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SUMMARY

This thesis documents an investigation of the effect
of solar radiation pressure on the motion of an artificial
satellite, Consideration is given to the methods required
for the inclusion of the discontinuous effect of the Earth's
shadow.

The analysis resulting from the description of a
deformed diffusely reflecting balloon satellite and an
algorithm describing the effects of Earth reflected solar
radiation pressure are developed, culminating in the
application of the derived theory to the orbital data of
the balloon satellite, Explorer 19.
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1.

INTRODUCTION

The theory of artificial satellites was first propounded
by Sir Isaac Newton (1642-1727) in his "Philosophiae Naturalis
Principia Mathematica". The pattern of research developed from
the orbit of satellites about the Earth, is mainly concerned
with the composition, temperature and density of the
atmosphere above a heighf of about 180 km. Further
developments are, a geodetic study of the Earth's shape by
building up an accurate picture of the gravity potential
over the Earth, the physical studies of the Earth's magnetic
field, the concentration of positive ions in the atmosphere,
the prevalence of micro-meteorites and the measurement aﬁd
analysis of solar radiation.

Originally it was hoped that balloon satellites could
act as passive reflectors of radio waves at a relatively Tow
cost compared with active communications satellites. Trial
radio links were established between the U.S.S.R. and the
United States via Jodrell Bank using the Echo balloons as
orbiting reflectors. The quality of reception, however, was
not always good, as passive satellites suffer from the fact
that the signal received is already weak, and it is this
signal that is returned to Earth. Use must therefore be made
of an amplifier and retransmitter with a permanent energy
source in the form of solar cells,

Balloon satellites really constitute a method of
determining atmospheric densities and their variations at
very high altitudes. Before this was possible it was noted

that such satellites with large surface area to mass ratios,
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(Echo 1 was of the order of 100 sq. cm. per gm.) are
particularly sensitive to the effects of solar radiation
while the converse is true of active satellites.

In general, during a complete orbital period, solar
radiation pressure (SRP) causes a first order perturbation
of all six orbital elements. However the most conspicuous
effect for a near circular orbit, is a displacement of its
geometric centre. This displacement will be parallel to the
Earth-Sun line for a spherical satellite and can be almost
perpendicular to this direction for a specularly reflecting
flat plate. If it is assumed that the satellite is orbiting
in a plane parallel to the Sun's rays, the 1ight received at
a point A (fig. 1) in the form of photons, will give it a
small supplementary amount of energy. The satellite will have
extra kinetic energy, and instead of describing a circular
orbit an increase in the major axis will take the satellite

to B, and not B'. At this point the satellite, still in

~
Direction of
Sun's rays.
-
-

Fig. 1.




sunlight, is subjected to the same force as at A, but now
this force acts so as to oppose the satellite's motion and
the orbit is modified, bringing the satellite to C,.

After six months the Sun's rays approach the orbit from the
opposite direction and the effect described is reversed. If
a balloon satellite is placed into an orbit with the plane
and major axis selected in such a way that the precessionary
movement needs exactly six months to bring the plane back

to its original position, there will be an inversion of the
above situation, and the satellite's trajectory will be
perturbed continuously in one direction only. That is, A
will continue to move closer to the Earth and B will continue
to move away. This example of a resonant orbit may occur
when a balloon satellite has a near circular polar orbit,
and in the absence of other forces this orbit would rapidly
decay. In reality the force of SRP is generally just
distinguishable from the other forces to which a satellite
is subjected. To illustrate this a simple comparison is now
made with the effect of atmospheric drag by calculating the
ratio of‘the perturbing accelerations caused by solar
radiation (F) and by air drag (D) for a spherical satellite

in circular orbit. It is known that,

F_ Py As(ag/re)? (Aksnes, 1976)
m

2
CD oV (King-He]e, ]964)

=15

l.
2

where
= cross-sectional area,

s= constant depending on the reflection characteristics of the
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satellite's surface,

m= satellite mass,

5

Po = 4.65 X 107° dyne per sq. cm., is the force per unit area

exerted at the Earth by the Sun, when r the geocentric

@9
distance from the Sun is equal to its mean distance ag,

p= atmospheric density (Jacchia, 1971),

v= satellite velocity relative to the Earth centre,

Ch = drag coefficient (Cook, 1965),

so that,

ZsPO

FL.___°
D CD D\)2
As an example suppose that the constants s and CD are taken

as 1.105 and 2.2 respectively.

H?19ht of . 200 300 400 500 600 700 800 900 1000
circular orbit

h km.

E/D ,0003 ,002 ,01 .04 ,2 .8 2,1 4,3 12,4

It can be seen from the above table that for heights less

than about 600 km., radiation pressure has much less effect
than air drag, and therefore SRP effects at such heights are
generally ignored. To illustrate these effects when they
become significant, consider the orbit of Echo 1. For this
sate]lite, at a mean height of 1600 km., a reduction of up to

6 km. per day was found in its perigee height, due in the main
to radiation pressure. It was noted that at launch in 1960,
this satellite had an almost circular orbit. HoweQer, due to
the presence of this force the orbit tended markedly to that of
an ellipse during the first few months of its 1ife. Subsequently,
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this increase in eccentricity ceased and by mid-1961 the

orbit attained a perfect circle. This cycle of events was
repeated and with each increase of eccentricity Echo 1's

perigee entered a denser atmosphere, thus increasing the

effect of air drag, which in turn caused the reduction in
perigee height.

Now the force, F, exerted by sunlight pressure is
proportional to the area of a satellite as projected on a
plane perpendicular to the direction of the flux, and is
dependent on the characteristics of reflection of the
‘satellite itself. These forces can be said to contribute
a conservative field of force, unless the orbital plane
is such that the satellite passes into the Earth's shadow.
Here the force due to SRP will naturally be zero until
emergence from the shadow.

Several authors in early treatments of SRP acting
on ba11oon'sate11ites, applied trial and error methods by
using dffferent values for the area to mass ratios, to
derive resu1té that fitted the previously unexplained
residuals from the observed perturbations. These methods
were fashioned to apply to fhe satellite Echo 1 in order
that the analysis of the semi-major axis might lead to
improved values of air density, (Shapiro and Jones, 1960).
Papers by Musen, Bryant and Bailie (1960) and Parkinson,
Jones and Shapiro(1860) also discuss SRP perturbations,
although they do not give general results, but rather the
effects on particular satellites. This has also been the
case more recently with papers by Fea (1970), STowey (197417)
and Slowey (197411).

The time rate of change for orbital elements has been
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found by employing a vectorial method (Musen, 1960), when the
Earth's shadow is neglected. A similar method was utilised

by Bryant (1961) to include the effects of this eclipsing

of the satellite by the Earth using an iterative technique.
This paper required the derived equations to be numerically
integrated, and was only concerned with long-period
perturbations.

A simplified demonstration of how certain resonant
conditions of orbital altitudes and inclinations can cause
the monotonic build up of effects of SRP was given by
Parkinson, Jones and Shapiro (1960), while citing Echo 1.

A paper by Fea and Smith (1970) gives the results
for the satellite 1963-30D, Dash 2, but again there is no
formal presentation of general results. It is of interest,
though, to note that after attempting to assign suitable
values for the area to mass ratio and the reflection
coefficient, in order that the best fit could be obtained
between the observed and predicted values of eccentricity,
a discrepancy'was still found. Fea and Smith explained this
as a result of Earth reflected radiation pressure effects.
It is possible to conceal this small effect by careful

sA

sA = was used in the

choice of =, but when this value for
development of orbital elements other than eccentricity,
the variations between observed and predicted data were
rather Targe. On inspection of the periods where parts of the
orbits were in shadow this discrepancy was very marked
relative to the periods when the orbit was fully sunlit. It
is therefore necessary to evaluate and distinguish between
the differing effects of Earth reflected radiation and the

sA

variation in = due to rotation of the deformed spheroidal
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balloon. This conclusion was also arrived at by Aksnes (1976),
who found similar discrepancies with Dash 2 while including
short period perturbations.

Another question raised by Aksnes that needs to be
answered is that of the method used for finding the positions
of the shadow entry and exit points. Some early authors did
not take this into account while Lala (1970) applied a
continuous series expansion in order to simulate the
discontinuous effects of the Earth's shadow. Kozai (1961)
suggested that the solution of a quartic in the eccentric
anomaly is required for each revolution in order to discover
when the orbit passes through the shadow, if indeed it does.
Then the exact points of intersection need to be determined,
bearing in mind that modelling the Earth's shadow by a right
circular cylinder is an approximation that excludes the
vagaries caused by the penumbral shadow, refraction through
the Earth's atmosphere and any cloud cover that might be
present,

The devé]opment that follows attempts to answer
these questions, and concludes with a practical application

of the derived theory, to the satellite 1963-53A, Explorer 19.



2.

DIRECT SOLAR RADIATION PRESSURE

In the subsequent discussion the perturbation method
is applied to the orbits of Earth satellites that are affected
by the external force of direct solar radiation pressure. The
main concern of this text is with the consequences that this
disturbing acceleration has on the shape and orientation of
the orbit, and therefore the prediction of satellite orbits.

The forces considered are small compared to that of the
central force field, and thus the orbits are described in
terms of the elements of the osculating ellipse. The notation
incorporated herein is shown in Figure 2.

The Gaussian form of Lagrange's planetary equations
express the rate of change of the osculating elements in
terms of the components of the perturbing force. These

equations, from Smart (1953), are

da _ 2na3F {T(e + cose) - S(sing)} , (2.1)
dt V/(1-e2)

3 1
de _ na?/(1-e?)F {T(; + 2e Cc0s6 + " cos2e)
dt (1 + e cose)

1

-S(e sine + > sin2e6)} (2.2)
di _ na?v/(1-e2)FW cos(w + 8) (2.3)
dt (1 + e coso)
do _ na?y/(1-e2)FW cosec i sin(w + 8) | (2.4)
dt (1 + e cose)

3 1

do _ na2y/(1-e2)F "{S(— + e cose - > cos26)

dt e(l1 + e coso)



[
=

_n - 2na?(1-e2)F (S cose + T sine)
(1 + e cose)

|

jal
+t

- V(1e?) (2 v cosi §2) (2.6)

S(e), T(e) and W are the direction cosines of the perturbatory
force vector, acting along the satellite's radius vector, r,
perpendicular to r in the orbital plane and normal to this
plane respectively. These expressions can be written in a

more manageable form, for

wn
—
@
~~
H

S cose + T sins

—
~~
D
g
1}

T cos6 =S sine

where S=S(0) and T=T(0), so that

Sy =y S - Cos
{T} - {+} Z.a_i {sin} B'I s (2.7)
i=1
where
i o Yi
a Si Se -1
2 Si ce -1
3 ci ce +1
4 ci se +1
5 isini sine
6 isini sineg 0
with
Be = w +oy;0 4 (F1)Th (2.8)
and
. .2, . 2
si = sin (1/2) se = sin"(e/2)
ci = cosz(i/Z) Ce = COSZ(e/Z) R
and also,



W = sini {ce sin(x-Q) - se sin(A+Q)}
- cosi sine sinx . (2.9)

SATELLITE

The following discourse arises as a result of the

deviation, found in the example given by Aksnes (1976), of

the computed theoretical data from the observed values of the
perturbations to 'a', the semi-major axis, of the satellite
1963-30D. This unexplained perturbation was particularly
evident during the periods when the satellite orbits were
continuously sunlit. It has been shown by severa1.authors, e.g.
Kozai and Aksnes, that under certain assumptions the

perturbation for 'a', due to direct solar radiation pressure,

can be expressed by



E2
sa = 2a3F [S cosE + T /(1-e2) sinE ] , (2.10)

uF being the magnitude of the radiation pressure force per
unit mass of satellite, u= n2a3 = gravitational constant
multiplied by the Earth's mass, acting in the direction of,
and parallel to, the Sun-Earth line. E is the eccentric
anomaly and in the present example Ej and E, are taken as
zero and 27 respectively, for a fully sunlit orbit. This
leads to the result that there are no secular or long-
period perturbations of the semi-major axis in a complete
revolution that does not pass through the Earth's shadow.
The situation has however, been simplified by several
assumptions. The integration of the planetary equations has
been carried out by holding all variables on the right hand
side of (2.1) constant, except those explicitly dependent

on the eccentric anomaly, also the force vector was assumed
to act along the Sun-Earth line, parallel to the Sun-satellite
Tine. The first simplification can be removed by allowing

S and T to vafy secularly. This is performed by approximating
linearly the variation of the perigee w, the orbital node @
. and the long itude of the ecliptic A with time. This will be
a reasonable approximation to the secular motion of w and @
due to the Earth's flattening, and the near linear variation

of ». S and T can therefore be written as,

'{i} ='{;}€1a1'{§$§} (Bip + Bilt) > (2.17)
where "
Bij = w5+ ving + (1)1 A j=0,1,
j=0 represents initial values and wy = o, 27 = 0 and Ay = i,

This will lead to long periodic terms not found in equation

(2.10). This was adequately approximated to by Aksnes, by
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evaluating S,T,W and » at times t(Eq) and t(EZ)’ and does not
explain the deviation at present discussed. E] and E2 define
the points of intersection of the satellite's orbit with the
Earth's shadow.

Consideration will now be given to the effects of
removing the second assumption by taking the vector F to act

along the Sun-satellite line, as shown by Figure 3.

SUN

SATELLITE

Fig. 3.

(i,j,k) are a right hand set of unit vectors with respect
to the geocentric coordinate axes defined in Figure 2. The
satellite position and Sun position are defined by (XsY52)
and (X,Y,Z) respectively, so that

r__xi+yi+2_l§

B } Ug =reg-r .
re - Xi +YJ + Zk
Therefore,

(X-x)1 + (Y-y)J + (Z-2)k

=
®
Tt

= (rg cosx - req)i + (rg sinx cose - rm])i
+(rg sinx sine - rn])g >
where

Ug = V(rg? + r? - 2rrgy coss)

re V{1 + (r/rg)2 - 2(r/rg) coss} ,
COS8 = £, COSXA + My sinx cose + ny sinx sine ,
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and 2], m] and ny are the direction cosines of r. The force

vector 1is now given in full viz.,

|

~ .0A Py (2g/Up)? Ug
m

E.O !@ ]
Ug

where ¢ is a constant, less than 2, to allow for the fraction
of incident radiation absorbed by the satellite. If R is
taken as the disturbing potential resulting from the radiation
pressure force, and E,i and ﬂ are unit vectors in the
directions of the components of force of F , then

£ T(e) j + ro W ﬂ j

(9]

Fo [{r +r, S(6)} S +r

ré'{] + (r/re)2 - 2(r/rg) coss }3/2

VR

A -~ A A A~ ~ R
(295 =+ 221 + 23W) %; + (mqS + mzl + m3l) L

+ (n1§ + nzi + n3ﬂ) %% s

(22, P no) and (x3, m3, n3) being the direction cosines of

A

i and W. On equating coefficients of é, T and ﬂ and after

some manipulation, it is found that

Fo [27 L% + S(8) } + 2,T(6) + 23¥]
3R ® 5

{1 + (r/r®)2 - 2(r/ry) c056}3/2

®©N

Fo [my $0+ S(6) 3 + myT(6) + m3H]

3
W2 (1 4+ (r/rg)? - 2(r/ry) cossy /2
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and

Fo [N 1 £ +S(8) 3 + nyT(6) + ng]

3R ©

9z ré'{] + (r/r@)2 - 2(r/rg) coss

3
} /2
Now X= rgqs y= rmys z= rny so that for a general element ¢,

Fo
BR - - [{§+S(e)}%
9¢ ré'{1 + (r/rg)” = 2(r/rgy) coss} /2 ©

4 221 amq an
-PY‘T(@) (2’2 3¢ + M2 3¢ +t N2 atb])
3L am an
+ ri (23 331 + m3 EE] + nj 5$1)] (2.12)
Noting that
R = R(a,e,i,0,0,%)
where the mean anomaly M is given by
M= n(t-ty) = nt + x
and using the equations
AL7_ -my 32 + &, dU + &3 sinu 31
3¢ 9¢ 3¢ 9¢
AMy_ %7 39 + mp du + my sinu 3i
3¢ 3¢ 3¢ 3¢
any_ n, 3u + n3 sinu 31 ,
3¢ 3¢ o¢
ar _ 3 {a(l - e cosk)}
3¢ 3¢
_r 2a - a cose 3e + a’e sinE X
T 39 34
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substitution of the relevant elements for ¢, gives

SR _ K [1S(e) + Ly 0o, (2.13)
3a ©
R _ “{S(8) + ~ } a coso
de )

+ rT7(e) [ 2108 4+ e cos8)] 1] , (2.14)

1-e

3R — KrlW sinu (2.15)
31
AR krT(e) (2.16)
o w
Ry [rT(e) cosi - rW cosu sini] , (2.17)
a9

r

. 2 2 2
3R _ g [[{S(e) + L1 2 sinE + 2—11%12—1 T(e)l] , (2.18)
(<]

K Fo

r@'{] ¥ (r/rg)? - 2(r/re) coss} /2

These equations, (2.13) to (2.18), may now be substituted

into the planetary equations, viz.,

da __2 3R (2.19)
dt na 3y

2
de =_£Ll:s_l[/(1-ez) 3R _ 3R ] ; , (2.20)
dt nae 3y dw
di _ 1 {33 cosi - 2R ] , (2.21)
dt na?v(1-e?) sini ltaw X

..']5_



dw _ ¥Y(1-e2) 3R _ coti 3R, (2.22)

dt naZe de na2v/(1-e2) ai

do 1 3R, (2.23)
dt na?/(1-e2) sini 3i

I

dt na 3a nale 3e

In the above X may be replaced by M and

M =X+ n
so that
CdM _n 2 3R _ 1-e? 3R (2.24)
dt na ?sa naZe se
and,
. 2 9R _ 2K [ r , ale _. a2
d = — — = =— 1{S(8) + = } —= sinE + rT(e8){=, V/(1-e2 }]
na sM na "o r (e) r2 ( )
_ 2Fg 1 [ r .
== —— [{S(8) + - } e sing + T(6)(1 + e coss® ]
re’ nv(1-e2) re )

. [1 - 2(r/rg)S(8) + (r/rg)? J /2

from equationé (2.18) and (2.19).

As a first approximation, terms O(r/rgy) are neglected

. so that

* da
a = dt )Aksnes, 1976

2
Now neglecting only terms O %2 ) leads to,
]

= 2 = 2F'a3 [T/(]-ez) cosE - S sinE
n

o
o}

o
m
o))

+ 3(%@)'{ST /(1-e2)(cos2E-e cosE)

2

- S” (sinE cosE - e sinE)
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+ T (1-e2) sinE cosE}]

Pak
+ EEFE—E sint (1 - e cosE)
0
where uF' _ A P, (ae/rg)2 .
m

Then on integration, holding all terms constant except those
explicitly dependent on E,

sa _ 2F'a’ [S coskE + TV/(1-e2) sinE

+ 3(a/rg) (ST /(1-e2)( HHZE _ ¢ sing)

~ E
- g2 (e coSE - cozZE) - T2 (1-e2) COZZE{} 2

E
(cosE - % cosZE)} 2 .

[ 2F'ae
Eq

o

Similar derivatives have been found for the remaining
five orbital elements and programmed in such a way as to
compare the results given by Aksnes for Dash 2 (1963-30D).

No other alterations were made to the theory at this stage,
and the method described by Aksnes was used to sum the
perturbations over complete orbits. These equations are seen
to contain long and short period, first and second order terms
in S, T and W. There were no measurable differences found
between the two sets of perturbations for the elements over
the period of 200 days analysed by Aksnes, other than in the
case of &§a. Here the mean long period effect was found to be
of the order of about one metre per day, and would not Tlead

to a satisfactory explanation, for what would appear to be a

secular discrepancy between the observed and theoretical
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changes in 'a'. It does however strengthen the assumption

that the force acting along the Sun-Earth line can be taken

as parallel to the Sun-satellite 1ine.



3.
METHODS OF ANALYSIS FOR SATELLITES ECLIPSED

BY THE EARTH'S SHADOW

The shadow phase is defined as that time during which

the satellite's orbit includes part of the Farth's shadow.
Musen (1960) and several early authors neglected to take into
account the discontinuous effect of the shadow phase. Kozai
(1961), however, provided a basic relationship for the
derivation of the shadow boundary, assuming that the Earth's
equatorial radius, RE’ is constant and w,2,2,S5,T and e are
taken as constant for each revolution considered. Kozai,
though, did not apply this in the numerical example that.he
gave as he assumed that the satellite in question, namely
Echo 1, did not enter the Earth's shadow, when in fact this

was known to be untrue.

If the shadow phase is simplified by considering a
circular orbit so that r=a, with the Sun in the orbital plane,
then some idea of the time spent by the satellite in shadow can
be obtained. The fraction of the orbital path in shadow for
this situation is given approximately by,

R

.1 -
0.2 < = sin” ! (£

—) < 0.4 ,

T a)

for the average balloon satellite. This suggests that whenever
the orbital inclination, i, takes a value close to .that of ¢,

the inclination of the ecliptic to the equatorial plane, and ¢ is

small, neglect of the effects of the shadow phase can introduce

quite appreciable errors in the magnitudes of the perturbations

_]9_



s0 obtained. In fact the fractional change in the amplitude
of the relevant element, due to the inclusion of the shadow
phase, can be approximately equal to the fraction of the orbit
in shadow. For example, the balloon satellite Explorer 19 was
in shadow during about 3/10 of the revolution that started on
the MJD 42822.0 . The amplitude of sa, while neglecting the
shadow phase, was 32 m. and when the shadow was taken into

account this amplitude was found to be 25 m.

The general expression defining the shadow boundary,
assuming that the shadow cast by the Earth is a right circular

cylinder, is now given.

P T(9)
Shadow \\
Cylinder k\\\\\\\ ///' S(e)
Satellite
\0Y‘b1 tal
N\ path
2z \
‘>
t To Sun
Fig. 4.



From Figure 4,

cos ¢z = /(1 = zz/rz) ,
and

-rS(e) = ~z

|=s
j=~s»
®

}]

therefore

/L1 - ST (8)}

cos ¢

If S(6)>0 then it is ensured that the satellite is not over

the sunlit hemisphere of the Earth and also from Figure 4, if

r cos ¢ < Rg

then the satellite is in or on the surface of the shadow

cylinder, The conditions for the satellite to be in shadow,

are therefore,

S(e) » O (3.1)
and
RE = rv{1 - Sg(e)} > 0 (3.2)
Yo W
RE X
@ s
- X T Satellite at
perigee
Fig. 5.



A useful property for the shadow phase is given by Figure 5,

that is from,

|

S'in a ,

and

W =41+ sin o .

Then the satellite will be fully sunlit throughout its orbit
a(l-e) > x

or

R
a(l-e) » —=— . (3.3)

W]

The condition given by equation (3.2) is now expanded

in terms of the eccentric anomaly, E, so that

[(] - € CoS E)Z - (75)2} = Sz(cos E - e)2 + T2(1—e2) sin’E

+ ZST/(]-eZ) sin E (cos E - e)

~gives the boundary value of E for the shadow. After some

manipulation this can be written as a quartic in cosE, viz,

A cos4E + B cosSE 4 C cosZE + D cos E+G=20 |, (3.4)
where

A= et (1%-1)% + 2e8(18-5%-5818 1Y) 4 (184592

B = 4e3(52472452T%-7) + ge(s2-T%-s%7%-5%) |



2 4 L 2_2 2 2 2

+ 2e {27 +35 425 T =27 -4S +(T -1)(Rg/a) +3)
.2 4 2 2 2 2 2 2

+2{T =T =S =S T 4(5s"-T ) (Rg/a) "y,

3 2 2 2. 2 4 2 2 2 2 2 2
fe (S -T =S'T =S ) + 4e{S 4T +S T -14(1-S")(Rg/a) )

[
I

and

b 4 n 2_2 2 2 2 2 2 4 2 2 2
e (S 4T 428777 ) + 2e {T -8 =8"T° =T +(S"-T") (Rg/a)

[ep)
I

2 _t 2 2 2
+ [1-2T74T +(Rg/a) {2T -2+ (Rg/a) 3] .

Buring one revolution S,T,W,a and Rg are taken as constant in
order to evaluate the coefficients of equation (3.4). This
quartic can be solved numerically noting that there will be

no real solutions when the orbit considered does not enter the
shadow cy]ihder. Two distinct roots are found when the satellite
enters and leaves the Earth's shadow together with a pair of
complex conjugate roots. There are several numerical approaches
that readily lend themselves for computatidna] evaluation of

- the quartic. The iterative process of Bairstow (Buckingham, 1962)
is particularly suitable for the quartic involved here, as

there will be at least one pair of complex roots, and Bairstows
method is one that separates the quartic into two quadratics
which can be individually tested for real solutions, and thus

the eccentric anomalies of the shadow entry and exit points may
be evaluated. In theory, once these solutions have been found
the computational process should require only a few iterative
steps to find the shadow phase for the next revolution. It

will be necessary to re-evaluate the coefficients of equation
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(3.4) for each orbit and this involves quite lengthy

computational time.

Naturally the required accuracy can be obtained by this
method, but the solutions so found will be for the approximation
of the shadow cylinder, which does not take into account the
penumbra and refraction due to the Earth's atmosphere. Any
improvement in accuracy that might result from the solution
of the quartic will be lost by the neglect of the penumbra and

refraction effects.

In a paper by Lala and Sehnal (1969), an attempt was made
to include the effects of the penumbral region in the shadow
model. This was carried out by introducing a discontinuous
function that is zero while the satellite is in shadow, and
equal to unity while in sunlight. This function was expanded
as a series and its product was formed with Lagrange's

planetary equations.

The shadow function introduced by Lala and Sehnal was

r ,- 2r

P(x) = 21 +sin x £ (-1)7 (7F) cos®"xy L (3.5)

r=0
where x is the geocentric angle between the satellite's
position and the exit or entry position of the shadow, assuming
a spherical Earth and an ideal shadow cylinder dependent on
the position of the Sun and the orbital elements. In equation

(3.5),



The number of terms chosen for the summation of the above
series should be selected so as to optimise the simulation of

the penumbral and umbra] regions.

There are several expansions of functions that can fulfil

the required conditions. For example

T(x) = 3{T+sgn(x)} , (3.6)
where
sgn(x) = - 3, L1, (x)
mrE0 apyy erdl

and T2r+] are the odd Chebyshev polynomials given by,

1

Tops1(x) = cos{(2r+l)cos” 'x}

When functions such as equation (3.6) are employed, and
the products with the Lagrange Planetary Equations are formed,

it is necessary to express x in terms of the orbital elements

for the satellite.

To Sun

b Satellite

Fig. 6.




From Figure 6, if x=a-g < 0 then the satellite is in shadow,

where o and g are given by,

cos o = S(8) =S cos 6 + T sins , (3.7)
and
. Re
sin g =— (1 + e cos 8) , (3.8)
P

P being the semi-Tatus rectum of the orbit. 1In the example
using the function given by equation (3.6), it is not possible
to separate the argument & from the inverse trig function once
x has been substituted. This leads to unmanageable equations

that require integration,

Lala and Sehnal expressed equation (3.5) in terms of
orbital elements by employing equations (3;7) and (3.8), but
neglected to give the coefficients of the ensuing series. The
development of these coefficients is now briefly outlined.

The series fﬁom'equation (3.5) is truncated to my terms and

written as,

ml . 2s5+]
Pm](x) = 3(1 + sio A; sin X) (3.9)
where
s m] r ,-i.,r
= (- -1 2 . 3.10
As = (=17 I (DT () (3.10)
Now

)25+1—1

a2stl Bty (253 (in o cos g (cos o sin g)’

si . i
i=0 !

which may be re-written as a sum of eyen and odd multiples of

(cos o sin B),



i=0 21 "p=0 g=0 o} q
8 COS2p+21 s1.n2q+21'B
S —.i -. - .
2s+1,37" s=1 p+q ,s-1,,5-1
-z . z ) -
i=0 (21+1)p=0 q=0 (-1) ( p ) q )
x C052p+21+]a sin2q+2i+18 .

The accuracy of the series for I, while depending on mp o, Will
also depend on how many terms (m, say) that are taken for the
double summation to infinity, above. The odd multiples of

(cos asinp are summed over i,p and q . For uniformity dne may

consider the double summation over p and-q to (s-i) as being

infinite. This is feasible as the notation (551) is zero by
definition when p > s-i , s0 that p may exist as p=0,1,2,...» .
rm1 is now written as

r m s m2 mz

P03 x5 AL (-1)P*

2s+1,,s-1,,s-1 2p+2i+1 . 2q+27+]7 ]
cos sin } ,
GrEhegh . 2

which may be re-arranged in the form

=
—

et
o

)

mg mp a b
é[] +a£0 bEO Cup COS o sin B} , (3.11)
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where
Cap =0 5 for a+b odd, (3.12)
b .
M v/4 CRANNPY . .
= 3 A 3 [(-1 2 SHUTCRNE 5‘”%], 3.13
oo s ik, ) ( AL b ) ( )
for a,b both even,
-2
yo< a+b
m 4 B CAALD B YO DA S
-IoA T (12 I TONP] INER TS
for a,b both odd.
In the above v is given by,
v = 2a when b > a
or
v = 2b when a >b ,
and
a' = a-2i , b' = b-2i ,
2 2
a" = a-2i-1 , b" = b=-2i-1
2 2
T can now be written in terms of the orbital elements of the
mym2

satellite, the inclination of the ecliptic and the ecliptic
longtitude of the Sun. On substituting for cos a and sin g

from equations (3.7) and“(3.8), equation (3.11), can be further

manipulated to give

m ._ . 3
r (x) = %mg % Aij cosd 1o sin'e . (3.16)
mim i=0 j=1
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For i+j > O

ii =My oo

and when i+j = 0

=]
1
>

‘00
where

1 m2 m2
A..:. x T C

b Jj-a ~.a-i -1 ,a,,b
Re/ e S T X
157,50 5 tar (Re/P) (5 (5-4)

j-a

At this point Lala and Sehnal formed the product of
Tm]mz(x) with a generalised form of equations (2f1)—(2.6),
after expanding (1 + e cos e)_], which occyrs in all these
equations apart from equation (2.1). The resylting formula is
in terms of integer powers of cos & and sin & which are
converted into multiples of the argument. This equation can
then be integrated with respect to the truye anomaly, or with

respect to the mean anomaly if Hansen coefficients are used.

It should be noted that, while this method does not
require the external eyaluation of the shadow boundaries, the
computational time for the evajuation of the coefficients Aij
is rather excessive. There is an advantage in the method, in
that it is possible to simulate the penumbral region of the
shadow, but this must be compared with the disadvantage
resulting from the termination of the series approximation to

the original planetary equations, required to facilitate

integration.
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Returning, then, to the function given by Lala and
Sehnal, it is of value to discuss another form that the
expansion could take. When L&7a developed the shadow
function by employing Fourier analysis, it was possible to
take the summation to a relatively Targe number of terms
without an excessive increase in the computational time, but
this did not give the necessary improvement in accuracy
required to simulate the shadow phase. This was due to the
resulting Gibb's oscillations that allowed T to take values
greater than unity and less than zero. The use of Fourier
series here would greatly reduce the time involved on the
numerical evaluation of the series coefﬁcientsf Now the

Fourier series for r is given by

r(x) = & C exp(jkx) |, ),

k=-a

where jzf: ~1 . Truncating the resulting series to N terms

gives,

sin(2k-1)x
1 2k~1

1 2 N
o = = § —- I for ~m < x <7 . (3,17)
I‘N(X) 2 P ‘ '
The rate of convergence of this Fourier series can be
increased by reducing the amplitudes of the Gibb's oscillations.
This may be performed by finding a suitable series of

coefficients, oy, that will have a smoothing effect on these

extraneous variations. Let the smoothed, truncated series

of equation (3.17), be given by




N N T/N
z J I‘N(x+t) dt

21 k=-N - /N
= — ¢ — exp(jkx) sin(&ZL) .
™ k==N Kk ( ) (P!)
Then,
o = o sin(%
so that
.k .
_ 1 2 ) N S‘”(TT) sin(2k+1)x
r (x) = — +-—[s1n X + I } . (3.18)
o 2 k=1 km 2k+1 '

Figures 7 and 8 show the comparison of the three
series expansions of the shadow function for two values of N.
Here it may be seen that fewer terms than the Taylor's series
are required to arrive at a suitable approximation to the

shadow phasé.

The substitution for x, in equation (3.18), for terms
in the true anomaly is carried out in the manner suggested
by L31a and Sehnal for their shadow function. The product 1is
then formed with the general expression for the planetary

equations that arises in equation (7) 1in their paper.

An attempt to reduce the computational time was made

by introducing equations (3.1)-(3.3) to the program. This

allowed a step by step search along the orbit to find a

point 59 from the distinct boundary defined by the shadow

cylinder. During this time the function T was taken as
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equal to unity. When the shadow boundary had been found, the
theory developed from equation (3.18) was used. This removed
the unnecessary evaluation of the lengthy coefficients needed
to define I, when a complete orbit is sunlit. The number of

terms, N, chosen for the summation for 1‘O was selected so that

TO would equal unity at the point 5° from the boundary of the

cylindrical shadow,

This process was applied to the satellite 1963-30D using
the same initial data as Aksnes (1976) to predict the changes
in semi-major axis and eccentricity over a period of 200 days.
It is necessary to increase the value of N until &a and se are
zero during the shadow phase of an orbit that intersects the
Earth's shadow. The residual differences between the reéu]ts
found in this way and those computed by Aksnes were found to
be relatively large. This was felt to be due, in part, to
the effect of neglecting the change of orientation of the orbit
with respect.to the Sun. It is not possible to allow for this
motion in the continuous theory of the shadow function, . The
variation in S,T and W due to the Earth's orbital motion can
be approximated by assuming their variation to be Tinear
between shadow exit and entry. This may be done by taking the
Tinear rates of change of S,T and W during the orbit previous
to the one considered, and applying these rates to evaluate
the new values of S,T and W at the next shadow intersection.

This can only be applied when a discrete method is employed to

evaluate the changes in orbital elements.

It should be noted that it is difficult to ascertain to

what degree the choice of N, (mp and mz for Lala's function)
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simulates the penumbral region when the main criterion for

this choice is that N should be as large as the computational

time will allow, in order that the regions where the orbits do

not enter the shadow, do not lead to spurious results for ¢a.

The step by step method that is employed in the analysis
of Section 6, is the utilisation of equations (3.1), (3.2) and

(3.3}, If the condition represented by the third of these is
2T

100
two conditions are satisfied. Then the step length is

not met then a step length of

is used until both the first

progressively halved until the shadow entry angle is found to
within a 1imit of 0.001° (2 x 107° rads). The process is then

applied to find the exit point of the shadow.

The effect of the Earth's flattening can be readily
included in this algorithm, but it has not been possible to
model the effect of the refraction of Jight by the Earth's
atmosphere. 'This, and the effect of the penumbral region of
the shadow can only be accurately included when visual timings

or photometric obseryations are available for the shadow

boundaries.



4.

DEFORMATION OF A SPHERICAL SATELLITE

INCLUDING THE EFFECTS OF DIFFUSE RADIATION

An effect related to direct SRP that was not included
by Aksnes was that of a component of radiation pressure force
acting normally to the Sun-satellite line. This is a consequence
of the departure of the satellite's shape from that of a sphere.
Aksnes suggested that the inclusion of this effect might be
feasible and possibly valuable. This is now investigated along

the Tlines of the exact development provided by Lucas (1974).

The components of force due to direct SRP on a prolate
spheroid have been defined in terms of satellite orientated

coordinates. A .
S To Sun

ATING PROLATE SPHEROIDAL SATELLITE. F16. 9.

NON-ROT
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The Sun-satellite line is taken to be in the X Z -plane
s”s i

defined in Figure 9.

In order to apply these components to Gauss' form of
Lagrange's planetary equations, it is necessary to define
this force in terms of the direction cosines, along the

Earth-satellite radius vector, r, perpendicular to r in the

| —>

orbital plane and along the orbit normal, i.e. along S,

and W defined previously. Suppose, therefore, that

é\ A
I» ) RS,E ls
ul Zs

where Ry & is a rotation matrix defining the rotation of axes
b

from the satellite centred system, to the geocentric set of

coordinate axes. RS . can be defined in terms of the direction
9

cosines of ré. Thus,

= Rg(u) Rp(i) Ra(2) Ri(-e) Ra(s2) Rap(-8) Y.

I1=> |—> v

1, m nm COoS A -sin A, 0

sin A COS €, COS A COS €, -sin e

= | 12 m N2
T3 m3 N3 sin A sin e, COS A sin €, C€OS ¢
X
Z
)

i
W
(@)

|}



where

11, = cos @ cos u - cos i sin @ sin u

b

mp = sin © coS u + cos 1 cos Q sin u

b

ny = sin 1 sin u

1, = ~cos @ sin y - cos i sin Q@ cos u

my = = sin @ sin u + cos i cos @ cos u
n, = sin i cos u
13_‘:‘ sin 1 sin @ >

m3 = - sin 1 cos @

ng = cos i .

After some manipu1ation, this reduces to

S Ay A Ais\ [ X
I = Ari Azp Ags Y
W As1 Asz Ass L

Here the matrix elements are given by,

Ay, = - S(8) cos &g + (my ;in e - np cos g) sin 6
Ay, == 1p sin A+ M cos A €COS e + np COS A sin ¢
Az = - S(g) sin 6, = (my sin ¢ - ny €OS e) cos 6
Ay = - T(6) coé o, * (my sin e - Ny COS e) sin 6
B, = = 12 sin A + My COS A cos € + Ny COS A sin e

Aoy = = T(8) sin 6, - (my sin e - np COS e) €Os 6

Ay, = - W cos 8 + (m3 sin e = nz COS e) sin 6.
| in 0s A COS g + nz COS A sin ¢
Agy = - 15 sin X + M3 coS. 3 .
= - i - (m. sin e - n3 cos g) cOS © .
Ayy = - W sin 8g - (M3 s
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It is noted that 5(6), T(8) and W are the functions defined
by equations (2.7)-(2.9), and that the component of force

in the Y_ direction is zero for both incident and reflected

radiation acting on the satellite.

It may be possible to retain the standard form of Gauss'
equations, (2.1)-(2.6), and substitute expressions dependent
on S(e6), T(6) and ¥, to obtain equations that can be
analytically integrated, without recourse to numerical methods,

which was suspected by Aksnes.

Lucas showed that the force due to reflected radiation
is zero for a spherical satellite, as should be expected, and
confirms the expression for F used by Aksnes. This expression
~given by Aksnes employs the factor o, which in practice 1is
taken as slightly greater than unity, in order to estimate the
effect of diffuse radiation from the satellite's surface.
Lucas neg]ecfs to develop the components of this force, but
suggests that this would be possible by treating diffuse

reflection in the manner developed for specular reflection.

First, the expressions found for radiation incident on
and reflected from a prolate spheroid are given, Lucas (1974)

equations (51), (52), (53) and (61), from which

2 2 . 2 . 2
Foo - mal ded) V1] sin’ey)

A

X (COS es 'Z(-S + sin es Z‘S) (4'1)

and



- 2
ER = P ﬂas R. (P

where e, 1s the eccentricity, a_ the semi-major axis of the

spheroidal satellijte, R, is the fraction of incident radiation

reflected specularly and es is defined in Figure 9. Now

substituting

(el
1]

2 2 .2 2
1 V(1-el) v(1 - eg sin“6_ ) + R.p, 3 (-P ma_)coso,

()
1}

2 2 . 2 2\ -
2 {/(1—es) /(1 - e, sin es) + Rspz} (-poﬂas)smeS

it follows that

Fp+Bp= (G X5+ Gy Zg)
= 10 (A S # Ay T4 Agy K)
+ Cyp (R3S + Ayg T+ A3}

Grouping components, substituting for the elements of the
rotation matrix developed earlier, and rewriting the result

in an ordered manner leads to

FS = S* cosB + T* sing , (4.3)
Fpo= T cos® - S* sin® , (4.4)

o , (4.5)
Fu W

where



with

St

T

w ]

1]

(sin

- sin

(cos

- COS

- (si

‘o : :
] €os 0.4C, sin 8,045 (Cy sin 6 -C, cos 6.) » (4.6)

cos o_+C i i
. stlp sTn 8. )+T'(Cy sin 6.-C, cos 8.) ,» (4.7)

cos i ‘ i
: ¢*Cy sin o )+W'(C;y sin 6 .-C, cos 8.) , (4.8)

w €COS £ COS i + CO0S w Sin Q) sin e

w sin 1 cos e

w COS 9 c0S i - sin w sin Q) sin ¢

w sin i co0sS & ,

nisine cos Q + cos i cos ¢)

S, T.and W have been defined on page 9, and for uniformity

and overall éeconomisation of computer space, S' and T' are

written in the form

{Tl} =

sin e [t (n) = 517G (o-0) |

in i cos e 51" w
sin 1 ¢C € lcos °
For a spherical surface e =0, Cy = “Poh cos o and

-P A
0

sin 8¢ therefore

' *
AS , T = POAT and W = POAW s
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which are the components expected and those used by Aksnes.
It 1s noted that the factor (a@/re)2 has been excluded in this

treatment; this is for brevity only and is to be included in

practice.

When comparing these results with the components of
force given by Aksnes, it is seen that the direction cosines
are the same but as was noted earlier, PA, the magnitude of the
force vector, differs from Aksnes' value by the factor o,
which fequa]s a constant, whose value Ties between 0 and 2,
depending on the reflection characteristics of the satellite's
surface.f This can be misleading, particularly when o 1is
written in the form (2-¢) as previous authors have done.-Here
€ is‘the fraction of incident radiation absorbed by the
satellite. When defined so, it is fair to assume for a balloon
surface of high specular reflectivity that e has a low value.
Thus this would lead to a magnitude of force almost twice that
of the 1ncidént radiation pressure. If an incorrect
assumption was made for the satellite's sphericity then the
actual magnitude of force FI+FR would be represented by 2F;
which is true only for a perfectly reflecting plate, and not
for a sphere where the resultant force due to specularly
reflected radiation is zero. Therefore the value o should be

taken as unity when neg]ecting the fraction of reflected

radiation that is diffuse. This, as has been shown, was done

by Lucas Authors have assumed a spherical satellite and

attempted to allow for 2 diffuse component by trial and error

me thods It is then difficult to ascertain to what extent the

choice of o is an unwitting attempt to account for a contribution
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to the magnitude of force from reflected radiation, as a
result of deformation of the assumed sphere, together with
the estimate for diffuse radiation. Aksnes took ¢=1.105 for

1963-30D and Slowey (1974) took values of ¢ between 1.068

and 1.12 for this satellite.

Therefore, it seems expedient not to include such an
approximation when considering a prolate spheroid as it is
conceivable that some fraction of the effect of FR will be
incorrectly included twice. Before it is possible to
discriminate between the differing effects of these forces it
is necessary to have knowledge of the parameters defining the

satellite's shape and reflective characteristics.

Diffuse Radiation From The.Surface of a Sphere

The effect of diffuse radiation for the case of a sphere
is considered first. A set of Cartesian coordinates is defined

with Z directed towards the Sun and X,Y forming the right-hand

set shown in Figure 10.

Fig. 10.



The fraction of incident radiation that is diffusely reflected
is taken to be Rp and this radiation is assumed to follow

Lambert's Taw. That is, it is assumed the amount of light

from a point source, falling normally on unit area of a surface,
per second, is inversely proportional to the square of the

distance between the surface and the source. If the normal
to the surface makes an angle & with the direction of the

rectilinear path along which 1ight is taken to travel, then the

illumination is proportional to cos @.

The force on elemental area A due to diffuse radiation

is
GED = —RDPo sin ¢ A n ,
where

n = (cos és COS Ag» COS 6¢ SIN Ags sin ¢.)

Integrating over the sunlit half of the sphere for each

component results in,

n/2 27

2 . . 2 -0
EDX = 'RDPorS i é 6s1n b COS "¢ Cos A dxs d¢s 0
TY/Z 27\'. 2 . _
EDY = —RDPOrg J é és1n ¢ COS ¢ sIn A dxs d¢s =0
Fo7 = R rl k£ ssinteg oS g drg dog
B ' 0 0

and therefore
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It is noted that

—n
1
w [ro

RD x (Force due to incident radiation on a sphere)

Diffuse Radiation from the Surface of a Prolate Spheroid

For a prolate spheroid, the set of axes chosen are such
that the 0Z-axis is in the direction of the satellite's major
axis (ZaS) with the satellite-Sun vector in the OXZ plane,
making an angle s  with the OX axis. rg is a unit vector in

the direction of the Sun, and n the general unit vector normal

to the surface.

To Sun

Fig. 11.

From Figure 11,

2,2
' - .9
(X,Y,Z) = {ug €OS Ag> ug sin Ag» a /(1 ug/b o)} (4.9)
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and

Lo = €05 6 1 #sinog k . (4.10)

b being the semi-minor axis.

In general terms the surface area of revolution of the

complete spheroid is given by (Courant, 1937).

27 Ymax iz 2
A = 6 6 u /{1 + (EE;) }odug dag
where
Ug dUS = -(b. /a_) z dz
and
2 2 2.2
- ag (ag - esz’)
1 + (__dZ 2 = s
dug - bgzz
so that

2.2
A = -/(1-ef) 1 H(a - e2®) dz g

The 1imits of integration for the general sunlit area of the

spheroid are given in two parts. The boundary of the sunlit

area on the spheroid is defined by r .n=0 .

Referring to Figure 12, it is seen that

% T el - efdf 11
A, = sa-edy i Sag - egzt) g dzo (8 )
n -
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CFig. 12,

Projecting the vectors, from Figure 11, associated with the

diffuse radiation forces onto a unit sphere, Figure 13, it is

seen that,

(cos a  COS Ag» COS ag sin Ac» sin ag) (4.12)

1=
1t

so that

. ; .
COS o cos Ay COS g, T SIN g sin 6 (4.13)

=]
h

i}

cos B¢ -
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From equation (4.9),

—d——z- = - 'asus s
2 - ye
dug b /(b2 - uf)
and therefore,
dus . . ‘bsz o
tan ag = =77 T . (4.14)
dz a /(az - 22)

On substituting for terms 1in o into equation (4.13) and

equating the result to zero,

2. .
/(al - ;%) cos A, cos B * 2/(1-e2) sin o = 0, (4.15)
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so that with Timits of integration for the area A2 of

Figure 12 giyen by z=(-q; :
given by z=(-nin) and A =(-v_ »y )s Where vy, 1s a

function of z given by equation (4.15) for A =y,
: S

cos vy = - : (4.16)

In addition noting that z=n when y =r, equation (4.76) then

~giyes
n__._...as cos b -
/(1 - el sinZe)
so that
, pon¥s o 22
A, = /(1-es)_£ _i /(aS - e z7) dig dz . (4.17)
- .

Combining equations (4.11) and (4.17), and using the same

simplifying notation as Lucas,

A = A1 + A,
, 2 2.2
= /(1ae§)'s][ V(ag ~ &gz )] .
Now
GED‘= —RD PO'(ﬁe.ﬂ)GAﬂ s

and from equation (4.14)

, 2 :
Fp = -Rp Py (1-e¢) S][ zn cos By COSEC dg ] R
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so that separating the components gives,
CFoy = <Ry P (1-e2) i s
px D o s) 15| 2 cot ag COS A, COS B >

C o 2y .
EDYA— “Ry Py (1-eg) 4 Sq} z sin 2, cot o  cos 8 ,

. o 2
EDZ = -RD PO (1~es) k S] Z cos B ]

The double integrals represented by Sy may be evaluated

using results deriyed by Lucas. They are now

v o . cos 6 )
EDX = —RD PO (]-es) i — S][ z cosec o COS as—
+ sin 6 82[ Z COSs o sin Y ] -

Epy =0,

: : ' 2 R .
fDZ = —RD Po (1—es) k H:Z cos 6 52[ z cOS a. SIN v J

4+ sin es S][ z sin a ] iﬂ s

Sz‘ Z COS a Sl“ 'S f Z COS as Sl“ Y dz o

It is now necessary to evaluate the three integrals that

were not found by Lucas. The 's' suffix will be dropped

during this eyaluation.
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In the notation of Lucas, the integrals are:

I: S ;
» | Z cos a. sin Ys} )

IT: 31 z cot ag cos “s] R

ITI: 51 Z sin asJ

/(1 - ezsinze) n oz

/(n2—22

S Z COS a_ Sin vy S
2 l-: > S} cos 9 -n /1

)
22-62,2)

dz.

Since the integrand is an odd function of z, the integral

is zero, and therefore

32 [z cos ag sin YSJ = 0.
IT.
P dz + I
CosS a = [ [ f(z) dx dz +
S] {% cot Qg s] No- i

¥
I f(z)
Y

dx dz



Here, f(z) = z cot o cos o , and generally

a
51[ f(z) ] =2m ] f(z) dz + 2 |y f(z) dz
n -y
Let
F(z) = [ f(z) dz ,
so that

s][ f(z).]jz zﬁ[ F(a) - F(n) ] 5 2[7 F(z) ]” -2f F(z) dy
.

The integration Timits are defined so that when z =mn, v = 7

and for z = -n, v = 0, therefore
m
s [ fz) ] =2 Fro) - 2 g F@) &

For this case,

| | 2 2
F(z) = /J z cot o« cos a dz =.3J"(a' 2_} dz
5] y(a2-e252)
2 - .
salatg -1 sin'1(%§) s 2 J(a% - e%2%)
b | e 2¢? 2¢
and
2
2 - 2
fay < 2| 2 - L sinTle) v P e )}
' b | e 2e 2e
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It is now required to evaluate

m a3 1 m
[ F(z) dy = = (1 - _2) r s1n-](3§) q
0 be 2e 0 a
™
+-—i§ S z/(a2 - e222) dy
2be 0

Suppose that f(z) is any odd function of z and that
z = g(v) where g(m-v) = -g(v).
If f{g(yv)} = G(y) say, then

G(m-7Y)

fi{g(m-v)}
= fl-g(v)}
= -f{g(v)}
= -G(Y),

and hence

J f(z) dy = { 6(y) dy = 0.
0 0
in”1 (&2 2 2,2 th odd functions
Now sin ' (5~) and z/(a“ - e“z") are both o

of z, and

_ a CoOS Y s

/{(1-e2)tanze + cosZY}

from equation (4.16).
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Thus g(y) has the property stated and it follows
that
™
-1,ez
J sin (=) dy =0
a
0
and
™
[ z/(a2 - e222) dy = 0.
0
Hence
S. |z cot a_ cos a - 2ma E?(]- L ysinTl (e)+ at J(1-e%)
! s 3 b e 2e2 2e2
ITI.

a i r] ‘Y .
S1 [z sin “s] f [z sin o dX dz + [ [ z sin o dX dz

n -m -n -y
™
= o2m F(a) - 2/ F(z) dy
0
where ) )
/(az-e z7)
2 a2 -1,ez yA 2.2
= ﬁgtflj 2 sin () - 5/ (a"-e"z )
e2 2e
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and

2 2
/(1-e%)| a -1 2
F(a) = a 2
(a) 5 sin (e) - 5 Y(1-e%)
e 2e
The integral of F(z) is
ﬂ 2 2y T
R(z)dy = 3 /0-27) osinTT (&) dy
2e3 0
/(1-e) 2 2.2
f z/(a” - e"z7) dy
2e2 0
which is zero, as before, and therefore
2 2 2
sy [z sin o] - 2L sin”l(e) - 2 /(1-¢%)
; 2 - 2
e 2e

The two components for diffuse radiation are now given, viz.,

2
R.P.a- V/(1-e .
o RoPors TUTES) g | n(zel < 1) sinT (e
—DX 3 s
2 e,
2
+ﬂes/(1-es) ] (4.18)
RDPan V(1-e) in ) - me V(1-el)| k
Fpz =~ 3 sin 6 msin (&g s s
e
S (4.19)

- 54 -




The components are now expressed‘in terms of the yectors

S, T and W for substitution into the planetary equations
(2.1)-(2.6),

CEp e Epx v Epr 2 FpxirFp k

Fox(A113 + Az T + AziM) + FDZ(Aiaé s Ayl + Agsd)

(Ay1Fgy + AuafpplS + (RarFpy + Aasfpy)l

~

These three components can he expressed in terms of S* , T#
and N* by replacing Cy and C, by Fpy and Fpz » from equations
(4.18) and (4.19), into equations (4.6)-(4.8). Here,

__ Do
Fpox =~ 2 e3

2 el |
RGP, mag cos 05/(]-65)[ (2e§ }

and
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-3 .
The presence of €5 Th equations (4.20) and (4.27) suggests
that the components could tend to infinity as the eccentricity

ache | .
approaches zero FDX and FDZ can be developed as a power

series in terms of e noting that

2 4 6 8
e e 5
J1-e?) =1 -2 sl S s
2 8 16 128 ’
2
2 3 e et &b 368
<]_es) = ] -+ — + ——§— + —~ ¢+
2 8 16 128 ’
and 3
y ed 3ed sel 35
sin (es) = e  +— + + > 5.
6 40 112 1152

Substituting these series ihto equations (4.20) and (4.21),

and performing the multiplications that occur, Teads to

2 .
Fp = = RpPy mag (ay cos € 0, 4, sin o)
where
2 4 6
16
gé-;ffé-ffiﬁ]_f_i-.o. . (4.22)
"3 75 21 315
and
2 b gef
-E_fi?_+ie_§_+ S e (4.23)
9773 5 35 315

‘ ati .20)-(4.23
Therefore when e . = 0, from equations (4.20)-( )

2 in ©
RpPo ™ (cos eg» 0s S s/

wiro

which is tﬁe result expected for a 4iffusely radiating sphere.
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The effects of incident, specularly reflected and
diffusely reflected radiation on the motion of a balloon
satel]ite, can now be evaluated separately or together. This
can be achieved without making any alterations to the

integrated form of the planetary equations derived by Aksnes.
In summary the result for the combined effects of the

different radiation forces acting on the satellite are now

~given. Let this total effect be expressed by,

C

A RTINS PR
where
2 2 2 .2
CTT = - P, mag cos 6 [{(]-es) /(lﬁes sin“e.) # RePy + RDq%]
and
2 . 2 2 .2
CTZ = - Po.ﬂas sin 6 [?(1-e§) /(1-eS sin es) + Rgpy # RDQ%} .
T and CT2 are expressed in series form as,
2R R 4R
2 Dy _ 2,1 .S, _D
CT1:_P0 ma, COS B¢ [(1“* 3) s {(2 6 ¥ ]5)
1 .2
+ g(3-RS) sin”e .}
R 2R
4..,1 .S . 2Dy _ 1 5-5R sinze
- el UGt o) 73 675Rs) s
1 5. . 4
+ —(2 RS) sin'e.}

16
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6, R 16R
S s S
16 48 315 18

- . 2
(3-Rg) sin“o,

1
16

4

- - . '] .
(1-Rg) sin'e . + 56(5,3RS) s1n6es} } ,

and

1,5 . 4
+ 16(2 RS) sin es}

1 . 4 1, . 6
- EB(S-RS) sin 6, + 56(5 3RS) sin es} }

C and C may now be substituted into equations (4.6)-(4.8)

T1 T2
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5.
EARTH REFLECTED SOLAR RADIATION PRESSURE

The amount of solar radiation reflected from the Earth

that affects an Earth satellite is investigated.

The albedo, a5 of a surface is defined as,

3 -;'radiant'energy'refTeCted
b.

radiant energy received

The radiance of the Sun is defined as the flux radiated
by unit surface area of the source in all directions. If
lTuminance is the same in all directions then it can be said that
the source radiates according to Lambert's Law. The Tuminance
of a source, in the direction considered, is its intensity per

unit area of apparent surface.

The solar energy flux, I , at one A.U, is taken as a
constant value. Such disturbances as sunspots, solar flares,
whilst causing large variations in flux in such regions of the
spectrum as the cosmic, gamma, X-ray and radio waves, have

negligible effect on the total flux.

Solar flux varies inversely with the square of the

distance from the Sun, and therefore the flux incident on a

planet will change as its orbital position changes. The solar

cdnstant has been measured as I0 = 1396+3.4% Joules per sec.

per sq m.; the area here refers to the projected area. The

albedo flux is generally taken as varying with the cosine of

the angle between the direction of the normal to the surface
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and the Tine joining the centres of the Sun and the planet.

If ¢ is the velocity of 1ight then I,/c is the force
of solar radiation on unit area at a distance a, from the

Sun, a, 1s the mean distance of the Earth from the Sun,

so that

Lo (a,/r,)°

is the force per unit area at a distance o from the Sun.
Albedo flux is also assumed to be diffuse, that is each ray
of solar radiation is reflected and backscattered in all
directions. From observations for differing atmospheric
conditions and latitudes it is found that the mean a]bedo is
approximately 0.35, but this can vyary by upto 50% for extreme
conditions of clear and overcast skies, (Slowey, 1974).
Prior (1970) determined the approximate effects of albedo by
considering.-only the radial component of force when the cap
of the Earth's surface that is yisible to the satellite, is

comp]ete]y"sunWit. STowey (1974) allowed the albedo to vary

for four seasonal models.

The radiation force acting on the surface of the Earth

is,

Fy = I x (apparent surface area)

A set of Cartesian axes, dependent on the instantaneous

position of the Sun and satellite, is shown in Figure 15,
where

% - ynit position vector of satel]ite from the Earth's

centre,
_62_



i@” unit position vector of the Sun from the Earth's

centre,

(Res &5 ¥) are the polar coordinates of a general elemental

area of terrestrial surface, restricted to 1ie within the bounds
of the Earth's surface that is visible from the satellite.

This region will be referred to as the visible cap. The vector,
d, defines the position of the satellite with respect to the

elemental area, and n is the unit normal to this element.

Sate]1ite

Fig. 15.

The model assumes: (1) that the Earth can be

' th' an
replaced by a sphere of radius equal to the Earth's me

radius, Rp = 6378.140 km; (ii) that the mean solar constant

6 -
is equal to 1.395 x 107 erg cm
to 0.35; and (iv) that the satellite retains

2 Sec; (iii) that the mean albedo

of the Earth 1is equal
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a spherical shape.

The visible cap defines a solid angle that is dependent

on the angle o, shown in Figure 16, such that

o = COS (Re/r) - (5.1)

|
| /]
IR
oyl
/ |
) — '—!_"-~l\
~
l(. i I I Satel]lite
A r
"Visible'Cap Fig. 16.
s is 27R.x = 27R% (1-cos a) It
The area of the yisible cap TR EX e ) .

should be noted that the amount of the visible cap that will

be sunlit is dependent on the value of r.r., and is discussed

later.

Now applying the sine and cosine Taws to Fgure 15

results in

2
d2 = r2 + Rp - 2rRg cos v
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L7 0%
= -Rp sin y cos ¢ i‘ - Rposin y sin ¢ 0o+ (r-Rp cos ¢)£
and
sin g, ;‘r's;n v
Thgfefore
cos 8, = (r cos y - RE)/d R

and from the spherical triangle A A A4

cos 51;: cos y cos § + sin y sin § cos(n/2 - ¢)

In terms of polar coordinates the elemental area may be written

as,

2

AS, = RE

sin ¢ 8¢ 4y o
If « is defined as a factor dependent on the reflective
characteristics of the satellite and the satellite's surface

area, then the force acting on the satellite due to reflected

radiation 1S,

Foo=axl /] cos Bq C€OS B, d 85
sunlit area —

of visible cap
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2

_ abKIRE ?2 ?2 (r cos W‘RE)(COS~¢ cos §+sin y sin & sin ¢)

(TR

(V2+RE~ZFRE cos ¢)3/2

x d siny do dy (5.2)

where w], Yoo ¢] and ¢, are dependent on the orientation of
the visible cap with respect to the Sun. These limits of
integration are now developed for four separate situations
reliant on the relative magnitudes of § and o. It is assumed

here that the threshold of light and dark can be defined by a
distinct great circle drawn on the Earth's surface.

(a) (8-a) > w/2 : The complete visible cap is in darkness,

therefore F =0

(b) (8+a) < w/2 and § > 0 : The visible cap is totally

sunlit so that the limits of integration for equation (5.2) are

y = (0,a) and ¢ = (0,2m)

Satellite

—+#  T0 Sun

yisible Cap Totally Sunlit

Fig. 17.
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(c) (5‘a)'i n/2 and & > /2 Here the visible cap is

partially sunlit and the centre of the circular boundary is
within the Earth's dark hemisphere, To evaluate the limits
here it is necessary to consider the three spherical triangles
B B

]BZ 3 818385 and 838485 shown in Figure 18.

® Satel]ite

.i. A

/——-——D

o

s

| =>»

' ?* To Sun

Fig. 18.

~From Figure 18 the limits are

o = (§-71/2,0) and ¢ = (¢'sm=9")

=

P - 67 -



where b= f i '
¢ (y). Considering the spherical triangle 818283,

——

sin(B.B,) = cos 4

3 sin ¢ , (5.3)
the spherical triangle B 5335,
sin(BB,) = 2100 v) (5.4)
sin(s~n/2)
and using 838485,
“sin(¢' sin si
e siny) g0y (5.5)
sin ¢ 1
Now from equations (5.3) and (5.4)
sin(¢' sin y) = - 05 $cosd
sin ¢ ‘
therefore, from equation (5.5)
sin ¢' = - cot y cot ¢

so that the limits for equation (5.2) are,

11{) = (69\11'/2,(1)‘
and

—_

[sin_](ﬁcot y cot &), m- sin—](—cot y cot §)

‘9- .
n

-

i}

. =1
[— sin_](cot p cot &), mtsin (cot ¥ cot ¢)
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(d) (8+e) > 7/2 and 6 < 5/2 ; The visible cap is partially

sunTit and the centre of the boundary is in the sunlit

hemisphere of the Earth.

® Satellite

1=
P

Area 1
/’_—-‘>
C
v 3 S

| Area 2
| & g |
')

- ]L,’| \ To Sun

e "I -~

/2= ptsin ¢ C% -
~
— T —
| e )
e i
_ - g;\\¢u
— o) /
/
Cg 3
f|
“Fig. 19.

The sunlit area, as shown in Figure 19, is divided into two

areas. The limits corresponding to Area 1 are

v = (O,ﬂ/2“6) and ¢ = (O,Zﬂ) >
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and for Area 2,

Y = (ﬂ/z - &, @) and b = (m¢"’ — éu)

From the spherical triangle C]C4CS in Figure 19,

sin C]C4 = LO0s ¥
sin &

and the spherical triangle C]CZC4 gives,

sin C1C4 = Sin(e” sin v)
sin(n/2-5)

Now using the triangle 026364 gives,

sin(e" sin y) = sin ¢" sin ¥
so that the limits corresponding to Area 1 are,
P :}(d, 1/2-8) and o = (0,2m)
and for Area 2,

P o= (ﬂ/Z‘G, a)
and

b = [fsin"](COt p cot 8)s n+sin‘](cot y cot G)J

Fach set of 1imits 1S applied to the equation (5.2)

: mponents defined
after fa has been separated into the three comp S

by i.? ﬂ. and E From Figure 15. These components are now

given:
- 70 -



Y Sin & sin ¢)sin2¢ COS ¢

- 2rRg cos w)z

dy

v sin 8§ sin ¢)sin2¢ sin ¢

- 2rR 2

g COs v)

dy

g sin & sin ¢)sin v

F]'= - b E S (CO0S ¥ cos § + sin

' v (rz + RZ

' E

x {r cos V- RE) do

a, kIR . o

Fp = - b"" & , , (cos 'y cos § + sin
m

Voo 2 2

(r= + RE

x (r cos y - Re) do

F. = abKIRE (cos ¥ cos & + sin

3 I/
" Voo (r2 + Ré

- 2rR. cos w)z

E

x (r cos ¢y - RE)(r - Rp cos ) do dy

The terms cos ¢ and r can be expressed in terms of the

orbital elements of the satellite and

defining the Sun's position.
evaluated, noting that § and r

orbits, and the results of the doubTle

components of force, Fa’ for instantaneous values of &

the standard elements

The above integrals can be

vary as the satellite

integrals will give the

and

r. For the case (b), for a totally sunlit visible cap, the

components are,

Flo-o0 (5.6)
1
.3 .
a v - RE)sin”y sin ¢
Fl o= - agcIRY J (r_cos > ) S dv o (57
0 (rz + RE -ZrRE cos v)



and

o
FT - KIRE f {r cos y - RE)sin 2y CO0S §

3 b 0 , >
(r™ + Re - 2rRe cos ¢)2

x (r ~ Rg cos p) dy

(5.8)

For the 1imits defined by (c), the components are,

F?C - O H
d KIR3 o R
Pc _ b E (r cos v - "E)
FZ = - f .
" o % (r2 + Ré - 2rRg cos w)z
x [2 COS sin2¢ cos & /(1 = cot2¢ cotzd)
.3 . : -1,
+ sin®y sin & {cos '(-cot ¥ cot &)
2 2
~ (cot y cot &) /(1 - cot ¢ cot 6)}J dy , (5.10)
IR R R
FPc _ dpk e ? (r cos v - ‘E)(r - E cos V)
3 m é*g_ (rz + RE - 2rRE cos ¢)2

x [sin 2y €OS 8 cos 1 (-cot y cot )

2 2
+ 2 sin2¢ sin s /(1 - coty cot 5)] dy

Finally for the 1imits def
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ined in (d) the components are,



Pd

R (5.12)
Pd 78 R
= - 327 r cos y -
Fo Ay IRg é 2 ( : S b - E) sindy sin & dy
2
(r= + RE - ZrRE cos )
13
ca.klIR
B ? (r cos y - RE)
m T _ o (2 2 0
778 (r" + Rp - 2rRc COS )

X [? Cos ¥ sinzw cos & /(1 = cot2¢ cotzs)

+ sin3w sin 6'{cos-] (-cot ¢y cot ¢)

~ (cot y cot §) Y(1 - cotzw cotzé){} dy , (5.13)

3-8

Pd 2 (r cos v - RE)(r - Re cos p)sin 2y cos & dy
F .= abKIRE .6

(% + R - 2rR cos v)°

3

2 R
a,kIRE ? (r cos ¥ = Ry(r - "E cos y)

2
oLy (r2 + Ré - 2rRe cos )

x [%in 2y cos ¢ cos_](—cot y cot §)

2 2
+ 2 sin2¢ sin & /(1 - cot ¢y cot 6{} dy . (5.14)

Fach reyolution has been separated into four regions

(a), (b), (c) and (d) that have been represented by equations
a 9 E]

(5.6)-(5.14). These
s T* and N* so that they ma

E]

components are now expressed in terms of

y be substituted into the relevant
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equations for the rates of change of the orbital

elements.
Generally, for any of the four regions, let
- ot Al ~
Then from
* e * ~ * N
S :-S-.'—F-a’ T =T.F, and W =W.F.
*
S =F3 ’
T = F, cosec s T(8)
and
* .
W = F2 cosec § W
2 2 -2 .
The term (r- + Rp - ZrRE cos ) appears in all the non-zero

components and may be expanded by Taylor's series, to facilitate
the integration of these components with respect to y. The

convergence of this series depends on the magnitude of the

expression,

(2rRg cos ¢ - RE)/!‘2

and it was found that for ssual values of r and for 0 < < o,

the series conyerged in such a manner that it was necessary to

take at least 30 terms in the summation, in order that an

accuracy of one decimal place was maintained. An alternative

to this method is to resort to numerical integration.

This method requires @ step by step search around the

orbit so that the exit and entry points of the four regions

might be ascertained. The value of the components of force
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are assumed constant within each region for the orbit. After

the components have been substituted into the Lagrange equations

the double integration that results, requires numerical

computation, firstly with respect to v and then with respect

to the eccentric anomaly, over the limits defined by the bounds
of the relevant region. This was applied to the equations for

the eccentricity and semi-major axis, viz.,

“'da 2 . * 2 *
— |e sin E S + J(1- T ]
dE 2 (1-e”)

|

2

|
|

dE nla

so that it is possible to investigate the effect of Earth
reflected radiation pressure.on the perigee height and on the

orbital acceleration, n, from

When the satellite is within region (a) the rates of change of

the orbital elements are zero, SO that it will be necessary to

evaluate only,

when the perturbation of the mean anomaly 1is considered.

Figure 20 shows the calling structure for the program

units required to evaluate the perturbations due to the forces
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resulting from Earth reflected radiation. Descent of a

vertical line in this figure indicates the call of a subroutine.

INPUT

KEPLER

ALPDEL

l
| 1 ] 1

FINDA FINDB FINDC FINDD

1 ! 1 ]
I

STEP

ALPDEL

EXIT

DELM DQUAD

UPDAY

CHOUT

Fig. 20.

INPUT: Reads initial elements and prints this set together

with the values input for n, w and Q.
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KEPLER:

ALPDEL:

and

~of w, 2 and i

C . }
alculates the direction cosines from the latest values

together with derived values for A and e.

Evaluates g)from M0 =E + e

0 o Sin EO using the second

order iterative technique of Newton-Raphson.

Calculates the values of o and & in the range (0,u)

from

. SR
a_i = COS-l-| E
a(l - e cos E)

5 = cos—][ S(cos E - e) + T/(]—ez)sin E
(1 - e cos E)

FINDA,(B,C,D): Using a step by step Joop, this subroutiﬁe

- STEP:

DELM:

DQUAD:

eyaluates, to an accuracy of one degree, the entry

point of the region relevant to the present value

of E.

E. = E 4+ 2n and evaluates new values of a and 6.

170 100
Finds the exit point from the present region and assigns

this value to E1.

sM = - S [ 33 4u .
2 ] a

This routine is provided for the evaluation of the

d integrals of the form

repeate
b Y2(y)
f [ f(x,y) dy dx
a 9q(Y)
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The method is based on the repeated use of Gauss

quadrature,

This calculates the updated elements, allowing for
perturbations due to reflected radiation pressure
and allows for the effect of J, in 5, 0 and M. The

new mean motion is evaluated together with the new

epoch MJD + &%
n

The subroutine checks when the final epoch required
has been reached and outputs the variational results
at the intervals requested. These intervals are to
be not less than one revolution. The program
operation is returned to INPUT together with the

updated elements.
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6.

ANALYSIS OF THE ORBIT OF EXPLORER 19

i) Orbital Data:

The balloon satellite ExpTorer 19, 1963-53A, was
designed and built at the NASA Langley Research Centre in
order to obtain measurements of the atmospheric density.
Explorer 19 was Taunched on 19th. December 1963 into an orbit
of inclination 78.6 degrees, with a perigee height of 592 km.
and an apogee height of 2392 km. The spherical balloon with
a diameter of 3.66 m.,, had a mass of 8.069 kg. (Keating,
Mullins and Prior, 1970)

The orbit was determined at 60 separate epochs using
the RAE orbit determination program PROP, in the PROP 6
version. (Gooding and Tayler, 1968 and Gooding, 1974)
There were 2765 observations used, assembled from five sources.
The most accurate observations were those made by the Hewitt
Camera at Malvern, having an accuracy of about 2 arc sec. in
position and 1 m. sec. in time. Unfortunately these observations
were only available for seven of the 60 epochs, and comprised
only 2% of all the observations. The two largest groups

consisted of 1169 visual observations supplied by the

Appleton Laboratorylat STough and 1162 U.S. Navy observations

supplied by courtesy of the U.S. Naval Laboratory, the former

generally having an accuracy of within 1-3 arc min. and the

latter having an average accuracy of about 2 arc min. 1n

position and 1 km. in range. Of the epochs, 24 used important

data from the Southern hemisphere with 161 observations made by

the kinetheodolite at the Cape Observatory, accurate to 1 arc min.
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The fifth source was supplied by the Finnish Meteorological

Instituteand was generally accurate to within 3 arc min.

For the first time observations from the Appleton
Laboratory included Russian data. The accuracy of these
visual observations was of the same order as that generally

found for this type of data.

The 60 sets of orbital parameters obtained are
presented in Table 1, together with the standard deviations
below each value. The epochs chosen correspond to 0 hr. on
the day of determination and were selected so as to be
equally spaced every four days from 14th. February to the

7th. October, 1976 inclusively. There are no observations

O 1P SR IPY ARSI

k
overlapping from one epoch to the next so as to avoid the =
repetition of errors obtajned by poor distribution. -For

48 of the epochs the mean anomaly was represented by

Mt | A

~ 3
and in the remaining 12 orbits an extra term, Mat™ , was

required. The orbits fit the observations reasonably well,

with e, the parameter measuring the degree of fit, ranging

from 0.42 to 0.94 -

The values for the semi-major axis have standard

deviations in the range 0.4 m. to 8.2 m. and the standard

deviation in eccentricity 1ies between 0.000009 and 0.000042.

age standard deviations for the semi-major axis and
rag

and 0.000018 respectively. These

The ave

eccentricity are 1.9 m.
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e

figures correspond to an error of between 69 m. and 320 m.
in perigee height. The mean motion, M], generally accurate
to 1.2 x 10°% %, while the accuracy of the higher coefficients,
M2 and M3, depends essentially on the number of observations

used and their geographical distribution.

The epoch, measured in Modified Julian Days
(MJD = JD = 2400000.5), appears in the first column of Table 1.
The nine columns following contain the semi-major axis, a km.,
the eccentricity, e, the orBita] inclination, i deg., the
right ascension of the ascending node, o deg., the argument
of the perigee, w deg., the mean anoma]yAat epoch, MO deg.,
the mean motion, M]=n deg./day, and the later coefficients of
the polynomial for M. The final columns of Table 1 give the
measure of fit of the orbit by the observations, e, the
number of observations used, N, and the time in days. covered
by the observations, D. The orbits utilising Hewitt Camera

observations are signified with * on the left hand side of

Table 1.

Figure 51 shows the observed values of eccentricity

for the orbit of Explorer 19, given by Table 1. It would

appear that the value of eccentricity obtained at epoch 49,

MJD 43010.,0, is in error. This is possibly the result of a

bias in the observations. This orbit was included in the

analysis for the sake of continuity.

The effects of the Farth's gravity and those of Lunar

and Solar gravity may be removed from the initial orbital

data with the aid of the computer program PROD developed at
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RAE Farnborough (Cook, 1972), The zonal harmonics in the
Earth's potential that were included were upto and including
JZO. Solar and Lunar gravity perturbations both included the
second harmonic together with periodic terms. That is, the
six monthly oscillations in the case of Solar gravity and the

fourteen day oscillations in the case of Lunar gravity.

i1) Radiation Pressure Effects:

In order to evaluate the effects of direct SRP it 1is
necessary to integrate the planetary equations (2.1)-(2.6)
over each revolution of Explorer 19, over the period MJD 42822.0
to MJD 43058.0, that is over 3070 revolutions. The 1imits of %
the integration are defined by the relevant shadow positjon Ei
of each revolution as described in Section 3. The equations ‘
defining the changes in a,e and i due to SRP are derived from
equations (2.1),(2.2) and (2.3) respectively, by a change of
variable from the true anomaly, 6, to the eccentric anomaly,
E, and integrating with respect to E while holding constant
the terms not explicitly dependent on E. The remaining \
three e]ements defining the satellite's position w, © and M
are 1ntegrated similarly and the small changes in these
elements due to the interaction of SRP and the first order

oblateness of the Farth's gravitational field are added.

These changes are derived from equations (2.22)-(2.24) by

substituting the first order secular term of the gravitational

potential R, where

2
J,uR :
X - 2*Re (1 - 2 sini) .

2a3(1—e2)3/2
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It is also important when considering short-period changes
of M, to include the variations of I due to the changes in n
caused by the perturbations of a by SRP. This will then
result in the equations (6) given by Aksnes, 1976.

The long-period perturbations due to SRP are computed
over the 236 days defined by the data of Table 1, by summing
the changes over complete revolutions and adding the fractions
of the revolutions that occur at the start and end of the
period of time defined by MJD 42822.0 to 43058.0 . The step
by step method described in Section 3 is used to evaluate the
integration limits defining the shadow phase of each revolution.
The initial data employed was line 1 of Table 1 together with
values for n, é and &, taken as the mean values over the period
considered, the rates o and Q being given by the equations
1.1 and 1.2 of King-Hele (1964). The variable data describing

the Sun's position is given by the Explanatory Supplement to

the Astronomical Ephemeris, 1961.

It oniy remains to assign a value to s% , defined in

2 1

the introduction, % is taken as 1.304 m“ kg = while the trial

and error method of fitting the results to the observed values

of the perturbations, is at first applied, to find a suitable

value for s. The satellite was assumed to be spherical. The

P

eccentricity after

gravitational fields and those due to the Earth's gravitational

oints plotted in Figure 22 give the residual change 1in

the perturbations due to the Luni-Solar

field have been removed, by using the computer program PROD.

The computed results for SRP are also shown in this figure,

for s=1.0, 1.1 and 1.14 . Taking s=1.1 gives quite a good fit

- 91 -
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of the observed data by the predicted effects of SRP. The
choice of s=1.1 results in a maximum difference of 0.0003
between the observed residues and the computed values for SRP.
It should be remembered that it is not possible to remove
precisely the effects on the observations due to atmospheric
drag, which for the height of Explorer 19 is by no means
negligible. The approximate perigee height of this satellite
is 800 km., so that the perturbing effect on the mean motion

by atmospheric drag is of the same order as that of SRP. In
the absence of precise data describing the change in the
elements due to air drag or data defining the reflective
characteristics of Explorer 19, it is not possible to compare
accurately the magnitude of the effects of SRP and the
aerodynamic forces acting on the satellite. However, it.can
be seen that the variation of the computed results for SRP 3

follows the variation of the residual eccentricity of Figure 22

very closely.

The revolutions within the ranges of MJD 42858-42888, \
12946-42978 and 43038-43058 were completely sunlit. The |
perturbations of the orbital elements for 1 revolution (171 min)
of the satellite, are plotted against time, in Figures 23
and 24 the revolution commencing on 42822.0 and including
a period of time when the satellite was in shadow. Figures
25 and 26 show the perturbation of the elements during 1
revolution starting on 42966.0 when the satellite did not
enter the Farth's shadow. The smooth curves here show the

results evaluated by using the step by step method to find

the shadow boundaries. For the revolution starting at 42822.0

the satellite entered the Farth's shadow after 41 min. and

- 93 -




LD

Ul Ye
MJD 42822.0

30

20

10

Cw) ey

110

100

80

60

40

20

min

min

110

100

80

60

40

20

100

80

40

f').O

min

94

(63p)




- 0.057
-0, 10+

(6ap) We

(6ap)

o
—~
—

o

oL X ™9

-

min

40

20

— ——

— A — o

min

-y

MID 42822.0

24.

95



25.

MJD 42966.0

20

min

6]

—

2

80

60

40

20

min

40

20

min

96




[

min

110

100

80

60

40

20

min

-
-—

oL X @9

Ts} w o
q ” -
6
WO (63p) _

110

100

80

60

40

20

26.

MJD 42966.0

97



remained eclipsed for 35 min. before entering sunlight

again. The data in these figures, plotted as dashed Tines

are the reiu1t of applying the continuous shadow function
given by Lala and Sehnal (1969) and described in Section 3.
This process was applied with the relevant number of terms
required in the expansions, chosen so that the results
coincide with the portion of the curve representing that
period before the satellite entered the Earth's shadow. The
portion of the revolution eclipsed by the shadow, is shown

by the horizontal part of the curves. The difference

between the smooth curves and the individual points is the
result of approximating linearly, the changes of the direction
cosines S,T and W, when summing the perturbations over a
revolution. The inclusion of this approxjmation was not
possible when applying the continuous shadow function. The
individual points plotted in Figures 23 and 24 show the effect

of neglecting the shadow phase, that is r(x)=0 from equation

(3.5).

Figurés 25 and 26 show the perturbations of the elements
over a revolution that is completely sunlit. The small net
change in a, of about 0.4 m., over this revolution is again

the result of including a linear approximation to §S, 8T and

sW, the small changes in S, T and W over the time interval, ¢&t.

When integrating the perturbations represented in Figures 23-26,

st was taken as 0.001 day. These effects of Tinear variation
in the orbital elements when the satellite is in shadow and
the net change in a during a sunlit revolution, cannot be
detected in the results given by Aksnes. They were checked

by taking S, T and W as constant during a complete revolution
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so that 85, 6T and sW were zero. As expected from equation

(2.10), 6a=0 when E1=0, E2=2ﬁ and all the terms not explicitly

dependent on E were held constant.

As suggested in Section 5, radiation coming from the
Earth as reflected sunlight can also effect the orbital
behaviour of satellites. The effect on the elements is of
course quite small compared to the effect of direct SRP, and
in the example of Explorer 19, small compared to atmospheric
drag. When the effect of terrestrial radiation pressure was
considered it was necessary to integrate around the orbit num-
erically and at each point in that integration, to integrate
numerically again in order to obtain the force on the satelliteq
The semi-analytical method described in Section 5 was emb]oyed
to calculate this form of radiation pressure perturbation. The
assumptions made in that section were made at this stage, that
is, that the solar radiation reflected from the Earth, is
reflected diffusely according to Lambert's Law, the satellite
is spherical and that the Earth's albedo, a,. is taken as
constant. The value chosen for ay was unduly large, 0.5, so
as to obtain an idea of the magnitude of the perturbation

involved. The albedo suggested by Slowey (1974i1) was less

than 0.4.

The results for the perturbations in the semi-major

axis and the eccentricity are given in Figures 27 and 28

reépective]y. The maximum magnitude of sa found was 53 m.

and that for se was -2.4 X 10'5 so that the maximum perturbation

in the perigee height is of the order of 183 m. The effect

of Earth reflected radiation pressure On a was found to give
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. -7
values for n of 6 x 10 revs/dayz, The mean standard

deviation of M2 is 0.0020 deg/day2 which results in a value
for n of 1.1 x 107° revs/day® , so that it is possible to
neglect this perturbation when evaluating the rate of change
of the mean motion. The maximum value of n found due to this
force was 8 x 10—6 revs/day2 corresponding to the epoch
42902.0 (MJID). The perturbations to the perigee height were
also neglected as the values of se lead to changes of height

of less than 0.7 km.

Figure 29 shows the perturbation of the semi-major axis,
due to SRP, over 236 days starting at MJD 42822.0 . The %

periods when the satellite's revolutions were completely

sunlit are clearly discernable. The total effect of SRP on

Wi T

a is shown to be , GaSR'P=+3.77km° After the same period of . X
time the observed value is GaOBS=-O,37 km, If SRP and air

drag are the only forces relevant then the total change in a,

that can be assumed due to air drag, is of the order of 4 km.

This leads to the approximate value of n = 4.5 X 10—5, which \

may be considered as a mean value for the rate of change of

the mean motion due to atmospheric drag acting on Explorer 19

for MJD 42822-43058.

Figure 30 provides a comparison of the observed values

of the orbital inclination, (points) after removal of

gravitational perturbations, with the perturbations calculated

for SRP (smooth curve). Again the effect of the aerodynamic

forces have not been eliminated and the differences between

obs erved and computed results are due, in part, to the

variation in the rate of rotation of the Earth's upper
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Fig. 27. THE EFFECTS OF EARTH REFLECTED RADIATION ON THE
SEMI-MAJOR AXIS, a.
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Fig. 29. THE EFFECTS OF SRP ON THE SEMI-MAJOR AXIS.
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Fig. 30. Orbital Inclination, i, after PROD /
0,06 L
plotted as points compared with the effects of vo
SRP. (Smooth curve) '/
The perturbation in i, assuming es=0.3 and /
es=55 deg. is given by the dashed curve. P
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Fig. 31.

THE EFFECTS OF SRP ON ECCENTRICITY

ASSUMING A

DEFORMED SATELLITE WITH PARAMETERS, e =0.3 AND oy =55 (deg).
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atmosphere. The values for this rotation can usually vary

in the range 0.8 to 1.4 times the rate of the EFarth's

rotation.

An effect not yet mentioned is that described in
Section 4. In this analysis Explorer 19 has been assumed
to be spherical in shape. The only data available for the
period of time considgred here, is that of visual observations
made during September 1976. These gave the stellar
magnitude as +5.4 to +6.2 and the optical appearance as
invariant, suggesting that the satellite was not rotating.
The theory of Section 4 has been applied by using trial and
error methods to select suitable values for 0 and ecs
defined in that section. The best fit obtained in this way
is shown in Figure 31 for eccentricity and Figure 30 for
inclination (dashed curve). Here es=O,3 and es=55 deg. Rs
was taken as 0.8 and Ry as 0.02. It should be noted that if
the satellite is in fact spherical then the integrated specular
component wouid be zero. If the value of the reflection
coefficient, s, is taken as 1.14 then this process, by virtue

of the equations derived in Section 4, would suggest a value

of 0.21 for RD’ a value that would seem unduly high.

iii) Air _Drag Effects:

The 60 values for the rate of change of the mean
motion given by Table 1 are plotted in Figure 32. It can be

seen that the periods when n are positive coincide with those

periods of time when the revolutions were totally sunlit.

J uring these periods the major perturbation responsible for

these values of ° is that of air drag. The effect of SRP on
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n is shown in Figure 33, again those epochs when the
revolutions are totally sunlit are apparent from the
horizontal portions of the curve. Figure 34 shows residual

perturbations in n after the removal of the variation due to

SRP.

It is now possible to evaluate the air density from

these values of n, so that comparison with Jacchia's atmospheric

model (Jacchia, 1971) should ascertain the effectiveness of
the removal of the perturbations due to solar radiation. The
analysis follows the lines of Brookes and Ryland, 1977 with
the exception that the phase , defined by King-Hele (1964),

is _z=ES < 3, where H is the density scale height.

H

Figure 35 shows the values of the perigee height over
a spherical Earth, y = a(l-e) - Rg, where R.=6378.14 km.
Figure 36 gfves the perigee height after the effects of SRP
have been removed from y. The regular oscillation here is
caused by the odd zonal harmonics in the geopotential. Figure
37 demonstfates the results calculated for the perigee height
" when the effects of SRP, the zonal harmonics upto J20 and

the Luni-Solar perturbations have been removed. The graph

exhibits the steady decrease due to the influence of air drag.

The actual perigee height yp above the Earth's surface

is derived from y, by subtracting the local Earth radius at

latitude ¢p’ which differs from RE by

21.38 sin2¢p _ 20.57 sinfw km.,

- 109 -

F SR



830

820

800

790

780

770

760

Fig. 35. OBSERVED VALUES OF PERIGEE HEIGHT, a(1-e)-R

E L]

1976

Mar 21 Apr 30 Jun 9 Jul 19 Aug 28 0zt 7
1 ] ! 1
uzgss uzgea 42938 42978 43018 43058

Date-modified Julian day

- 110 -

SUNNIEOE bl

P

i
R



(km)
¢ F'
M OBSERVED PERIGEE HEIGHT WITH
\ SRP EFFECTS REMO

764 " MOVED, a(l-e)-R_-

| P (1-€)-Re=Yspp

762 [~

760 [ c ©

o
0 e®
758 A
#
756
’ £
[~

7541 °

752

750F

e ?
1\
© (-}
748~
' D @
1976
746}
Mar 21 Apr 30 Jun 9 Jul 19 Aug 28 '
] 1 } 1 | !
L7658 T5698 579386 42978 53018 T30 8

- 10 -

JUDRESE SRR
e

B ¥



760 ~

L Y}

(4
- ]
[ ]
N\,\‘
e a, O o—eten
750 1976
Mar 21 Apr 30 Jun 9 Jul 19
{ | { | L 1
42858 42898 42938 2978 L3018 53058

Date-modified Julian day
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70ONAL HARMONICS, LUNI-SOLAR PERTURBATIONS AND SRP HAVE BEEN REMOVED.

and adding the small amount by which the actual perigee
distance differs from a(l-e). Following Kozai (1959) the -
correction is found to be 1034-0.8lsin2w . Figure 38 shows

the values of yp for Explorer 19 defined by

. 2
yp = a(l-e) = Rp + 1.34 + 17.78 s1n w

In the phase z<3 the air density is obtained from n,

after the effects of air drag have been removed, at a height

. * '
xH* above perigee, where H™ is the best estimate of the

density scale heighfo This is evaluated by means of the

equation, (King-Hele, 1964)

ne

o Io(z*)exp(c cos2w) |
Py = ' * *
A 3000 ﬂanzg 10(2*) + ZeI](z ) + c12(z )cosZu)]
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Fig. 38. VARIATION OF PERIGEE HEIGHT, yp=a(]~e)—RE+1.34

+17.78sin%we
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where

*
H
n = mean motion corrected for SRP ,
. *2
A =12 - £ when O<Z*<'l
5 = =
- 1 *
= 1 when z > 1 ,
2
5 = (1 + uA ) exp(Z-2)
2 IO(Z)
*
7 = ot
1 + ug

e - (0.88+z )% 2" exp(-2)| |31 (27)-41, (2 )+1,( ")

= - - - Z

3.52 0 ] ¢
and
a
¢ = =2 (1-e) sin®i .
*
2H

Here In (n=0,1,2) is the Bessel function of the first
kind and imaginary argument of order n, u is the rate of

increase of H with height and is given by,

L
_2(H-H)

u
*
H
where Hl=227 km., is the best estimate of H at height
Yy, t W /2 YP is the mean perigee height, which for
P

Explorer 19 is 803 km. & is an area to mass parameter and

¢ is the ellipticity of the atmosphere, taken as 0.00335.
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*
The value of H was taken as 194 km. throughout the

computations, this corresponded to an exospheric temperature

of 700 °K at a height of 800 km.

The value of the drag parameter & is given by

2

where A/m is again taken as 1.304 m kg-], F is a factor

related to the atmospheric rotation and C

D
The value for & was taken as 3.088 m2 kg-] which corresponds

to CD=2.4 and F=0.98 .

The values of density, P are evaluated at a height
Yp © yp + %H*, as a=3 for all values of z* given by the 60
epochs of Table 1. The values of pp are converted to a
fixed height Ygs which was taken as yp = Yp + éH* = 900 km.

This conversion is effected by using,

Ya~YB
pg = Pp EXP(—) -

H 1

These values of Pp corresponding to a standard height of

900 km. are listed in Table 2 and plotted in Figure 39
against time and compared with the daily geomagnetic index

A , as given by the Institut fur Geophysik, Gottingen, plotted
p’

with a 12 hr, time lag. In the Figure 40 °g is compared

with solar 10.7-cm. radiation energy as measured by NRC,

Ottawa In Figure 41 the Sun-perigee angle and the local

time at perigee are given.
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Table 2. Values of Yps o and PR from 1963-53A

Time | yy 10, 101%;  Tine vy 10", 10'%
(MID) | (km) (kg/m’) (kg/m®) (M3D) | (km) (kg/m’) (kg/m°)
42822 | 87348 1,16 1,03 42882 | 870,1 3,76 3,30
42826 | 878,9 1,16 1,05 42886 | 869,0 2,72 2,37
42830 883,0 1,15 1,07 42890 868,5 2,97 2,59
L2834 887,2 3,05 2,88 428394 | 869, 3 3,93 3,43
42838 890,6 3,43 3,30 42898 | 870,6 1,41 1,24
L2842 892,7 1,54 1,49 42902 873.,0 2,47 2,19
L2846 894, 1 1,78 1,74 42906 875.,7 2,41 2,17
42850 894,0 1,88 1,83 42910 879.0 1,15 1,05
L2854 892,9 3.02 2,93 429144 881,8 1,20 1,11
L2858 890,0 2,38 2,28 42918 | 885, 4 1,25 1.1%
42862 886,9 3,32 3,14 42922 887.,0 2,64 2,40
L2866 883,9 L,07 5.79 h292% 4889.7 0,55 0,53
42870 879, 8 3.l§ 2,92 42930 892,1 1,29 1,25
L2874 876,1 2,65 2,38 42934 | 892,3 2,08 2,01
42878 872.,7 1,70 1,51 42938} 892,8 0,69 0.67

- 116 -

e e

i



Table 2 (cont.). Values of Yp» op and °g from 1963-53A

Time | vy 1070, 1015, Time | y, 10'%, 10'5,,
(MaD) | (km) (kg/m’) (ka/m®) (M3D) | (km) (kg/m®) (kg/m®)
42942} 893,1 0,74 0,72 43002} 935,0 1,70 1,99
429461 892,9 2,22 2,15 43006} 937,2 1,79 2,11
4,2950| 891,8 1,92 1,85 43010 939,7 1,08 1,29
42954| 892,1 0,93 0,90 43014{ 937,2 1,18 1,39
42958 832;3_ 0,83 0,81 43018{ 940,7 2,16 2,58
42962 893,2 1,62 1,57 43022 939,0 0,05 0.06
4L2966| 895,0 2,40 2,34 43026 | 936,0 1,17 1,38
42970( 896,9 0,34 0,34 43030 933,8 2,30 .2.67
42974 | 900.8 2,43 2,44 43034| 931,2 1,60 1,84
L2978 905.,0 2,08 2,13 43038| 927.3 0.61 0.69
42982| 909,9 . 2,46 2,57 43042 | 924,3 2,27 2,55
42986| 915,3 2,98 3,19 43046 | 922.,5 3,60 3,98
4,2990| 920.6 2,25 2,46 43050 | 920.6 1,81 1,98
42994 | 926.3 2,19 2,46 43054 | 920,3 1,52 1,66
42998| 930.,3 1.05 1,19 43058 | 920,9 2,95 3.24
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It is difficult to see the correlation of the day to
day values of Ap as the density values are given at 4 day
intervals. The two largest values of pg Occur at MJD 42866.0

and MJD 43046.0, coinciding with values of Ap=]38 and

Ap=51, respectively.

The corrections for day to night, solar and geomagnetic'
activity variations were made to the values of pg» in the
manner outlined in Section 9.2 of Brookes and Ryland, 1977.
The resulting densities were then standardized to the
exospheric temperature of 800 °K. The results of the
standardized values of density, p;, are shown in Figure 42
together with a comparison with results found for the same
period of time at a height of 435 km. and 850 °K by Brookes \

and Moore, 1978. J
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7.
CONCLUSToN

Studies of the motion of an artificial satellite in
the atmospheric zone above about 800 km. are complicated by
the extraneous effects that rival those of aerodynamic drag.
This competing force of solar radiation is known to be
significant whenever the area to mass ratio is large, and
can be evaluated and eliminated by means of the theory
developed in this study. It has been shown that the effects
of SRP are greatest when the satellite orbit includes the
Earth's shadow. The disadvantages of employing a continuous
method to derive the results that define the orientation of
this shadow, with respect to the orbit, have been outh’n;ed°
In Section 3 this method was shown to be unnecessafi]y lengthy
and in the application in Section 6, the inherent inaccuracies
are highlighted by Figures 23 and 24. It is concluded that
the method best sujted to the evaluation of the shadow angles
is that of a discrete, numerical method that allows the

introductidn of suitable approximations for those terms whose

variations over one revolution may not be neglected. This

'step by step' method can be altered to allow for second order,

or greater variations in S, T and W, though it is felt that

a linear approximafion for these variables 1s adequate 1n

most instances.

The application of the theory of Section 4 has been

d. Any application of such theory would be

tentatively include

infinitely advanced by the availability of photometric

or the shape, orientation

f
observations that can suggest values
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and any relevant spin characteristics of the satellite. 1In

view of the air density resylts derived from the orbits of

Explorer 19, it is fair to assume that this satellite was not

rotating during the period of time relevant to this analysis

Though it may be expected that the diffuse component
of reflection from the satellite's surface is generally small,
the theory was developed to include the effect as this has not
been developed elsewhere. In the case of some sate]llites it
is known that a certain percentage of the surface area involves
the use of diffusely reflecting white epoxy paint. If this
surface area was known to be significant, then it would be

valuable to include this theory.

It was not practicable to give an adequate application
of the thebry developed for Earth reflected radiation pressure
in the example of Explorer 19, as this satellite had a relatively
lTow area to mass ratio for a balloon satellite, 1/3 the A/m
value of Dash 2. The height above the Earth of Explorer 19
during the 236 days of the analysis of Section 6, resulted in

"direct SRP and air drag perturbations that overwhelmed the

effects of Earth reflected radiation.

Analysis of the orbit of 1963-53A during the 236 days

starting on MJD 42822.0 has yielded values of air density near

803 km. These results have been converted to represent the

variations in density at 900 km. The variations in ‘these values
due to solar activity and diurnal variations have been removed
using Jacchia, 1971. It would appear that the effects of the

geomagnetic disturbances have not been totally removed as the
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residual variations in density between February and October
b

represented in the upper half of Figure 42, should show the

semi-annual variation. The results appear to be centred on

*
- - 15 -3
the value of Py 2 x 10 kg. m ~, the density at 900 km.

and corrected to 800 0K.
0_15

The majority of values lie within

the range 1 x 1 and 3 x 1071° kg. ™3 with a maximum on

the 17th. March, 1976 and a minimum on the 23rd. July, 1976.
The range of the extremes is what might be expected for this
height as suggested by Jacchia's equations while the actual
dates of the maximum and minimum are not clearly distinguished.
This might be improved by supplementing values of n with USAF
Spacetrack five-card elements. The lower part of Figure 42
shows the air density values for the same period of time
standardized to 435 km. and 850 °k. Here the semi-annual
variation shows a March-April maximum on April 22nd. and the

July-August minimum on July 25th.

It is suggested that future work in SRP studies could
be aimed at sfmp]ifying the expression derived for Earth
reflected radiation, so as to reduce the lengthy computational
time required to carry out the integrations necessary. It
f interest to apply the theory of Section 4

would also be o

to a satellite that has undergone photometric observation.
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