laser treatment or even 
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for measuring the optical aberrations of the eye, is still ongoing (Applegate et al, 2000; 

Mosquera, 2015). 

Many procedures to evaluate CLs centration have been proposed in literature mainly by the 

use of the slit lamp (e.g. Wolffsohn el al, 2009). However, these procedures do not allow fine 

measurement of the decentration of the lens with respect to an ocular landmark, such as the 

pupil cenret. A potentially finer procedure to assess the position of a MCL has been 

suggested (Lampa et al, 2012), where it proposes the use of a corneal topography performed 

both without and over the MCL which allows to detect the position of the centre inferred by 

the tangential power difference display map. This procedure could help in clinical setting in 

understanding the results of the fitting, minimizing follow-ups (Miller and Brujic, 2012). This 

procedure has been recently used to assess the centration of scleral lenses (Vincent & Collins, 

2019), directly by the use of a single topography measure (tangential power map) with the CL 

in place. However, no information is available about the accuracy and reliability of this 

method for assessing centration in case of MCLs. In order to address this lack of evidence, a 

study was performed to evaluate accuracy in MCL centration assessment with topography 

performed over the CL and to evaluate inter and intra-examiner reliability in assessing CL 

centration with the same technique. 

 

Method 

The study was carried out in different phases (Figure 1).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Flow diagram of the study design. 
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Phase 1:  

In this first clinical phase, images of MCLs fitted in volunteers were collected. 

Participants 

The study involved twenty-two volunteers (11 females), recruited from amongst the students 

of the Optics and Optometry Degree Course of Roma TRE University (Rome) with a mean age 

of 22.8 ± 1.9 years (range 20.8-27.0 years) (Table 1). No evidence or history of visual 

anomalies or ocular pathologies were specific selection criteria for the candidates. Subjects 

with corneal irregular astigmatism and/or corneal astigmatism over 3.00 DC were not 

considered. The study followed the tenets of the Declaration of Helsinki, the study followed 

the institutional ethical guidelines and all participants provided informed consent preceded by 

an explanation of the procedures of the study.  

 

 
 

Table 1. Demographic and optometric information of participants. 

 Whole sample (n=22) 

Gender  

Men 11 (50 %) 

Women 11 (50 %) 

Age (years)  

Mean ± SD (min;max) 

 

22.8 ± 1.9 (20.8;27.0)  

MSE* (D) right eye  

Mean ± SD (min;max) -1.73 ± 1.86 (-6.63;0.50) 

MSE* (D) left eye  

Mean ± SD (min;max) -1.39 ± 2.07 (-6.63;1.50) 

Mean corneal astigmatism (D) right eye  

Mean ± SD (min;max) 1.10 ± 0.72 (0.00;2.90) 

Mean corneal astigmatism (D) left eye  

Mean ± SD (min;max) 0.96 ± 0.64 (0.00;2.58) 

Number of subjects for type of corneal 

astigmatism (D) right eye 

 19 with the rule astigmatism (steepest corneal 

meridian 90° ± 20°); 

 1 against the rule astigmatism (steepest corneal 

meridian 180°± 20°); 

 1 oblique astigmatism (steepest meridian between 

21° and 69° or 111° and 159°)  

 1 spherical cornea. 

Number of subjects for type of corneal 

astigmatism (D) left eye 

 19 with the rule astigmatism (steepest corneal 

meridian 90° ± 20°); 

 2 oblique astigmatism (steepest meridian between 

21° and 69° or 111° and 159°);  

 1 spherical cornea. 

*mean spherical equivalent 
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Materials 

The CLs used were daily disposable MCL (Fusion 1 day Presbyo, Safilens, Staranzano, Italy) 

in Filcon IV with 60% of water content, with a back optic zone radius of 8.6 mm, a total 

diameter of 14.5 mm, a Dk/t (×10-9) of 29 (cm/s)(mLO2/mL mmHg), and a central thickness 

of 0.07 mm (@-3.00D).  Multifocal CL had plano (0.00 D) labeled power for distance. The 

lens was characterised by a small central area of hyperprolature (i.e. according the 

manufacturer a hyper-refractive central area) with a diameter of the entire optic zone of 10 mm. 

The manufacturer does not describe properly the lens as a MCL but instead as a lens with a 

patented afocal design. However, considering the presence of a hyper-refractive central area 

on the lens we decided to maintain the term MCL to describe the lens through the paper. 

 

Procedure 

Each volunteer underwent a preliminary examination to determine his/her eligibility for the 

study according the inclusion criteria. The same licensed clinician carried out all the assessment 

procedures. After having recorded the case history of each single participant the clinician 

performed a slit lamp assessment to investigate for any cornea disease, a videokeratography to 

assess for any corneal topographical anomaly and a refraction (see Table 1) 

In a following session each enrolled participant was fitted with the MCL chosen for the 

experiment. All the MCLs were fitted by the same researcher (researcher A).  After a 15-minute 

period of adaptation to MCLs, two procedures to acquire images of the MCL were performed 

in rapid (within approximately 2 minutes for all procedures) and randomised sequence, to both 

eyes by the same researcher (researcher B):  

i) A digital picture taken with a slit lamp (FS-3, Nikon, Japan).  

This image allowed an evaluation of (see phase 2) the “true” position of MCLs (gold 

standard) to determine the accuracy of the new method (topographical image, as 

discussed on point ii) studied in the experiment. The illuminating arm of slit lamp 

was placed 15 degrees on the left of biomicrosope axis that was always 

perpendicular to patient’s cornea. The subject put his/her chin on the chinrest and, 

in order to allow a good alignment between the line of sight of the eye pictured in 

the photo with the optical axis of the instruments, the contralateral eye was covered 

with a movable occluder descending from the front rest and placed at 2 cm from the 

eye. Furthermore, the subject was asked to fix exactly in the centre of the objective 

lens of the slit lamp which was connected to the camera by a beam splitter. Pictures 
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were shot 1 s after the blinking. Pictures out of focus, with unclear edges of the 

MCL, and with any artifacts (blinking, movements, etc.) were discharged and only 

one picture for each eye of each participant was selected. 

ii) A topographical image acquired over the MCL by a videokeratography (Eye-Top, 

CSO, Italy).   

The subject put his/her chin on the chinrest and in order to allow a good alignment 

between the line of sight of the eye with the optical axes of the instruments, the 

contralateral eye was covered with a movable occluder descending from the front 

rest and placed at 2 cm from the eye. Furthermore, the subject was asked to fix 

exactly in the centre of the fixation light of the topographer. Image was acquired 

one second after the blinking. 

The operator checked immediately that the corneal sighting centre and the optical 

axes (Zeri, 2012) of the instrument were coincident, if this was not the case, the 

acquisition was repeated. Only one topographical image from each eye of each 

participant was selected. 

 

Phase 2:  

In this second phase, the 44 images (22 from right eyes and 22 from left eyes) of MCLs 

acquired in phase 1 from Slit Lamp were analysed. The images captured with the slit lamp (i) 

were analysed through a photo-editing procedure to assess the position of the MCL centre 

with respect to pupil centre in a Cartesian plane (Figure 2). Starting from the original digital 

picture, the edges of MCL was traced with an Image Editor Program (Microsoft Paint 2007). 

A circular digital template was aligned overlapping to the circumference of MCL. The same 

procedure, using an appropriate pupil template, was also performed to detect the pupil centre. 

Relative distance between two centres was estimated from digital line length joining them, 

converting pixel to mm, according to a calibration worked out in a pre-experiment phase. The 

position of the MCL centre was determined with respect to the pupil centre in x and y 

coordinates. This represented the ‘true’ position of reference with which to compare the 

position of the MCL centre determined by the topographical procedure.  
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Figure 2. Example of digital elaboration to assess the position of the MCL centre with respect to pupil 

from the images took with the slit lamp. The blue circle was the circular digital template which was 

aligned overlapping to the circumference of MCL. The red circles formed the pupil template (more 

circles were available to fit different pupil sizes) which was used to detect the pupil centre. The 

relative distance between the two centres was estimated from digital line (white line) joining them. 

 

 

 

 

Phase 3:  

In this phase the 44 topographical images (22 from right eyes and 22 from left eyes) acquired 

over the MCL by a videokeratography (ii, phase 1) were retrospectively evaluated to determine 

the position of the MCL centre with respect to the pupil centre. 

The first evaluation was completely automatic and independent by observers who carried out 

the other manual evaluations (see below). Each topographical image was processed by a 

tangential algorithm and the software automatically identified the point of maximum curvature 

(Tmax) from the videokeratographic map. An operator overlaid the mouse cursor to that point 

on the map and the software automatically gave the coordinates of the point (x and y 

coordinates with respect to the pupil centre).  

The second evaluation was performed manually by four different eye-care practitioners (ECPs, 

hereafter referred to as observers). Observer 1 (Obs1), and observer 2 (Obs2) were expert 

optometrists (more than 20 years of experience in practice), whereas observer 3 (Obs3) and 

observer (Obs4) were young optometrists (less than 5 years of experience in practice). In this 
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way the effect of clinical experience in MCL centration assessment was explored. Each 

observer was asked to independently determine the centre of MCL operating on the 

topographical acquisitions with the following procedure. 

The topographical files had been prepared in a database removing any information about the 

subject in order to prevent any possible memory bias. The order of the files (from 1 to 22) to 

analysed was randomly assigned to each observer. Each observer had to open the file and 

analysed in turn right eye or left eye in a random order. Once each topographical image of each 

file was open (right eye or left eye), the observer had to process it with three different 

algorithms and scale in a random order: tangential algorithm with absolute scale (Tabs), 

tangential algorithm with adjustable scale with a step of 0.30 mm (T0.30), and tangential 

algorithm with adjustable scale with a step of 0.20 mm (T0.20) (Figure 3). Tangential algorithm 

was chosen since it allows to highlight more clearly localised topographical variations. 

Once each single topographical image was processed, with a certain algorithm and scale, and 

the topographical map was displayed in a full-screen modality, a transparent sheet in acetate 

with concentric circles (template) to better identify the different zones of the MCL (Figure 4a) 

was overlaid on the map by the operator to detect the position of the multifocal CL centre 

(Figure 4b).  Once its position was estimated, the mouse’ cursor was positioned on this point 

(Figure 4c) and its x and y coordinates with respect to pupil centre were determined using 

topographic software (Figure 4d). The observer repeated the assessment other two times with 

15- and 30-days delay but they were masked to on the previous reading/s during the following 

measurements. 

 

 

 

 

 

 

 

 

 

 

Figure 3. An example of the three different topographical outputs to determine the MCLs 

position. a: tangential algorithm with absolute scale (Tabs). b: tangential algorithm with 

adjustable scale with a step of 0.30 mm (T0.30). c: tangential algorithm with adjustable scale 

b) T0.3a) Tabs c) T0.2
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with a step of 0.20 mm (T0.20). The small hyper-refractive central area of this specific CL is 

visible in the three maps. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Example of the procedure to assess the x and y coordinates of the MCL centre with respect 

to pupil starting from topographical map displayed in a full-screen modality. The transparent sheet in 

acetate (a) was formed by a small circle in the centre to identify the small hyper-refractive central area 

of the specific CL used while the largest centre (10 mm) could be used to detect the optical zone. 

Once the template had been overlaid on the topographical map (b) the operator brought the mouse 

cursor on the centre of the template (c) and then the coordinates of the cursor (coincident with the 

centre of the lens) were read on the specific box of the software (d). 

 

Data Analysis  

The Kolmogorov-Smirnov test was used to evaluate the results for a normal distribution of 

data of x and y coordinates with respect to pupil centre.  A paired Student’s t-test was used to 

test the hypothesis that measure averages with two different procedures (SL versus each 

topographical procedure that is the average of the four ECPs) were significantly different. 

Person correlation coefficient (r) evaluated relationship between SL measures and 

topographical measures (Tmax, Tabs, T0.30 and T0.20 calculated as the mean of all measures 

determined by the four ECPs). A Bland-Altman plot was used to assess the difference in 

measurement of decentration (x and y coordinates separately) between SL assessment and the 

mean among the four ECPs of each topographical assessment (Tmax, Tabs, T0.30 and T0.20) as a 

a

d

c

b
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function of the decentration values (mean between SL assessment and the mean among the 

four ECPs of each topographical assessment). 

Furthermore, in order to find out if the 4 topographic assessment procedures to detect the 

MCL centration (Tmax, Tabs, T0.3, and T0.2) were interchangeable, a one-way Anova for 

repeated measure was performed.  

Intraclass correlation coefficient (ICC) was used to investigate the inter and intra-operator 

reliability, using a 1-way random-effect model assuming a single measurement (McGraw and 

Wong 1996). In the case of inter-operator reliability ICC was worked out on the four 

measures obtained from the four different observers for the same topographical 

algorithm/scale method. For intra-operator reliability ICC was calculated, for each observer, 

on the three measures obtained with the same topographical algorithm/scale (Tabs, T0.3, and 

T0.2). According to Landis and Koch (1977), reliability was considered slight if ICC was 

comprised between 0.01 to 0.20, fair if ICC was comprised between 0.21 and 0.40, moderate 

if ICC was comprised between 0.41 to 0.60, substantial if ICC was comprised between 0.61 

and 0.80, and finally excellent if ICC was more than 0.80. 

To further explore intra-operator reliability, a one-way Anova for repeated measure was used 

to evaluate difference between observers. 

Data were analyzed using IBM© SPSS© Statistics v23.0 (SPSS Inc., Chicago, IL, USA). 

 

Results 

All the distributions of x and y coordinates with respect to pupil centre obtained for each eye 

with the slit lamp procedure and the topographical ones from the 4 different ECPs were 

normally distributed (p > 0.5). The only variable which did not distribute normally (p<0.05) 

was the y coordinate determined by Tmax for the left eye; only for this case non-parametric 

statistics were used. 

Accuracy of Topographic procedures  

The values of MCLs centre coordinates (x, y) respected to pupil centre are reported in Table 2 

as assessed by slit lamp (phase 2) and by the 4 modalities of topographic assessment (one 

automatic and three manuals; phase 3) for right eye and left eye, respectively. In the case of 

manual assessments (Tabs, T0.30, and T0.20), the coordinates are the average of the measurements 

achieved by the 4 operators, (the measure of each one is the average of the three consecutive 

assessments). 
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As it is possible to see from table 2, when the “gold standard” i.e. the slit lamp evaluation (SL) 

is considered, MCLs appear decentered temporally (negative x values for right eye and positive 

x value for left eye) and inferiorly (negative y values in both eyes) in both eyes. 

For the right eye all the topographic methods estimated consistently a more temporal and 

superior (positive y-coordinate) position of MCLs with respect to SL assessment. The 

difference between measurement of MCL centration performed with Tmax and SL was 

significantly different both for x and y coordinates, paired t test = 2.29 (p=0.03) and paired t 

test = -2.33 (p=0.03), respectively. No difference between measurement of MCL centration 

performed by Tabs (mean of 4 operators) and SL was found for x coordinate (paired t test = 

1.80; p=0.09), but significant difference was found for y coordinates (paired t test = -2.24; 

p=0.04). The difference between measurement of MCL centration performed by T0.30 (mean of 

4 operators) and SL was significantly different both for x and y coordinates, paired t test = 2.26 

(p=0.04) and paired t test = -2.24 (p=0.04), respectively. The difference between measurement 

of CL centration performed by T0.20 (mean of 4 operators) and SL was significantly different 

both for x coordinates and y coordinates, paired t test = 2.25 (p=0.04) and paired t test = -2.19 

(p=0.04), respectively. 

For the left eyes all the topographic methods consistently estimated a superior position of 

MCLs with respect to SL assessment, but the differences were not significantly different; 

paired t test        -1.79 (p=0.09), -2.01 (p=0.06), -1.80 (p=0.09), and -1.73 (p=0.10) for Tmax, 

Tabs, T0.30, and T0.20, respectively. 

In terms of horizontal position, Tmax estimated a more temporal position with respect to SL 

while a more nasally position was estimate by both Tabs, T0.30 and T0.20. However, no 

difference reached significance; paired t test -1.07; (p=0.29), 0.67 (p=0.51), 0.70 (p=0.50) 

and 0.45 (p=0.66) for Tmax, Tabs, T0.30 and T0.20, respectively. 
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Table 2: MCL centre coordinates (x, y) respected to pupil centre according the 5 different types of 

optical centre way of assessment (S, Tmax, Tabs, T0.3 and T0.2). Tabs, T0.30, and T0.20 values represent the 

average of the values taken by the four different operators. Paired comparison (t-test) significance 

between each topographic assessment of a single coordinate and SL assessment are reported with an 

asterisk, at the level p<0.05. 

 
Right Eye 

Type of MCL optical 
centre assessment 

SL  Tmax Tabs T0.3 T0.2 
Coordinate x y x y x y x y x y 

Mean (mm) -0.11 -0.18 -0.33* 0.18* -0.24 0.01* -0.26* 0.01* -0.27* 0.01* 

SD (mm) 0.24 0.43 0.39 0.62 0.32 0.30 0.30 0.34 0.31 0.35 

Max (mm) 0.46 0.56 0.33 1.49 0.27 0.49 0.23 0.86 0.26 0.90 

Min (mm) -0.50 -1.08 -0.95 -0.72 -0.87 -0.65 -0.88 -0.63 -0.88 -0.51 

Left Eye 
Type of MCL optical 
centre assessment 

SL  Tmax Tabs T0.3 T0.2 

Coordinate x y x y x y x y x Y 

Mean (mm) 0.34 -0.10 0.47 0.21 0.29 0.06 0.29 0.04 0.31 0.03 

SD (mm) 0.15 0.32 0.62 0.73 0.36 0.27 0.35 0.27 0.33 0.27 

Max (mm) 0.54 0.43 1.80 2.11 1.09 0.46 1.11 0.44 1.10 0.45 

Min (mm) 0.09 -0.71 -0.84 -0.80 -0.33 -0.50 -0.38 -0.51 -0.30 -0.51 

 

 

 

In table 3, correlation coefficients (r) of the relations between all procedures to assess MCLs 

position are reported (for manual topographical measurements the values are the average of 

the four ECPs). For what concerns x coordinate, SL does not correlate with the topographical 

measures both for right eye and the left eye, whereas significant correlation is found among 

all the topographical measures (Tmax, Tabs, T0.30 and T0.20). Concerning y coordinate, in the 

right eye SL assessment of MCL correlates significantly with Tabs, T0.3, and T0.2, but not with 

Tmax, whereas again all correlations among all the topographical measures (Tmax, Tabs, T0.30, 

and T0.20) resulted significant. For the y coordinate on the left eye, correlations resulted 

significant among all the topographical measures (Tmax, Tabs, T0.30, and T0.20), but not between 

SL and the remaining procedures. 

The Bland-Altman plots, for the paired comparison between the centration measurement with 

SL and the 4 modalities of topographic assessment (TMax, Tabs, T0.30, and T0.20), are shown in 

Figure 4 and Figure 5 for right eye and left eye, respectively.  

The Bland–Altman plots for the comparison between SL and TMax show that the difference 

between the two methods became significantly more positive (position more shift towards the 

right for x coordinate and upper for y coordinate) moving to more positive position of the 
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MCL. More precisely coefficient of correlation resulted 0.46 (p=0.03), 0.90 (p<0.001), 0.67 

(p=0.01) for x coordinate of right eye (Figure 5a), x coordinate of left eye (Figure 6a), and y 

coordinate of left eye (Figure 6b) respectively (proportional bias). 

The Bland–Altman plots for the comparison between SL and TMax, T0.3 and T02 show a 

proportional bias only for x coordinate evaluation in left eye (Figure 6c, 6e and 6g) 

With a coefficient of correlation of 0.73 (p<0.001), 0.72 (p<0.001), and 0.69 (p<0.001) 

respectively. 

The 4 topographic assessment procedures to detect the multifocal CL centration (Tmax, Tabs, 

T0.30  and T0.20) resulted almost equivalent in detecting the centre coordinates. For the right 

eye the one-way Anova didn’t show any difference among 4 procedures both for x and y 

coordinates;  F3,21=1.45 (p=0.24) and F3,21=2.17 (p=0.10) respectively. For the left eye the 

one-way Anova didn’t show any difference among 4 procedures for y coordinate (one-way 

Anova F3,21=1.60; p=0.20) but a significant difference was found for x coordinate (one-way 

Anova F3,21=2.90; p=0.042).  

 

Table 3: Shows a correlation matrix (Pearson correlation coefficients) for x and y coordinates of MCL 

decentration determined by SL and the four topographical procedures for both eyes. 

Right Eye  Left Eye 
 SL_x Tmax_x Tabs_x T0.3_x T0.2_x   SL_x Tmax_x Tabs_x T0.3_x T0.2_x 

SL_x 1      SL_x 1     

Tmax_x 0.06 1     Tmax_x 0.39 1    

Tabs_x 0.28 .71** 1    Tabs_x 0.33 .67** 1   

T0.3_x 0.33 .70** .99** 1   T0.3_x 0.34 .65** .99** 1  

T0.2_x 0.31 .70** .99** .99** 1  T0.2_x 0.33 .62** .99** .99** 1 
             

 SL_y Tmax_y Tabs_y T0.3_y T0.2_y   SL_y Tmax_y Tabs_y T0.3_y T0.2_y 

SL_y 1      SL_y 1     

Tmax_y 0.11 1     Tmax_y 0.24# 1    

Tabs_y .48* .56** 1    Tabs_y 0.28 .58** 1   

T0.3_y .49* .56** .96** 1   T0.3_y 0.27 .59** .99** 1  

T0.2_y .45* .51* .95** .99** 1  T0.2_y 0.30 .63** .98** .97** 1 

* P< 0.05 level (2-tailed). ** p< 0.01 level (2-tailed). # Spearman correlation 
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Figure 5. Bland–Altman plots of the differences between SL and each topographical methods in x and 

y coordinates assessment of MCL centre position in right eye plotted against the mean of the two 

measures compared. Limits of Agreement are calculated as mean difference ± 1.96 SD of differences, 

CI at 95% calculated as Bland and Altman [18]. 
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Figure 6. Bland–Altman plots of the differences between SL and each topographical methods in x and 

y coordinates assessment of MCL centre position in left eye plotted against the mean of the two 

measures compared. Limits of Agreement are calculated as mean difference ± 1.96 SD of differences, 

CI at 95% calculated as Bland and Altman [18]. 
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Inter-operator reliability 

Mean ± SD of x and y coordinates achieved from the 4 ECPs with the 3 modalities of MCL 

assessment of centration with Topography (Tabs, T0.3 and T0.2) are reported in table 4. 

Excellent inter-observer reliability (ICC > 0.80) was found for the assessment of x coordinate 

of right MCL with Tabs, T0.3 and T0.2 and for y coordinate assessment of right MCL with T0.2.  

Substantial inter-observer reliability (ICC between 0.61 and 0.80) was found for the 

assessment of y coordinate of right MCL with Tabs, and T0.3 and for x coordinate assessment 

of left MCL with Tabs, T0.3 and T0.2. 

Moderate inter-observer reliability (ICC between 0.41 and 0.60) was found for the 

assessment of y coordinate of left MCL with Tabs, T0.3 and T0.2. 

Among 4 ECPs one-way Anovas for repeated measures showed no differences in almost all 

the condition that is proof of a good Inter-operator reliability. Only in right eye for x 

coordinate achieved with Tabs and T0.3, means resulted significantly different (F3,21=4.01; 

p=0.01 and F3,21=2.70; p=0.05 respectively). In both cases pairwise comparison (t test) 

showed that ECP_2 resulted different from ECP_1, ECP_3 and ECP_4 (all p<0.05) 

Table 4: mean ± SD of MCL centre coordinates (x and y) on the right and left eyes achieved from the 

four observers with the three manual modalities of MCL assessment of centration with Topography 

(Tabs, T0.3, and T0.2). Intraclass correlation coefficient (ICC) (single measures, with 95% CI) for each 

kind of assessment for the four observers are reported. One-way Anovas for repeated measure results 

(F and significance) are reported for each kind of assessment among the four observers. 

Right eye 
 Tabs T0.3 T0.2 
 x y x y x y 
Obs1 -0.22 ± 0.33 mm 0.04 ± 0.32 mm -0.26 ± 0.31 mm 0.05 ± 0.38 mm -0.26 ± 0.33 mm 0.04 ± 0.36 mm 

Obs2 -0.18 ± 0.37 mm -0.03 ± 0.34 mm -0.21 ± 0.34 mm -0.06 ± 0.38 mm -0.23 ± 0.33 mm -0.03 ± 0.38 mm 

Obs3 -0.27 ± 0.32 mm 0.01 ± 0.32 mm -0.30 ± 0.31 mm 0.02 ± 0.37 mm -0.30 ± 0.32 mm 0.03 ± 0.38 mm 

Obs4 -0.29 ± 0.33 mm 0.00 ± 0.33 mm -0.29 ± 0.32 mm 0.02 ± 0.34 mm -0.29 ± 0.33 mm 0.01 ± 0.36 mm 

ICC 0.87 0.79 0.86 0.80 0.86 0.83 

Repeated 
Measure Anova 

F3,21=4.01; 
p=0.01 

F3,21=0.77; 
p=0.51 

F3,21=2.70; 
p=0.05 

F3,21=1.66; 
p=0.18 

F3,21=1.48; 
p=0.23 

F3,21=0.89; 
p=0.45 

 

Left eye 

 Tabs T0.3 T0.2 

 x y x y x y 

Obs1 0.28 ± 0.45 mm 0.13 ± 0.35 mm 0.28 ± 0.45 mm 0.12 ± 0.35 mm 0.30 ± 0.45 mm 0.09 ± 0.35 mm 

Obs2 0.25 ± 0.35 mm 0.00 ± 0.32 mm 0.25 ± 0.35 mm -0.01± 0.33 mm 0.28 ± 0.31 mm -0.03 ± 0.33 mm 

Obs3 0.27 ± 0.44 mm 0.09 ± 0.33 mm 0.27 ± 0.42 mm 0.08 ± 0.34 mm 0.28 ± 0.42 mm 0.10 ± 0.35 mm 

Obs4 0.38 ± 0.40 mm 0.00 ± 0.37 mm 0.38 ± 0.38 mm -0.01± 0.37 mm 0.39 ± 0.38 mm -0.03 ± 0.34 mm 

ICC 0.67 0.48 0.67 0.49 0.61 0.45 

Repeated 
Measure Anova 

F3,21=1.41; 
p=0.25 

F3,21=1.50; 
p=0.22 

F3,21=1.50; 
p=0.22 

F3,21=1.47; 
p=0.23 

F3,21=1.11; 
p=0.35 

F3,21=1.82; 
p=0.15 
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Intra-operator reliability 

ICCs calculated for each operator among the 3 readings (at time 0, after 15 days and after 30 

days) achieved with the 3 modalities of CL assessment of centration with Topography (Tabs, 

T0.3 and T0.2) for each coordinate (x, y) and for each eye, are reported in table 5. 

Excellent inter-observer reliability (ICC > 0.80) was found in Obs1 and Obs3 for all kind of 

measures and for Obs4 in all the measures apart the y coordinates of left eye evaluated with 

Tabs, T0.3 and T0.2 in which reliability was in any case substantial (ICC between 0.72 and 0.75). 

In the case of Obs2, the results appeared more heterogeneous with ICC, and ranged from 

excellent values to moderate values, depending from the measures (Table 5). 

 

 

Table 5: Intraclass correlation coefficients (single measures, with 95% CI) 

 
 Tabs T0.3 T0.2 
 Right eye Left eye Right eye Left eye Right eye Left eye 

 x y x y x y x y x y x y 
Obs1 0.97 0.94 0.96 0.98 0.97 0.98 0.96 0.97 0.97 0.77 0.95 0.78 

Obs2 0.90 0.79 0.68 0.57 0.90 0.92 0.78 0.49 0.89 0.89 0.74 0.60 

Obs3 0.96 0.92 0.91 0.95 0.95 0.94 0.92 0.94 0.96 0.90 0.92 0.95 

Obs4 0.90 0.88 0.85 0.72 0.85 0.81 0.84 0.74 0.90 0.93 0.83 0.75 

 
 

 

 

Discussion 

Despite the fact that mechanisms of perceptual and physiological adaptation to the modern 

strategies to correct presbyopia with CL such as simultaneous-imaging principle or 

monovision or even with multifocal intraocular lenses have been described (Woods et al, 

2010; Zeri et al, 2017, Rosa et al. 2017, Zeri et al, 2018a, Zeri et al, 2018b), it remains a 

priority to optimise the optical functioning underneath these techniques (Charman, 2014, 

Bakaraju et al 2010; Nio et al 2002). The possibility to assess MCL centration is therefore of 

paramount importance to clinically understand and improve visual outcomes with this kind of 

devices (Woods et al, 1993). 

In this study the accuracy and the inter- and intra-repeatability of a technique using corneal 

topography performed over a MCL to detect MCL centration have been investigated.  

The accuracy of each single topographical assessment studied, to determine the MCL centre 

fitted, was explored by paired comparison with the gold standard (SL), correlations, and 

Bland Altman plots. The picture that came from these statistics is not perfectly homogeneous. 
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Measures of MCL centration with all corneal topography assessments on the left eye 

appeared in good agreement if compared to SL assessment (all t-test not significant) (Table 

2). This was not found in the case of right MCL where the differences were statistically 

significant for almost all the paired comparisons (Table 2). However, it should be noted that 

the largest error found, in terms of absolute value, was made with Tmax and resulted 0.22 mm 

(95% CI -1.07 to 0.87 mm) and 0.36 mm (95% CI -1.05 to 1.4 mm) for x and y coordinates, 

respectively. These average error values appear quite small looking at the power profiles of 

commercial aspheric MCL published in literature, where the variation in power in one third 

of mm (the maximum error found in this study) appears negligible especially in the central 

6/8 mm of the optic zone (Monsálvez-Romín et al 2018, Plainis et al, 2013). However, the 

95% CI of error in centration is not so small and could be relevant for some MCLs in which 

the power profile, limited to same portions of optic zone, can change quickly and it depends 

on the amount of addition (high add MCLs presents sudden variation) as well as the MCL 

design (ring bifocal design i.e. concentric alternating near and far zone such as the one of 

Acuvue Bifocal; Vistakon, Inc., Jacksonville, FL, USA which have sudden variations) 

(Madrid-Costa et al, 2015; Wagner et al, 2015).  

Concerning correlation analysis, a significant correlation between measures with SL and 

topographical assessments was found for y coordinates in right eye limited to Tabs, T0.3 , and 

T0.2. All the rest of correlation analysis between SL and topographical assessment were not 

significant. When considering the Bland Altman plots, the topographical methods were more 

affected by a proportional bias; i.e.the more positive the MCL decentration the higher the 

difference between the two ways of assessment.. Also, Bland Altman plots for Tmax showed 

the largest distance between the upper and lower levels of 95% CI (roughly 2 mm of 

differences) compared to the others algorithms plots. 

Overall, it appears that the slightly less accurate topographical method for assessing MCL 

centration in comparison to the SL gold standard was the one based on Tmax algorithm. In 

fact, this method produced the highest absolute differences in detecting centre coordinates 

compare to SL (see Table 2), poor correlation with SL values, and a proportional bias in 

Bland Altman plots in three out of four comparisons (x coordinates right eye, x coordinates 

left eye and y coordinates right eye). In order to provide a possible explanation to this, it 

should be bear in mind that the Tmax algorithm was based on the assumption that the point of 

maximum curvature of the videokeratographical map was coincident with the MCL centre. 

The presence on the MCL surface of a tear agglomerate or an irregularity could be origin a 

point of steep curve which con be likely detected as the point of highest curvature. Indeed, 
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this kind of algorithm was not suggested for the purpose of identification of CL position 

through over topography in the few papers that proposed or used this new method (Dave, 

2015; Vincent & Collins, 2019). The reason why in this study this algorithm was evaluated 

was it could be useful in assessing the centre of the MCL chose for the study, characterised 

by a small area of strong hyperprolature in the centre-near design. 

The inter-repeatability of this new method proposed for MCL centration assessment resulted 

quite good. Differences among observers resulted significant only in x coordinate evaluation 

of right eye with Tabs and T0.3 (Table 4).  

Also, the intra-repeatability of the method appeared extremely good and it is not possible to 

recognise a clear advantage of on algorithm in improving ICCs of the four observers. 

Moreover, looking at the ICCs of the different observers a clear advantage for more 

experienced observers cannot be detected. The lowest ICCs resulted in Obs2 limited to some 

algorithms used. It should be noted that although Obs2 had a long experience in practice (more 

than 30 years), he was the only one among the four that did not use routinely 

videokerathography in his practice. Maybe more than experience, the fact that may influence 

the reliability of the method could be the familiarity with the tool. 

Several limitations of the present research should be considered. Firstly, the technique to assess 

CL centration has been used on a specific lens characterised by a small central area of 

hyperprolature that could be easier to detect with a finer algorithm to process topographical 

over-CL map, such as the T0.20, and less simple to visualised with a different algorithm, for 

example the Tabs or the T0.30. So, the outcomes of this study cannot automatically be transferred 

to other MCL design in which the technique could reveal itself less or more accurate and 

reliable but depending by the kind of algorithm used. Moreover, the lenses were new and just 

fitted, so differences in CL centration and its assessment could be found in daily disposable 

MCLs at the end of the day or even more for reusable lenses after several days/weeks of wear. 

Indeed, deposition may influence lens centration and quality of the topography assessment. 

Another important factor to take into account, is the specific characteristic of the topography 

used. Placido-disc based topographers varies for their shape, the size of the disc, the number 

of the rings and the final working distance that also depends on corneal curvature under 

examination (Dave, 1998). These differences could change results in terms of accuracy and 

repeatability of the procedure. 

Another potential bias to be considered, is the fact the lens used for the study was a single 

power lens (plano). To evaluate the effect of a wider CL power range on the accuracy of the 

procedure, a specific experiment should be set up. However, a plano lens might have not an 
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easy detectable optic zone with respect to a lens with a spherical power. The presence of a 

much clearer optical zone in CL with different powers could help in contributing to the 

detection of the centration of the lens making the procedure even better.  

A further aspect to consider is about the study sample which age ranged between 21 and 27 

years. MCLs are becoming more popular for young people in order to prevent myopia 

progression and this represented one reason to study this age range. However, a certain level 

of prudence should be kept in transferring the present results to a presbyopic population for 

several reasons potentially interfering with lens centration such as ocular surface irregularity, 

less stable tear film etc. 

To conclude, the possibility to assess MCL centration by performing a topography over the 

lens showed to be an acceptable method in terms of accuracy, for the MCL design investigated 

in this study. The techniques should be expandable to other MCL designs to see if this remains 

true for other MCL designs. Furthermore, inter and intra-practitioner reliability showed by 

manual procedures appeared good and not affected by operator experience.  

Considering that  the slit lamp assessment of MCL centration does not allow an easy detection 

of CL centre because a certain work on the digital image is required in any case, the 

videokeratograpy assessment of MCL centration could represent a suitable tool in clinical 

practice that in a near future could be incorporated in new releases of topographer’s software. 

 

 

Conflicts of Interest Disclosure 

The authors report no conflicts of interest and have no proprietary interest in any of the 

materials mentioned in this article. 

 

Funding Sources Disclosure 

During the period of the research, Dr Fabrizio Zeri was funded with the support of the European 

Union under a Marie Curie Intra-European Fellowship for Career Development (FP7), Grant 

Agreement number 622786. 

 

Acknowledgements 

We wish to thank Safilens for providing the CLs used in the experiment.  



 

 23 

 

References 

 
[1] Lamb J, Bowden T. 1 The History of Contact Lenses. Contact Lenses E-Book. 2018 Nov 

29:2. (REF Phillips Speedwell) 

 

[2] White P. Contact Lens and Solutions Summary (2018). Available at: 

https://www.clspectrum.com/class 

 

[3] Charman,W.N. Developments in the correction of presbyopia I: spectacle and contact 

lenses. Ophthalmic Physiol.Opt.34,8–29(2014). 

 

[4] Plainis S, Atchison DA, Charman WN. Power profiles of multifocal contact lenses and 

their interpretation. Optom Vis Sci 2013;90(10):1066–77.  

 

[5] Pérez‐ Prados R, Piñero DP, Pérez‐ Cambrodí RJ, Madrid‐ Costa D. Soft multifocal  

simultaneous image contact lenses: a review. Clinical and Experimental Optometry. 2017 

Mar;100(2):107-27. 

[6] Bakaraju RC, Ehrmann K, Papas EB, Ho A. Depth-of-focus and its association with the 

spherical aberration sign. A ray-tracing analysis. Journal of optometry. 2010 Jan 1;3(1):51-9. 

 

[7] Y. K. Nio*, , N. M. Jansonius*, , V. Fidlerà, E. Geraghty§, S. Norrby§ and A. C. 
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