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In this paper we propose a quantum algorithm to measure the similarity between a pair of unattributed graphs.
We design an experiment where the two graphs are merged by establishing a complete set of connections between
their nodes and the resulting structure is probed through the evolution of continuous-time quantum walks. In
order to analyze the behavior of the walks without causing wave function collapse, we base our analysis on the
recently introduced quantum Jensen-Shannon divergence. In particular, we show that the divergence between the
evolution of two suitably initialized quantum walks over this structure is maximum when the original pair of
graphs is isomorphic. We also prove that under special conditions the divergence is minimum when the sets of
eigenvalues of the Hamiltonians associated with the two original graphs have an empty intersection.
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I. INTRODUCTION

Graph-based representations have long been used as a pow-
erful way to characterize a large number of systems which are
best described in terms of their topological or interconnection
structure [1–4]. However, the rich expressiveness of graphs
usually comes at the cost of an increased difficulty in applying
standard pattern recognition techniques and machine learning
to them, as these usually require the graphs to be first embedded
into a vectorial space, a procedure which is far from being
trivial. This is in turn due to the lack of a canonical ordering
for the nodes in a graph. In fact, correspondences or alignment
to a reference structure must be established before the analysis
can commence. Moreover, even if a correspondence order can
be established, the dimension of the embedding space may
vary, as a result of structural modifications, i.e., changes in the
number of nodes and edges.

Kernel methods [5] provide an elegant way to transform
the problem at hand from that of finding an embedding of the
set of data entities to that of defining a positive semidefinite
kernel between them using the well-known kernel trick. The
best known example of this approach is probably furnished
by support vector machines (SVMs) [6]. The data entities
considered can be vectors, graph nodes, or, as in our case, entire
graphs. Given a positive semidefinite kernel k : X × X → R
on a set X, we know that there exists a map φ : X → H

into a Hilbert space H , such that k(x,y) = 〈φ(x),φ(y)〉 for all
x,y ∈ X, where 〈·,·〉 denotes the scalar product in H . As a
consequence, any algorithm that can be formulated in terms of
scalar products of the φ(x)’s can be applied to a set of data on
which a kernel is defined. Inspired by the R-convolution kernel
introduced by Haussler [7], a number of graph kernels have
been proposed in the literature [8–10]. The unifying principle
underpinning these kernels is that of defining the similarity
between two graphs by decomposing them and then comparing
the resulting simpler substructures. This led for example
to the introduction of the random walk kernel by Gärtner
et al. [8], which is based on the enumeration of common
random walks between two graphs. Similarly, Borgwardt
and Kriegel [9] measure the similarity by comparing the

shortest paths in the graphs, while in Shervashidze et al. [10]
this is related to the presence of small subgraphs. Another
interesting approach is that of Bai and Hancock [11], where
the authors investigate the possibility of defining a graph kernel
based on the Jensen-Shannon kernel. The Jensen-Shannon
kernel is a nonextensive information-theoretic kernel, which
is defined in terms of the entropy of probability distributions
over the structures being compared [12]. Bai and Hancock
extend this idea to the graph domain by associating with
each graph either its Von Neumann entropy [13], i.e., the
Shannon entropy associated with the Laplacian eigenvalues
of the graph, or the steady-state distribution of a random walk
on the graph. Finally, it is important to note that the problem of
defining a complete kernel, i.e., a kernel whose implicit map
φ is injective, is at least as hard as the graph isomorphism
problem [8].

Quantum walks have recently emerged as a primitive
for designing novel quantum algorithms [14–17] on graph
structures. Similarly to a classical random walk, a quantum
walk is defined as a dynamical process over the vertices
of the graph. However, the two walks possess remarkably
different properties. While in the classical case the state vector
describing the evolution of the walk is a real-valued probability
vector, the quantum walk is characterized by a complex-valued
amplitude vector, with no restrictions on the sign and phase.
This property in turn allows different paths of the walk to
interfere with each other in both constructive and destructive
ways, and it is responsible for many of the exotic properties of
quantum walks. Moreover, in the classical case the evolution
of the walk is governed by a double stochastic matrix, while
in the quantum case the evolution is governed by a unitary
matrix, which renders the walk reversible. As a consequence,
the quantum walk is nonergodic and, most importantly, it does
not have a limiting distribution. This lack of convergence
makes the behavior of quantum walks on general graphs
considerably harder to study than their classical counterparts.
For this reason, quantum walks have been extensively studied
on a wide number of specific topologies [18,19], such as the
infinite line, cycles, regular lattices, star graphs, and complete
graphs. Finally, one of the most celebrated properties of
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quantum walks is that they can be used to achieve polynomial
and sometimes even exponential speedups over classical
computation in a number of interesting problems [20,21]. For
example, Farhi and Gutmann [21] have shown that if we take
two cojoined n-level binary trees that are connected at their
leaves, a quantum walk commencing from the root of the first
tree can hit the root of the second tree exponentially faster
than a similarly defined classical random walk. The major
contribution of Farhi and Gutmann’s work [21] is to show
that one may achieve an exponential speedup without relying
on the quantum Fourier transform. The highly symmetrical
structure of the cojoined-trees graph described above turns out
to be of key importance to the speedup. Recall that given a
graph G = (V,E), an automorphism is a permutation τ of the
set of vertices V of the graph which preserves the adjacency
relations, i.e., if (u,v) ∈ E then (τ (u),τ (v)) ∈ E. The set of
symmetries of G can thus be represented by its automorphism
group Aut(G). Krovi and Brun [22] have shown that the
phenomena of exponential speedup as well as that of infinite
hitting times are generally a consequence of the degeneracies
in the eigenspace of the evolution operator. These in turn are
related to the symmetry group of the graph. Intuitively, as
a consequence of symmetry a quantum walker can reach a
vertex v along multiple paths with the same phase. In this
case, the interference is constructive and the node v has a high
probability of being visited. This leads to a faster hitting time
for node v. However, depending on the initial state of the walk,
the quantum walker can also reach v along paths with phases
that correspond to destructive interference. In fact, in some
cases the probability of the walker to visiting node v will be
zero, i.e., the hitting time can be infinite. Another consequence
of the intimate connection between symmetries and quantum
walks has been investigated by Emms et al. [23]. Specifically,
the authors define a quasiquantum analog of the commute time
associated with the continuous-time quantum walk and then
explore the possibility of using it to embed the nodes of the
graph into a low-dimensional vector space. Their work reveals
that the symmetries of the graph correspond to degenerate
directions in the quantum commute-time embedding space.
More recently, Rossi et al. [24] proposed a way to detect
approximate axial symmetries in networks by measuring
the interference patterns of continuous-time quantum walks.
However, the analyses of Emms et al. [23] and Rossi et al. [24]
are not based on a principled observable and are hence semi-
classical. In order to overcome this limitation, Rossi et al. [25]
made use of the quantum Jensen-Shannon divergence, ef-
fectively rendering the analysis fully based on observable
properties.

The quantum Jensen-Shannon divergence (QJSD) has
recently been developed as a generalization of the classical
Jensen-Shannon divergence to quantum states by Majtey and
co-workers [26–28]. Just as the classical Jensen-Shannon
divergence [29], the quantum Jensen-Shannon divergence is
symmetric, bounded, and always defined. Unlike its classical
counterpart, however, it has been proved to be the square
of a metric only for pure states [28], whereas for mixed
states there is only empirical evidence suggesting that it
is [28]. Moreover, it has been shown that for mixed quantum
states the quantum Jensen-Shannon divergence has good
distinguishability properties. Note that as the QJSD is defined

in terms of the Von Neumann entropy it is not directly a
quantum-mechanical observable, i.e., there is no operator
whose expected value is the QJSD. However, it can be
computed from density matrices whose entries are indeed
observables.

In this paper, we introduce a kernel on unattributed graphs
which evaluates the similarity between two graphs through
the evolution of a suitably defined continuous-time quantum
walk on their structure. We measure the similarity between
two graphs by merging them into a structure whose degree
of symmetry will be maximum when the original graphs
are isomorphic. With this structure to hand, we define two
continuous-time quantum walks such that the density operators
of the resulting quantum states are orthogonal whenever
the two original graphs are isomorphic. More precisely, we
measure the quantum Jensen-Shannon divergence between
these states. We stress that, while this analysis is fully
based on observable properties, it is not meant to provide an
algorithm exhibiting quantum speedup with respect to classical
counterparts, but rather to highlight how quantum walks can
be used to provide information about the structural similarities
between two graphs.

Note that a number of alternative graph kernels based on the
classical Jensen-Shannon divergence and its quantum counter-
part have been recently introduced in the literature [11,30–32].
In particular, the present paper builds on the work of Rossi
et al. [30,31], but it differs from it in a number of significant
aspects. More specifically, in an attempt to shed light on the
general behavior of the kernel, we analyze the relation between
the kernel value and the graph spectra, and we show that the
divergence is minimum when the sets of eigenvalues of the
Hamiltonians associated with the two original graphs have
an empty intersection. We also perform an extensive set of
experiments to evaluate the impact of the Hamiltonian and the
time parameter on the classification accuracy. With respect to
the classical Jensen-Shannon kernel of Bai and Hancock [11],
here we do not need to construct a product graph from the
two input graphs in order to measure the composite entropy.
Instead, we naturally handle the computation by comparing
quantum states defined over the same state space. Moreover,
our work is also significantly different from that of Bai
et al. [32], where, in order to guarantee the permutational
invariance, the authors need to compute the optimal alignment
between the input graphs before the analysis can even
commence. In this work, on the other hand, we solve the
problem by establishing a complete set of connections between
the two graphs and carefully crafting the initial states of the
walks so as to highlight the presence of structural symmetries.
In a nutshell, in the present work the computation of the kernel
is naturally handled by means of the interference effects of
quantum walks, thus avoiding either using a rotation in Hilbert
space [32], or the construction of a product union graph [11]
in the classical case.

The remainder of the paper is organized as follows: Sec. II
provides a brief introduction to continuous-time quantum
walks, while Sec. III reviews the concepts of Von Neumann
entropy and quantum Jensen-Shannon divergence. In Sec. IV
we propose a method to measure the similarity between two
unattributed graphs based on the quantum Jensen-Shannon
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divergence. Section V illustrates the experimental results,
while the conclusions are presented in Section VI.

II. CONTINUOUS-TIME QUANTUM WALKS

Let G = (V,E) be an undirected graph, where V is a set of
n vertices and E = (V × V ) is a set of edges. The adjacency
matrix of G is the symmetric matrix with elements

Auv =
{

1 if (u,v) ∈ E,

0 otherwise, (1)

and the diagonal matrix D has elements du = ∑n
v=1 A(u,v),

where du is the degree of the node u. The graph Laplacian
is then defined as L = D − A, and it can be interpreted
as a combinatorial analog of the discrete Laplace-Beltrami
operator [33].

A continuous-time random walk on the graph G models
a Markovian diffusion process over its node set, where
the transitions are allowed only along the edges connecting
adjacent vertices. Let pt ∈ Rn be a vector denoting the state of
the walk at time t , such that its uth entry gives the probability
of the walk being at vertex u at time t . Then the state vector
evolves according to the equation

pt = e−Ltp0, (2)

where L is the generator matrix of the underlying continuous-
time Markov process.

The continuous-time quantum walk is the quantum coun-
terpart of the continuous-time random walk, and it is similarly
defined as a dynamical process over the vertices of the
graph [21]. Here the classical state vector is replaced by a
vector of complex amplitudes over V whose squared norm
sums to unity, and as such the state of the system is not
constrained to lie in a probability space. In fact, the lack
of restrictions on the sign and complex phase allows for
interference effects to take place. Let us denote, using Dirac
notation, the basis state corresponding to the walk being at
vertex u ∈ V as |u〉. A general state of the walk is a complex
linear combination of the basis states, such that the state of the
walk at time t is defined as

|ψt 〉 =
∑
u∈V

αu(t)|u〉, (3)

where the amplitude αu(t) ∈ C and |ψt 〉 ∈ C|V | are both
complex. Moreover, we have that αu(t)α∗

u(t) gives the prob-
ability that at time t the walker is at the vertex u, and thus∑

u∈V αu(t)α∗
u(t) = 1 and αu(t)α∗

u(t) ∈ [0,1], for all u ∈ V ,
t ∈ R+.

The evolution of the walk is then given by the Schrödinger
equation, where we denote the time-independent Hamiltonian
as H,

∂

∂t
|ψt 〉 = −iH|ψt 〉. (4)

Given an initial state |ψ0〉, we can solve Eq. (4) to determine
the state vector at time t

|ψt 〉 = e−iHt |ψ0〉. (5)

By analogy with the case of a particle moving in an empty
space with zero potential energy, it is common practice to

choose the Laplacian matrix as the system Hamiltonian,
i.e., H = L. However, any Hermitian operator encoding the
structure of the graph, such as the adjacency matrix of the
graph, can be chosen as an alternative.

Note that in the quantum case the evolution of the state
vector of the walker is governed by a complex-valued unitary
matrix. Hence the evolution of the quantum walk is reversible,
implying that quantum walks are nonergodic and do not
possess a limiting distribution. This is in stark contrast to the
classical case, where the dynamics of the walk is governed by
a stochastic matrix. As a result of the unitary evolution and the
complex-valued nature of the amplitude vector, the behavior of
classical and quantum walks differs significantly, and quantum
walks possess a number of interesting properties not exhibited
by classical random walks.

Finally, note that we can rewrite Eq. (5) as follows.
Let us compute the spectral decomposition of the Hamil-
tonian H = ����, where � is the n × n matrix � =
(φ1|φ2| · · · |φj | · · · |φn) with the ordered eigenvectors φj s of
H as columns and

� = diag(λ1,λ2, . . . ,λj , . . . ,λn)

is the n × n diagonal matrix with the ordered eigenvalues λj

of H as elements. Using the spectral decomposition of the
Hamiltonian and the fact that exp[−iHt] = �exp[−i�t]��
we can then write

|ψt 〉 = �e−i�t��|ψ0〉. (6)

III. QUANTUM JENSEN-SHANNON DIVERGENCE

The observation process for a quantum system is defined in
terms of projections onto orthogonal subspaces associated with
operators on the quantum state space called observables. Let
O be an observable of the system, with spectral decomposition

O =
∑

i

aiPi, (7)

where the ai are the (distinct) eigenvalues of O and the Pi

the orthogonal projectors onto the corresponding eigenspaces.
The outcome of an observation, or projective measurement, of
a quantum state |ψ〉 is one of the eigenvalues ai of O, and it
has probability

P (ai) = 〈ψ |Pi |ψ〉. (8)

After the measurement, the state of the quantum system
becomes

|ψ̄〉 = Pi |ψ〉
||Pi |ψ〉|| , (9)

where |||ψ〉|| = √〈ψ | ψ〉 is the norm of the vector |ψ〉.
The density operator (or density matrix) is introduced in

quantum mechanics to describe a system whose state is an
ensemble of pure quantum states |ψi〉, each with probability
pi . The density operator of such a system is defined as

ρ =
∑

i

pi |ψi〉〈ψi |. (10)

Density operators are positive unit-trace matrices that play an
important role in the quantum observation process. In fact, the
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expectation value of the measurement can be calculated from
the density matrix ρ:

〈O〉 = tr(ρO), (11)

where tr is the trace operator. Similarly, the observation
probability of ai can be expressed in terms of the density
matrix ρ as

P (ai) = tr(ρPi) (12)

where the corresponding density operator after the measure-
ment has taken place will be

ρ ′ =
∑

i

PiρPi. (13)

The von Neumann entropy [34] HN of a mixture is defined
in terms of the trace and logarithm of the density operator ρ,

HN = − tr(ρ ln ρ) = −
∑

i

ξi ln ξi (14)

where ξ1, . . . ,ξn are the eigenvalues of ρ. If 〈ψi |ρ|ψi〉 = 1,
i.e., the quantum system is a pure state |ψi〉 with probability
pi = 1, then the Von Neumann entropy HN (ρ) = − tr(ρ ln ρ)
is zero. On other hand, for a mixed state described by the
density operator σ we have a nonzero Von Neumann entropy
associated with it.

With the Von Neumann entropy to hand, the quantum
Jensen-Shannon divergence between two density operators ρ

and σ is defined as

DJS(ρ,σ ) = HN

(
ρ + σ

2

)
− 1

2
HN (ρ) − 1

2
HN (σ ). (15)

This quantity is always well defined, symmetric, and positive
definite.

It can also be shown that DJS(ρ,σ ) is bounded, i.e., 0 �
DJS(ρ,σ ) � 1. Let ρ = ∑

i piρi be a mixture of quantum
states ρi , with pi ∈ R+ such that

∑
i pi = 1; then one can

prove that

HN

(∑
i

piρi

)
� HS(pi) +

∑
i

piHN (ρi), (16)

where HS indicates the Shannon entropy and the equality is
attained if and only if the states ρi have support on orthogonal
subspaces. By setting p1 = p2 = 0.5, we see that

DJS(ρ,σ ) = HN

(
ρ + σ

2

)
− 1

2
HN (ρ) − 1

2
HN (σ ) � 1.

(17)

Hence DJS is always less than or equal to 1, and the equality is
attained only if ρ and σ have support on orthogonal subspaces.

Our interest in the quantum Jensen-Shannon divergence lies
in the fact that it verifies several interesting properties which
are required for a good distinguishability measure between
quantum states [27,28]. The distinguishability problem is of
central importance in quantum mechanics, and it is related
to the concept of distance between states. In the work of
Wootters [35], the distance between two states |φ〉 and |ψ〉
of the same physical system is computed by enumerating the
distinguishable states between |φ〉 and |ψ〉. It turns out that

Wootters’ work is fundamentally based on the extension of
a distance over the space of probability distributions to the
Hilbert space of pure quantum states. Similarly, the relative
entropy [36] generalizes to the quantum world the information-
theoretic Kullback-Leibler divergence. However, the relative
entropy is neither a distance, as it is not symmetric, nor does
it satisfy the triangle inequality, and, most importantly, it is
unbounded.

On the other hand, the QJSD between two pure states has
been proved to be the square of a metric [28], while for the
case of mixed states there is strong numerical evidence that
this is also the case. Note that alternative metrics have been
proposed in the literature, such as the Bures distance [37],
which is defined as

B(ρ,σ ) =
√

2[1 − tr((ρ1/2σρ1/2)1/2)]1/2. (18)

The Bures distance and the QJSD require the same number
of observations, as they both need the full density matrices
to be computed. However, the QJSD turns out to be faster to
compute than the Bures distance. In fact, the latter involves
taking the square root of matrices, usually computed through
matrix diagonalization which scales as O(n3), where n is the
number of vertices in the graph. On the other hand, to compute
the QJSD only the eigenvalues of ρ, σ and ρ+σ

2 are needed,
which can be computed at O(n2).

IV. THE QJSD KERNEL

Let G1(V1,E1) and G2(V2,E2) be two unattributed graphs,
i.e., graphs with no attributes or features attached to their
nodes and edges. Given G1 and G2, we build a graph G =
(V,E) where V = V1 ∪ V2, E = E1 ∪ E2 ∪ E12, and (u,v) ∈
E12 only if u ∈ V1 and v ∈ V2 (see Fig. 1 for an example). With
this structure to hand, we define two independent continuous-
time quantum walks with starting states

|ψ−
0 〉 =

∑
u∈V1

du|u〉 − ∑
v∈V2

dv|v〉
C

′

(19)

|ψ+
0 〉 =

∑
u∈V du|u〉

C
,

where the basis state corresponding to the walk being at vertex
v ∈ V is denoted as |v〉, dv denotes the degree of vertex v, and
C is the normalization constant such that the probabilities sum
to 1. Intuitively, we set the initial amplitude on the nodes of G1

and G2 to be respectively in antiphase and in phase. That is,
we design the initial states of the walks so as to highlight the
presence of destructive and constructive interference patterns.

FIG. 1. (Color online) Given two graphs G1(V1,E1) and
G2(V2,E2) we construct a new graph G = (V,E) where V = V1 ∪ V2,
E = E1 ∪ E2, and we add a new edge (u,v) between each pair of
nodes u ∈ V1 and v ∈ V2.
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We let the two quantum walks evolve under Eq. (5) until a
time T and we define the average density operators ρ−

T and ρ+
T

as

ρ−
T = 1

T

∫ T

0
|ψ−

t 〉〈ψ−
t | dt, ρ+

T = 1

T

∫ T

0
|ψ+

t 〉〈ψ+
t | dt.

(20)

In other words, we define two mixed systems with equal
probability of being in any of the pure states defined by the
quantum walk evolutions.

The rationale behind the proposed approach is that, when-
ever G1 and G2 are isomorphic, the distinguishability between
the two states ρ−

T and ρ+
T , which emphasize respectively

destructive and constructive interference, will be maximal. In
other words, we design an experiment where the starting states
are orthogonal and remain orthogonal during the quantum
walk evolution, provided that G1 and G2 are isomorphic.
Thus, given two unattributed graphs G1 and G2, we define
the quantum Jensen-Shannon kernel kT (G1,G2) between
them as

kT (G1,G2) = DJS(ρ−
T ,ρ+

T ), (21)

where ρ−
T and ρ+

T are the density operators defined as in
Eq. (20). Note that this kernel is parametrized by the time
T . As we will show in the next sections, the choice of the
time parameter can affect both the computational complexity
of the kernel and its classification accuracy. Finally, recall that
in Eq. (19) we defined the initial state to be proportional to
the node degree in the original graphs. As a consequence, the
kernel is not defined on graphs G = (V,E) with E = ∅, i.e.,
completely disconnected graphs.

Note that the proposed setting is significantly different
from that of the classical Jensen-Shannon (JS) kernel of Bai
and Hancock [11]. In fact, in Ref. [11] the authors need to
construct a product graph from the two input graphs in order
to compute the composite entropy of the system, whereas in
our case this is not necessary. In Ref. [32] Bai et al. propose
a quantum version of the classical JS kernel, however in
order to guarantee the permutational invariance the authors
need to compute the optimal alignment between the input
graphs before the analysis can even commence. In our case,
on the other hand, this problem is overcome by allowing the
quantum walks to take place over the same merged structure
and naturally measuring the similarity between the original
graphs using the interference effects of quantum walks.

A. Kernel computation

In this section we evaluate the computational complexity of
the kernel. In particular, we show that the solution to Eq. (20)
can be computed analytically. Define Pλ = ∑μ(λ)

k=1 φλ,kφ
�
λ,k to

be the projection operator on the subspace spanned by the μ(λ)
eigenvectors φλ,k associated with the eigenvalue λ ∈ �, where
� is the set of eigenvalues of the Hamiltonian. Given this set
of projectors, the unitary operator inducing the quantum walk
can be rewritten as

Ut =
∑

λ

e−iλtPλ. (22)

Recall that |ψt 〉 = Ut |ψ0〉. Given Eq. (22) we can express
the density matrix at time t in terms of the projectors
Pλ, i.e.,

ρt = Utρ0(Ut )† =
∑
λ1∈�

∑
λ2∈�

e−i(λ1−λ2)tPλ1ρ0P
�
λ2

. (23)

As a consequence, we can reformulate Eq. (20) as

ρT =
∑
λ1∈�

∑
λ2∈�

Pλ1ρ0P
�
λ2

1

T

∫ T

0
e−i(λ1−λ2)t dt. (24)

The integral in Eq. (24) can be solved, yielding

ρT =
∑
λ1∈�

∑
λ2∈�

Pλ1ρ0P
�
λ2

i(1 − eiT (λ2−λ1))

T (λ2 − λ1)
. (25)

Letting T → ∞, the integral in Eq. (24) reduces to the Dirac
delta function δ(λ1 − λ2). Hence, Eq. (24) simplifies to

ρ∞ =
∑
λ∈�̃

Pλρ0P
�
λ , (26)

where �̃ is the set of distinct eigenvalues of the Hamiltonian,
i.e., the eigenvalues λ with multiplicity μ(λ) = 1. Finally,
along the same lines as Rossi et al. [25], one can show
that as a consequence of Eq. (26) the infinite-time limit of
the average density matrix commutes with the Hamiltonian
H, and thus the complexity of computing the Von Neumann
entropy of ρ∞, i.e., the Shannon entropy of its eigenvalues,
is O(

∑
λ∈�̃ μ(λ)2), where μ(λ) is the multiplicity of the

eigenvalue λ. As a consequence, we have that the complexity of
computing the QJSD kernel with T → ∞ is upper bounded by
that of computing the eigendecomposition of H, i.e., O(|V|3).
In the following sections, unless otherwise stated, we will
assume that the kernel is computed for T → ∞.

B. Kernel properties

We now proceed to show some interesting properties of the
QJSD kernel. First, however, we need to prove the following
lemma.

Lemma 1. If G1 and G2 are two isomorphic graphs, then
ρ−

T and ρ+
T have support on orthogonal subspaces.

Proof. We need to prove that

(ρ−
T )†ρ+

T = 1

T 2

∫ T

0
ρ−

t1
dt1

∫ T

0
ρ+

t2
dt2 = 0, (27)

where 0 is the matrix of all zeros, ρ−
t1

= |ψ−
t1

〉〈ψ−
t1

|, and ρ+
t2

=
|ψ+

t2
〉〈ψ+

t2
|. Note that if (ρ−

t1
)†ρ+

t2
= 0 for every t1 and t2, then

(ρ−
T )†ρ+

T = 0. We now prove that if G1 is isomorphic to G2

then 〈ψ−
t1

| ψ+
t2

〉 = 0 for every t1 and t2. If t1 = t2 = t , then

〈ψ−
0 |(Ut )†Ut |ψ+

0 〉 = 0 (28)

since (Ut )†Ut is the identity matrix and the initial states are
orthogonal by construction. On the other hand, if t1 = t2, we
have

〈ψ−
0 |U�t |ψ+

0 〉 = 0, (29)

where �t = t2 − t1. Let α+
u denote the amplitude of |ψ+

0 〉
at node u. To conclude the proof we rewrite the previous
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equation as

〈ψ−
0 |U�t |ψ+

0 〉 =
∑
u∈V

α−
u

∑
v∈V

α+
v U�t

vu

=
∑
u1∈V1

α+
u1

∑
v1∈V

α+
v1

U�t
v1u1

−
∑
u2∈V2

α+
u2

∑
v2∈V

α+
v2

U�t
v2u2

= 0, (30)

where we denote by U�t
uv the element of the matrix U�t

corresponding to the pair of vertices u and v. Recall that
two graphs G1(V1,E1) and G2(V2,E2) are isomorphic if there
exists a bijection f between the elements of V1 and V2 such
that (u,v) ∈ E1 if and only if (f (u),f (v)) ∈ E2. To see that
Eq. (30) holds, we start by noting that U�t is a symmetric
matrix and it is invariant to graph symmetries [25]. That is, if
f (u1) = u2 and f (v1) = v2, then U�t

u1v1
= U�t

u2v2
. Moreover, if

G1 and G2 are isomorphic then α+
u1

= α+
f (u1). Thus, it follows

that in Eq. (30) each term α+
u1

α+
v1

U�t
v1u1

cancels out with a term
α+

f (u1)α
+
f (v1)U

�t
f (v1)f (u1), ∀ u1 ∈ U1,v1 ∈ V . �

Corollary 1. Given a pair of graphs G1 and G2, the kernel
satisfies the following properties: (1) 0 � k(G1,G2) � 1 and
(2) if G1 and G2 are isomorphic, then k(G1,G2) = 1.

Proof. The first property is trivially proved by noting that,
according to Eq. (21), the kernel between G1 and G2 is
defined as the quantum Jensen-Shannon divergence between
two density operators, and then recalling that the value of the
quantum Jensen-Shannon divergence is bounded to lie between
0 and 1.

The second property follows again from Eq. (21) and
Lemma 1. In other words, if the density operators have support
on orthogonal spaces then the quantum Jensen-Shannon
divergence reaches its maximum value. To see this, it is
sufficient to note that from (ρ−

T )†ρ+
T = 0 it follows that the

set of eigenvalues of ρ−
T +ρ+

T

2 is

�

(
ρ−

T + ρ+
T

2

)
=

{
λ

2
|λ ∈ �(ρ+

T ) ∪ �(ρ−
T )

}
,

where �(ρ+
T ) and �(ρ−

T ) denote the set of eigenvalues of ρ+
T

and ρ−
T , respectively. Let λ+ ∈ �(ρ+

T ) and λ− ∈ �(ρ−
T ). Then,

the Von Neumann entropy of ρ−
T +ρ+

T

2 is

HN

(
ρ−

T + ρ+
T

2

)

= −
∑

λ+∈�(ρ+
T )

λ+

2
ln

λ+

2
−

∑
λ−∈�(ρ−

T )

λ−

2
ln

λ−

2

= −1

2

∑
λ+∈�(ρ+

T )

λ+ ln λ+ − 1

2

∑
λ−∈�(ρ−

T )

λ− ln λ− + 1

= 1

2
HN (ρ+

T ) + 1

2
HN (ρ−

T ) + 1 (31)

and, as a consequence, DJS(ρ−
T ,ρ+

T ) = 1. �
Unfortunately, we are currently unable to provide a formal

proof of the positive semidefiniteness of our kernel, although
we give empirical evidence of this in the experimental
section. Some potentially useful results can be found in

the work of Briet et al. [38], where the authors prove that
the classical Jensen-Shannon divergence and its quantum
mechanical counterpart can be used as negative semidefinite
kernels between probability distributions and pure quantum
states, respectively. Note that because of how we set up our
experiment the more divergent (i.e., dissimilar) are ρ−

T and ρ+
T ,

the more similar are the input graphs. Recall that whenever
G1 and G2 are isomorphic, then the states of the walks
remain orthogonal during the entire evolution process. Thus,
the negative semidefiniteness of the QJSD kernel between
quantum states implies positive semidefiniteness of the kernel
between graphs.

In order to shed light on the general behavior of the kernel,
we now analyze the special case in which we use the Laplacian
of the merged graph as the Hamiltonian for the quantum walk.
Under these assumptions, we can express the Hamiltonian H
in terms of the Laplacians L1 and L2 of graphs G1 and G2

respectively:

H =
(

L1 + nIm −1m1T
n

−1n1T
m L2 + mIn

)
, (32)

where m and n are the sizes of graphs G1 and G2, respectively,
In denotes an n × n identity matrix, and 1n is an n-dimensional
vector with all unit entries.

Recall that a graph Laplacian has a single all 1’s eigen-
vector with unit constant elements, corresponding to a zero
eigenvalue. All the remaining eigenvectors have elements that
sum to zero. Let |φ〉 be a nonconstant eigenvector of L1 of
eigenvalue λ, and |χ〉 a nonconstant eigenvector of L2 of
eigenvalue μ. It is easy to show that the vectors φ̄ = (φT ,0T

n )T

and χ̄ = (0T
m,χT )T are eigenvectors of H, where 0n is the

vector composed of n zeros, and φ̄ and χ̄ are obtained by
adding n trailing zeros to φ and m leading zeros to χ ,
respectively. In fact:

Hφ̄ =
(

L1 + nIm −1m1T
n

−1n1T
m L2 + mIn

) (
φ

0n

)

=
(

(λ + n)φ + 0m

0n + 0n

)
= (λ + n)φ̄, (33)

Hχ̄ =
(

L1 + nIm −1m1T
n

−1n1T
m L2 + mIn

)(
0m

χ

)

=
(

0m + 0m

0n + (μ + m)χ

)
= (μ + n)χ̄ . (34)

This characterizes m + n − 2 eigenvectors of H. The remain-
ing two eigenvectors are (1T

m,1T
n ) with eigenvalue 0, and

(n1T
m, − m1T

n )T with eigenvalue m + n:(
L1 + nIm −1m1T

n

−1n1T
m L2 + mIn

) (
1m

1n

)

=
(

n1m − n1m

−m1n + m1n

)
= 0n+m , (35)

(
L1 + nIm −1m1T

n

−1n1T
m L2 + mIn

)(
n1m

−m1n

)

=
(

n21m + nm1m

−nm1n − m21n

)
= (m + n)

(
n1m

−m1n

)
. (36)
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Note that m + n is an upper bound for an eigenvalue of
the Laplacian of a graph of size m + n, and it is reached only
if G1 and G2 have nodes that are connected to every other
node in the graph, while the eigenvalue 0 is isolated as the
merged graph is connected. In this analysis we will ignore the
possibility of multiple m + n eigenvectors and will assume
that there is no node connected to every other node. However,
even with these restrictions, the analysis will be sufficient to
draw some conclusions that apply in the general case as well.

With the decomposition of the Hamiltonian to hand, we can
compute the infinite-time average density matrix analytically.
In fact, let P 1

λ be the projection onto the eigenspace corre-
sponding to eigenvalue λ of graph G1 and, equivalently, P 2

μ

be the projector onto the μ eigenspace of graph G2. Further,
let P̄ 1

λ and P̄ 2
μ be the extension of the projector on the merged

graph, and

P̄0 =
∣∣(1T

m,1T
n

)R〉〈(
1T

m,1T
n

)T ∣∣
m + n

,

P̄m+n =
∣∣(n1T

m,−m1T
n

)T 〉〈(
n1T

m,−m1T
n

)T ∣∣
mn(m + n)

be the projectors onto the 0 and m + n eigenspaces of the
merged graph. Let us now define the following sets of
eigenvalues of the merged graph:

�1\2 = {λ ∈ �̃(G1) \ {0} | ∀ μ ∈ �̃(G2) \ 0, λ

+ n = μ + m}, (37)

�2\1 = {μ ∈ �̃(G2) \ {0} | ∀ λ ∈ �̃(G1) \ 0, λ

+ n = μ + m}, (38)

�1∩2 = {λ ∈ �̃(G1) \ {0} | ∃ μ ∈ �̃(G2) \ 0, λ + n

= μ + m}. (39)

Further, let φ0 and χ0 be the restrictions of the ini-
tial pure state on G1 and G2, respectively; then we
have ρ+

0 = |(φT
0 ,χT

0 )T 〉〈(φT
0 ,χT

0 )T | and ρ−
0 = |(φT

0 ,−χT
0 )T 〉

〈(φT
0 ,−χT

0 )T |.
From Eq. (26), we have

ρ+
∞ =

∑
λ∈�1\2

P̄ 1
λ ρ+

0 P̄ 1
λ +

∑
μ∈�1\2

P̄ 2
μρ+

0 P̄ 2
μ +

∑
λ∈�1∩2

(
P̄ 1

λ + P̄ 2
μ

)
ρ+

0

(
P̄ 1

λ + P̄ 2
μ

) + P̄0ρ
+
0 P̄0 + P̄m+nρ

+
0 P̄m+n

=
∑

λ∈�̃(G1)\{0}

∣∣((P 1
λ φ0

)T
,0T

n

)
T
〉〈((

P 1
λ φ0

)T
,0T

n

)
T
∣∣ +

∑
μ∈�̃(G2)\{0}

∣∣(0T
m,

(
P 2

μχ0
)T )

T
〉〈(

0T
m,

(
P 2

μχ0
)T )

T
∣∣

+
∑

λ∈�1∩2

[∣∣((P 1
λ φ0

)T
,0T

n

)
T
〉〈(

0T
m,

(
P 2

μχ0
)T )

T
∣∣ + ∣∣(0T

m,
(
P 2

μχ0
)T )

T
〉〈((

P 1
λ φ0

)T
,0T

n

)
T
∣∣]

+
( 〈1m | φ0〉2

m + n
+ 〈1n | χ0〉2

m + n
+ 2

〈1m | φ0〉〈1n | χ0〉
m + n

)
P̄0 +

(
n

m

〈1m | φ0〉2

(m + n)
+ m

n

〈1n | χ0〉2

(m + n)
− 2

〈1m | φ0〉〈1n | χ0〉
(m + n)

)
P̄m+n (40)

and, symmetrically,

ρ−
∞ =

∑
λ∈�̃(G1)\{0}

∣∣((P 1
λ φ0

)T
,0T

n

)
T
〉〈((

P 1
λ φ0

)T
,0T

n

)
T
∣∣ +

∑
μ∈�̃(G2)\{0}

∣∣(0T
m,

(
P 2

μχ0
)T )

T
〉〈(

0t
m,

(
P 2

μχ0
)
T
)T ∣∣

−
∑

λ∈�1∩2

[∣∣((P 1
λ φ0

)T
,0T

n

)
T
〉〈(

0T
m,

(
P 2

μχ0
)T )

T
∣∣ + ∣∣(0T

m,
(
P 2

μχ0
)T )

T
〉〈((

P 1
λ φ0

)T
,0T

n

)
T
∣∣]

+
( 〈1m | φ0〉2

m + n
+ 〈1n | χ0〉2

m + n
− 2

〈1m | φ0〉〈1n | χ0〉
m + n

)
P̄0 +

(
n

m

〈1m | φ0〉2

(m + n)
+ m

n

〈1n | χ0〉2

(m + n)
+ 2

〈1m | φ0〉〈1n | χ0〉
(m + n)

)
P̄m+n. (41)

Hence, for the mixed density matrix, we have

ρ+
∞ + ρ−

∞
2

=
∑

λ∈�̃(G1)\{0}

∣∣((P 1
λ φ0

)T
,0T

n

)
T
〉〈((

P 1
λ φ0

)T
,0T

n

)
T
∣∣ +

∑
μ∈�̃(G2)\{0}

∣∣(0T
m,

(
P 2

μχ0
)T )

T
〉〈(0T

m,
(
P 2

μχ0
)T )

T
∣∣

+
( 〈1m | φ0〉2

m + n
+ 〈1n | χ0〉2

m + n

)
P̄0 +

(
n

m

〈1m | φ0〉2

(m + n)
+ m

n

〈1n | χ0〉2

(m + n)

)
P̄m+n. (42)

From these equations we can see that there are two sources
for the differences between ρ+

∞ and ρ−
∞. The first is in the

interference in the eigenspaces associated with the 0 and n + m

eigenvalues of the Hamiltonian resulting in a movement of a
component of magnitude 2

m+n
〈1m | φ0〉〈1n | χ0〉 from one space

to the other, and is thus linked with the average degree of
the two graphs. The second is associated with a form of size-

adjusted cospectrality, i.e., the situation in which λ + n = μ +
m holds. In this situation, graphs with disjoint size-adjusted
spectrum will have minimal values of the kernel.

In the situation of a general Hamiltonian, we cannot provide
such a detailed result. However, we note that the situation
that allows for differences between ρ+

∞ and ρ−
∞ arises when

the supports of the eigenspaces of the Hamiltonian span both
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graphs, and in that sense, the kernel measures the extent to
which the eigenspaces of the Hamiltonian simultaneously span
both graphs.

V. EXPERIMENTAL RESULTS

In this section we measure the performance of the QJSD
kernel in a classification task. More specifically, we make use
of the following five different standard graph data sets:

MUTAG. This is a data set of 188 chemical compounds
labeled according to whether or not they affect the fre-
quency of genetic mutations in the bacterium Salmonella
typhimurium [39].

PPIs. The PPIs data set consists of protein-protein interac-
tion networks (PPIs) [40]. The nodes of the graphs correspond
to proteins, and two nodes are connected if they have a direct
(physical) or indirect (functional) association. The original
data set consists of 219 PPIs collected from five different
kinds of bacteria. More specifically, there are eight PPIs
from Aquifex aelicus and Thermotoga maritima, 52 PPIs from
Gram-positive Staphylococcus aureus and Cyanobacteria, 73
PPIs from Anabaena variabilis and Proteobacteria, and 40
PPIs from Acidovorax avenae. There is an additional class
(Acidobacteria, 46 PPIs) which is more controversial in
terms of the bacterial evolution since they were discovered.
Here we consider the task of discriminating among the
40 PPIs from Acidovorax avenae and the 46 PPIs from
Acidobacteria.

PTC. The predictive toxicology challenge data set (PTC)
records the carcinogenicity of several hundred chemical
compounds for male rats (MRs), female rats, male mice, and
female mice [41]. For our experiments we select the graphs
of male rats. There are a total of 344 graphs in the MR class,
with the smallest one having only two nodes and the largest
one having 109 nodes.

COIL5. The COIL database consists of images of 100
objects [42]. In our experiments, we use the images for the
first five objects. For each of these objects we consider 72
images from different viewpoints. Each image is converted
into a graph by computing the Delaunay triangulation of the
set of corner points extracted using the Harris detector.

Shock. The shock data set consists of graphs from a database
of two-dimensional (2D) shapes [43]. Each graph is a medial

TABLE I. Information on the graph data sets.

Data sets MUTAG PPI PTC COIL Shock

Max no. of vertices 28 232 109 241 33
Min no. of vertices 10 3 2 72 4
Average no. of vertices 17.93 109.60 25.56 144.97 13.16
No. of graphs 188 86 344 360 150
No. of classes 2 2 2 5 10

axis-based representation of the differential structure of the
boundary of a 2D shape. There are 150 graphs divided into 10
classes, each containing 15 graphs. Some statistics concerning
the datasets are given in Table I.

To these real-world data sets we add a set of 30 synthetically
generated graphs belonging to three different classes, where
the graphs belonging to each class were sampled from a
generative model with 12, 14, and 16 nodes, respectively. Here
a generative model consists of a graph where each node and
edge is labeled with the probability of observing that node and
edge, respectively. Details concerning the generative model
can be found in Ref. [44].

We use a binary C-support vector machine (C-SVM) to
test the efficacy of the QJSD kernel [45]. More specifically,
we perform tenfold cross-validation, where for each sample
we independently tune the value of C, the SVM regularizer
constant, by considering the training data from that sample.
The process is averaged over 100 random partitions of the
data, and the results are reported in terms of average accuracy
± standard error.

Furthermore, we compare the performance of the kernel
with that of a number of well-known alternative graph kernels,
namely, the shortest-path kernel [9], the classic random walk
kernel [8], the graphlet kernel [10], and the the Weisfeiler-
Lehman subtree kernel [46], where here agraphlet refers to a
subgraph with k ∈ {3,4,5} nodes.

With the exception of the Weisfeiler-Lehman kernel, none
of the kernels examined in these experiments take graph
attributes into account. In the case of the Weisfeiler-Lehman,
however, each node is labeled with its degree. As for the maxi-
mum subtree height h, in our experiments we let h = {1–3} and
we choose the optimal value by cross-validation [46]. Finally,
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FIG. 2. (Color online) Two-dimensional MDS embeddings of the synthetic data, where the elements of the three classes are indicated by
blue circles, red up triangles, and green down triangles, respectively. Here the axes correspond to the embedding dimensions given by the two
largest eigenvalues of the similarity matrix M = − 1

2 HDH , where the distance matrix D denotes (a) the edit distance, (b) the distance between
the graph spectra, and (c) the QJSD kernel, respectively.
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FIG. 3. The average classification accuracy (± standard error, dashed line) as a function of the stopping time T . Here the dark gray and
light gray lines refer to the cases in which the Hamiltonians are the adjacency and Laplacian matrix, respectively, and the horizontal line shows
the classification accuracy when T → ∞.

note that the implementation of the graphlet kernel used in this
paper counts the instances of graphlets of size 3.

Figure 2 shows multidimensional scaling (MDS) [47]
embeddings of the synthetic graphs. MDS is a standard
approach for linear dimensionality reduction which aims at
locating the low-dimensional embedding into a vector space
that best preserves the interpoint distances given by a distance
matrix D. To this end, the matrix M = − 1

2HDH is first
computed, where H = I − 1

n
11� is the centering matrix, 1

denotes the m-dimensional vector of all 1’s, and n is the
number of points to embed. Then, for each embedded point
the j th coordinate is determined by the j th eigenvector and
the j th eigenvalue of M , where the eigenvalues are sorted
in decreasing order. Let K denote the QJSD kernel over
the set of synthetic graphs, where the ij th element of K is
denoted as kij , i.e., kij is the kernel value between graph i

and graph j . We then compute the distance matrix D = (dij )
with dij = √

kii + kjj − 2kij = 2(1 − kij ), to which we apply
MDS to identify the principal axes of structural variation
represented by the similarity data. Note that here we set the
Hamiltonian to be the adjacency matrix of the graph. We
then compare the resulting embedding with those obtained
starting from the edit distance matrix [48] and the graph spectra
distance matrix. Given a set of permitted edit operations, i.e.,
addition or deletion of a vertex or an edge of a graph, the
edit distance between two graphs is defined as the least-cost
edit operations sequence needed that transforms a graph into
another one [49]. To compute the distance between the graph
spectra, on the other hand, we adopt the following procedure.
For each graph G with adjacency matrix A, we compute the
column vector sG of the ordered eigenvalues of A. As the
graphs are of different sizes and thus their spectra are of
different lengths, the vectors are all made to be the same length
by padding zeros to the end of the shorter vector. The (i,j )th
element of the distance matrix is then dij = ||si − si ||. Figure 2
from left to right shows the MDS embeddings associated
with (a) the edit distance, (b) the distance between the graph
spectra, and (c) the QJSD kernel, respectively. Compared to the
distance between the graph spectra, the QJSD kernel provides
a clearer separation between the different classes. This in turn
suggests that the Hilbert space induced by the QJSD kernel
efficiently captures the class separation of the data set. Finally,

note that while the edit distance also yields a good class
separation, it requires computing a mapping between the node
sets of the graphs. This in turn is known to be a particularly
hard task, due to the combinatorial nature of the problem.

We now evaluate how the accuracy of the QJSD kernel
varies as we let the quantum walks evolve for longer times
T . Recall that the value of the QJSD kernel depends on
the choice of the stopping time of the quantum walks. In
the previous section, we showed that in the large-time limit
the density matrix of the quantum walk commutes with the
Hamiltonian, and thus the value of the QJSD kernel can
be readily computed given the eigendecomposition of H.
This reduced computational complexity in turn motivates the
choice of T → ∞. However, as seen in Fig. 3, this does not
necessarily coincide with the optimal time, i.e., the time that
leads to the highest classification performance. Recall that in
a classification task we can measure the performance of a
classifier in terms of classification accuracy. This is defined as
the fraction of the data instances that are assigned the correct
class label, where in our case a data instance corresponds
to a graph. Here we plot the average classification accuracy
(± standard error) for the QJSD kernel as a function of the
time parameter T on the MUTAG, PTC, and shock data sets,
where the Hamiltonian is chosen to be either the adjacency
matrix or the Laplacian. Note that these three data sets are the
only ones that allow us to perform an extensive analysis of the
parameters. The plots show that almost invariably the accuracy
is reaching a maximum before stabilizing around a limit.

Interestingly, for the MUTAG and shock data sets, when we
take the adjacency matrix as the Hamiltonian the maximum
accuracy is achieved for a time T which is of the same order of
magnitude as the average graph size in the data set. However,
the same does not hold for the PTC data set, where we note that
the graph size shows a larger variability. Future work will try to
identify a possible connection between this observed behavior
and the average mixing time of the continuous-time quantum
walks on the graphs. Note also that for the PTC data set the best
classification accuracy is achieved when the Laplacian is the
Hamiltonian of the system. In the shock data set, on the other
hand, in the large-time limit the adjacency-based QJSD kernel
outperforms the Laplacian-based one, while the maximum
accuracy of the Laplacian-based QJSD kernel equals that of
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TABLE II. Classification accuracy (± standard error) on unattributed graph data sets. QJSDH is the QJSD kernel, where H denotes the
Hamiltonian, i.e., adjacency matrix (A) or Laplacian (L), SP is the shortest-path kernel [9], RW is the random walk kernel [8], GR3 denotes the
graphlet kernel [10] computed using all graphlets of size 3, while WL is the Weisfeiler-Lehman subtree kernel [46]. We also denote by QJSD∗

H
the optimal QJSD kernel (with respect to the time) with Hamiltonian H.

Kernel MUTAG PPI PTC Shock COIL5

QJSDA 87.41 ± 0.18 75.90 ± 0.39 56.38 ± 0.15 40.70 ± 0.21 69.17 ± 0.11
QJSDL 86.16 ± 0.19 71.26 ± 0.46 58.76 ± 0.17 33.96 ± 0.24 69.80 ± 0.10
QJSD∗

A 88.81 ± 0.17 44.21 ± 0.22
QJSD∗

L 86.56 ± 0.20 44.12 ± 0.20
SP 83.02 ± 0.21 63.81 ± 0.39 56.07 ± 0.13 38.50 ± 0.16 69.44 ± 0.16
RW 66.41 ± 0.07 51.21 ± 0.37 55.79 ± 0.03 0.41 ± 0.05 12.11 ± 0.10
GR3 81.31 ± 0.20 49.96 ± 0.43 55.41 ± 0.08 26.05 ± 0.32 66.62 ± 0.15
WL 84.54 ± 0.26 82.81 ± 0.41 55.66 ± 0.19 37.68 ± 0.24 31.59 ± 0.21

the adjacency-based one. Finally, note that with the exception
of the PTC data set, the difference between the asymptote
and the peak is relatively small, albeit statistically significant.
This in turn suggests that the choice of T → ∞ produces a
classification accuracy close to the optimum.

Finally, we report the average classification accuracies (±
standard error) of the different kernels in Table II. We evaluate
the accuracy of the QJSD kernel for different choices of the
time T and of the Hamiltonian. More specifically, we let the
Hamiltonian be either the adjacency or the Laplacian matrix,
and the time be either the optimal one or T → ∞. We select
the value of T through an exhaustive search, where the optimal
value is chosen by cross-validation on the training set. Here
we let T vary logarithmically between 1 and 106, which
is indeed computationally very expensive. However, at the
present moment we do not have any exact or even heuristic
criterion to reduce the search space, and future work will be
aimed at this. As shown in Table II, in fact, we were able
to complete the simulation only on the MUTAG and Shock
data sets. Interestingly, in both cases we achieved the best
performance by fine tuning the value of T . With respect to the
Hamiltonian, we observe once again that the adjacency matrix
is not always the best choice. Generally, however, the QJSD
kernel obtains a classification accuracy which is better than or
sometimes comparable to that of the other kernels, regardless
of how we set T and H.

In terms of computational complexity, recall that, for
each pair of graphs G1(V1,E1) and G2(V2,E2), we need to
compute the complete eigendecomposition of the merged
graph G = (V,E). For the sake of clarity, let us assume that we
are given a data set of N graphs each with |V | nodes. When
the Hamiltonian is the adjacency matrix, we need to explicitly
compute the eigendecomposition of the merged graph for
each pair of input graphs, and thus the overall complexity
is O(N2|V |3). However, when the Hamiltonian is the graph
Laplacian, it is possible to precompute the eigendecomposition
of the individual graphs, thus lowering the overall complexity
to O(N |V |3). Similarly, the most efficient implementations
of the shortest-path kernel and the graphlet kernel [10,46]
with graphlets of size 3 scale as O(N |V |3). The random
walk kernel [50], on the other hand, scales as O(N2|V |3)),
while the Weisfeiler-Lehman subtree kernel [46] scales as
O(h|V |2N2), with h denoting the maximum height of the
subtrees.

VI. CONCLUSIONS

Graph-based representations are widely used as a powerful
tool for modeling and analyzing real-world complex systems.
However, the rich expressiveness of graphs poses a number
of problems when the application of pattern recognition and
machine learning techniques is considered. Although kernel
methods provide a way to shift this representational problem,
the design of novel and efficient graph kernels remains an
open challenge. In this paper, we proposed a quantum-inspired
kernel for unattributed graphs where we gauged the similarity
between the input structures through continuous-time quantum
walks. More specifically, we computed the divergence between
two suitably defined quantum states, and we showed that this
measure has a number of interesting properties related to the
spectrum of the system Hamiltonian. In particular, we have
shown that the kernel value can be interpreted as a measure
of the extent to which the eigenspaces of the Hamiltonian
simultaneously span both graphs.

Our experimental validation has shown that the QJSD
kernel can outperform state-of-the-art kernels in a graph clas-
sification task. Although the overall computational complexity
is bounded by that of computing the eigendecomposition of
the Hamiltonian, we have shown that we can compute the
eigenvalues of ρ∞ in O(

∑
λ∈�̃ μ(λ)2), where �̃ denotes the

set of distinct eigenvalues λ of the Hamiltonian, each with
multiplicity μ(λ). Despite leading to a faster computation, we
observed that the choice of letting T → ∞ does not neces-
sarily coincide with the optimal one in terms of classification
accuracy. We noted that, when we let the adjacency matrix
be the Hamiltonian of the system, the maximum accuracy is
actually achieved for a time T which is of the same order of
magnitude as the average graph size in the data set. Future
work should investigate the possibility of a relation between
the average mixing time of the continuous-time quantum walks
on the merged graph and the optimal time for the kernel.
Finally, the positive semidefiniteness of the kernel, which at
the moment we are unable to formally prove, will be the subject
of further studies.
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