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Coherent master equation for laser modelocking
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Modelocked lasers constitute the fundamental source of optically-coherent ultrashort-pulsed
radiation, with huge impact in science and technology. Their modeling largely rests on the
master equation (ME) approach introduced in 1975 by Hermann A. Haus. However, that
description fails when the medium dynamics is fast and, ultimately, when light-matter
quantum coherence is relevant. Here we set a rigorous and general ME framework, the
coherent ME (CME), that overcomes both limitations. The CME predicts strong deviations
from Haus ME, which we substantiate through an amplitude-modulated semiconductor laser
experiment. Accounting for coherent effects, like the Risken-Nummedal-Graham-Haken
multimode instability, we envisage the usefulness of the CME for describing self-modelocking
and spontaneous frequency comb formation in quantum-cascade and quantum-dot lasers.
Furthermore, the CME paves the way for exploiting the rich phenomenology of coherent
effects in laser design, which has been hampered so far by the lack of a coherent ME
formalism.
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he trains of coherent pulses emitted by modelocked lasers

display an impressive list of applications, ranging from

telecommunications, sensing and metrology, to health care
and materials processing!2. Therefore, laser modelocking is an
extremely active research topic with a wealth of open funda-
mental problems such as a full understanding of its transient
dynamics?, thermodynamical properties* and the very mod-
elocking mechanisms®, including modern proposals allowing
spontaneous self-organization and emergence from noise®-8.

There is in particular a rich literature on the role of so-called
coherent effects in laser modelocking, which is the focus of our
study. Coherent effects’ occur when a stable phase relation is
established between the light field and the electronic responof the
material. Generally such a phase locking is fragile and coherent
effects mostly manifest as transients. In laser systems, however,
the long-term interaction between light and matter owed to the
resonator feedback allows the persistence of such effects in some
cases, e.g., through pulsed operation. We refer to super-
fluorescence and other coherent effects in modelocking which
give rise to coherent ringing and hyperbolic-secant-shaped
pulses shorter than predicted by the standard Siegman-Haus
theory!0-14,  self-induced transparency modelocking which
exploits coherent dynamics of the atomic gain medium and
saturable absorber!>-17, Rabi flopping in quantum-cascade
lasers!®, spontaneous modelocking via the Risken-Nummedal-
Graham-Haken (RNGH) instability!®20 and superfluorescent and
superradiant effects in semiconductor lasers2!, and hetero-
structures??, giving rise to superluminal pulse propagation.

So far, all those coherent and cooperative effects in lasers
have been modeled using the full set of Maxwell-Bloch
equations>!92324, which hinders analytical treatments and
results in heavy simulation processes. In other words, the rich
and interesting phenomenology arising from coherent effects in
lasers currently lacks a master equation (ME) formalism, and this
situation has probably hindered the deployment of such effects
in laser design. A coherent ME (CME) theory would allow
simple but rigorous description of laser operation in the prese-
nce of coherent effects, potentially paving the way to the devel-
opment of new classes of laser systems that exploit light-matter
coherence.

Soon after the pioneering work by Kuizenga and Siegman in
the late 1960’s2>2¢ (also by Haken and Pauthier?”) Haus’ take on
the description of laser modelocking via ME23-31 became the
standard approach to the problem. Haus considered first active
modelocking via intracavity amplitude- (AM) and phase- (FM)
modulation?8, to which followed his treatment on passive mod-
elocking with fast?® and slow? saturable absorbers. Such an
approach has proven extremely successful in the description of
other modelocking mechanisms like additive-pulse and Kerr-lens
modelocking®233, related to the combined effect of self-phase
modulation and group-velocity dispersion34.

Despite its popularity, Haus ME approach does not account for
coherent effects and, additionally in the case of active mod-
elocking, its validity requires sufficiently slow medium dynamics.
In particular, if an extended cavity is required, the pulse period
can be comparable with the gain recovery time T, which is on
the order of a nanosecond in many instances, like in semi-
conductor?” and dye° lasers. A similar problem is encountered in
vectorial passive modelocking3”. The situation is even worse in
quantum-dot and quantum-cascade lasers, where T is in the
picosecond range3$3%. This circumstance makes passive mod-
elocking with a saturable absorber prohibitive in such lasers and
has forced researchers towards alternative solutions, such as
active modelocking in an external ring cavity“. Yet, even with a
cavity length of few millimeters, the pulse period cannot be
shorter than T.

In this paper, we introduce a CME approach for laser mod-
elocking, able to retain light-matter coherence effects for any kind
of modelocking mechanism. Further, the CME validity is not
affected by the slow-gain limiting condition T > Ty of Haus
ME for active modelocking. In that way we aim at bringing the
phenomena associated with fast gain dynamics into the standard
framework of the Haus ME, both allowing to obtain analytical
insights and providing a more efficient approach to numerical
modeling. In order to test the theory we have conducted
experiments in a semiconductor laser with an extended cavity.
The predictions of our CME differ from Haus ME in several
respects, both qualitative and quantitative, and they agree sub-
stantially with experiment. Preliminary results of this work have
been reported in ref. 41,

Results

Limitations of Haus ME approach. All ME approaches are based
on following the changes suffered by a pulse along a full cavity
roundtrip, as caused by the different elements like gain, absorber,
modulator, dispersive sections, etc. In this way, assuming that the
overall change is small, two time scales are introduced, a fast one
(1) describing the pulse shape, and a slow one (T) describing
pulse evolution along ensuing roundtrips. Then the field complex
amplitude F(T, 1) obeys a differential equation of the type (the
ME),

TRaTF = ﬁ[Gv aT]F7 (1)

where Ty denotes the cavity roundtrip time and R is a differ-
ential operator that accounts for the changes suffered by the field
along one cavity roundtrip, which in particular depends on the
gain G. Incidentally we note that an alternative, yet related
approach to the ME formalism—in the form of delay differential
equation model—has been developed which does not require
small gain and loss per roundtrip*2.

There are two key points concerning the role of the gain G in
ME approaches, namely how G enters R in Eq. (1) and how its
dynamics is modeled. Both are closely related each other, and
their analysis determines the weakness of existing ME
approaches, as we discuss next.

Regarding the gain dynamics, two main paradigms can be
adopted, namely rate equations or Bloch equations. Existing ME
models adopt a rate-equation description®3~4> as the gain G,
being proportional to the population inversion of the lasing
transition, has a relaxation rate Tg' which uses to be several
orders of magnitude smaller than the gain bandwidth. In fact two
types of rate equations are used in the literature. The most general
one can be written as

Tg0,G=r—G— |F’G, (2)

where r is the dimensionless pump parameter. However when the
gain takes many cavity roundtrip times to recover (T; > Ty) the
gain is relatively insensitive to the pulse intensity |F(T,7)|* (the
pulse shape), but rather responds to the pulse energy, verifying
the equation?8,

dG

TGﬁ:r—G—PG7 (3a)

where

1 +Tg/2
P(T) / dr|F(T, 1)

-1 (3b)
TrJ —1y2

is the average circulating power (proportional to the pulse
energy), which is a slow quantity. Note that (3) is obtained from
(2) upon integrating in 7 along one cavity roundtrip, and
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neglecting a very small variation of G on the time scale of the
pulse duration.

These are excellent approximations in many instances,
however, as rate equations ignore the coherent nature
of light-matter interaction, they are unable to describe a variety
of important effects which substantially modify modeloc-
ked pulses features and stability, as we discussed in the
Introduction.

Regarding how the effects of the gain are incorporated into
Eq. (1), ME approaches do so in ad hoc ways usually following
necessity arguments which are specific to each type of
modelocking mechanism. Importantly, which of the above
rate Eqgs. (2) or (3) is used determines how pulse broadening
can be modeled. One has to understand that pulse formation
and stability requires that the unavoidable pulse broadening
brought about by intracavity elements be balanced by some
narrowing mechanism introduced into the laser cavity. The
latter can be active, e.g., with the use of modulators, or passive,
e.g., with the use of saturable absorbers. Clearly this balance
can occur only if both mechanisms act on the same time
scale, and this scale equality forces the way the gain enters
the ME.

Pulse broadening is modeled through a term

R| = 0,20, (4)

in the ME (1), where Qp,y is the spectral bandwidth (HWHM) of
the bandwidth-limiting element. This form follows from a
parabolic approximation to the actual effect in spectral domain,
which can be adopted whenever the pulse spectral linewidth is
narrow as compared to Q. The gain element always leads to
pulse broadening and in principle it should be the actual
bandwith-limiting element: including other dispersive elements
decreases the bandwidth, hence increasing pulse duration.
However the pulse broadening caused by the amplifier can be
modeled as (4) only if the gain does not display relevant
variations on the pulse time scale, ie. if G depends on the slow
time scale T but not on 7: only in that case the gain element can
be treated as an active filter providing a spectral amplification per
roundtrip of the form?2>27-28

pulse—broadening

(G(T)
1+ (0/Qg)"

where ¢ is the passive linear loss per roundtrip (in our
normalization, G represents the gain-to-loss ratio), w represents
the frequency offset from line center, and Qg is the gain
bandwidth of the Lorentzian atomic line. After the commented
parabolic approximation (and assuming ¢ < 1) a term like (4)
appears, with Qgp = (G(T)Qg” (see below for details).
Note that this is a quasi-static approximation, valid because
one neglects the variations that the gain can display on the
pulse duration scale; accordingly the gain is assumed to obey
the rate Eq. (3). This type of gain-limited bandwidth ME is
found, e.g., in theories of active modelocking?® and passive
modelocking with a fast saturable absorber?® because in both
cases effective pulse-narrowing mechanisms exist which are
independent of the gain.

There are other cases, notably passive modelocking with a slow
saturable absorber, where stability of pulses requires that the gain
itself contributes to the pulse narrowing by dropping below its
threshold value after the passage of the pulse3%-46. This fact forces
to consider the response of G to the instantaneous intensity via
Eq. (2): G has in this case a 7 dependence and thus the pulse
broadening brought about by the gain cannot be modeled by (5)
(in fact it cannot be modeled properly in existing ME theories).
The solution adopted consists in assuming that an additional

exp (5)

dispersive element (independent of the gain or the saturable
absorber sections) is the one that limits the system bandwidth,
and in such a case the term (4) is used with given Qg,,. In words
of Haus®0, “Note that the bandwidth-limiting element has

introduced the operator (1/Qypy)>d?/df*... Because diffusion
or spreading can be caused by many different physical processes,
we surmise that the final equation is relatively model indepen-
dent.” (Qpy is denoted by w. in30), or ref. 31 “Here we have
expressed the filtering action as produced by a separate fixed
filter, rather than by the finite bandwith of the gain (which varies
with time) so as to obtain analytic solutions of the master
equation.”

All the above evidences that existing MEs suffer from
fundamental limitations related to the gain dynamics, as well as
that each type of modelocking requires a different rationale
concerning such dynamics in order to derive a suitable ME, which
in some cases can be far from intuitive. Let us introduce next a
theoretical framework that overcomes such limitations and allows
rigorous and systematic derivation of MEs preserving coherent
dynamics.

Model overview and field map. We consider a ring-cavity
homogeneously broadened two-level laser. The interaction
between the traveling-wave light field and the amplifier is mod-
eled with Maxwell-Bloch equations, which constitute the funda-
mental model at the semiclassical level (see the “Methods”
section). In Fabry-Perot cavities a similar treatment can be used
whenever no standing-wave patterns exist inside the gain med-
ium, which amounts to place the amplifier section far enough
from mirrors so that forward and backward moving pulses do not
overlap inside the gain medium. We also note that inclusion of
inhomogeneous broadening when necessary does not alter the
skeleton of our approach.

Although the approach is valid for any type of modelocking
technique, from now on we focus on the case of active
modelocking via amplitude modulation. The effect of the
modulator is modeled through its transmission function, written
as e, where m(t) represents the modulator state. Our analysis
is valid for any periodic function of time m(t), but here we will
focus on the classic sinusoidal case

m(t) = M[1 — cos(Qyt)], (6)

with M the modulation depth, Q,, =27/Ty, and T, the
modulation period. In the case of FM modelocking, M should be
substituted by iM simply.

First, we derive the map that describes the overall change
suffered by a pulse after one full roundtrip along the cavity, which
will be the basis for our CME. Such a procedure requires
determining how the amplifier modifies an input, and then
following the output along the cavity, through the modulator, till
returning to the amplifier input plane.

We assume that the effect on the light field of the amplifier is
small. Note that such a hypothesis holds quite generally (though
it may not be satisfied in high-power lasers with very large
coupling losses): the amplifier action must just balance losses (or
other variations) occurring outside the amplifying medium,
and they are assumed small. This is valid no matter how
long the medium is, nor how close or far from threshold the
laser is operating: above lasing threshold saturation acts and
gain is always kept small whenever loss is small*’. Formal
integration of the Maxwell Eq. (24a), explicitly taking into
account the gain dependence of the group velocity of light in
the amplifier, and using the boundary condition imposed by
the modulator and the resonator, leads to the sought-for map
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(see the “Methods” section),

f0, 6+ Tg) = f(0,8) = = [(+ m(2)]f(0, 1)

+ 4r| p(0,¢) +QEBJ(OJ) . @)
G

Here f(0,t) (p(0,t)) is the light field (electric polarization)
complex slowly varying amplitude at the medium entrance plane
(z=0), £ is the (very small) loss per roundtrip, D is the
modulation-period average of the population inversion D, Q is
the gain bandwidth, and r is the usual laser pump parameter,
which equals 1 at the free-running (m — 0) laser threshold.

Elimination of the polarization. The large value of the medium
polarization decay rate Q) as compared to that of the population
difference Tg' allows in principle some kind of adiabatic elim-
ination of p. The usual adiabatic elimination consists in setting to
zero the time derivative of the fast variable, i.e., 9,p—0 in Eq.
(24b) in our case. However such a simple elimination leads to
p = Df, which, although usable in singlemode problems, is clearly
inadequate in multimode scenarios because it overlooks pulse
broadening. Instead we solve formally Eq. (24b) as ref. 48->2

p=(1+05'9,) ' Df. (8)

In Fourier domain the differential operator reads as (1 — iw/Qg) ",
and we adopt its parabolic approximation around w = 0, namely
(1 +iw/Qg — (w/Qg)?), valid when the pulse linewidth is much
narrower than the gain bandwidth. This translates into the time
domain as

p = L,Df, (9a)

where

L,=1-0g5'3, + Qg% . (9b)

Expression (9b) represents the minimal expansion accounting for
the finite spectral bandwidth of the gain. In case of ultrashort pulses
whose linewidth is comparable with the gain bandwidth one can
extend the expansion or even keep the full differential operator as it
is in Eq. (8). In particular, the latter would open the way to describe
ultrashort pulses caused by coherent broadening!3. We point out
that the approximation (9) has been successfully used in particular
to tackle the self modelocking that emerges via the RNGH
instability, even in the presence of large losses”2.

Note that if the inversion fast dynamics is neglected as in Haus
ME for active modelocking, then D — D, Eq. (9a) becomes

p= EZL]( , and the last bracketed terms in Eq. (7) turn into
2

DF0.0) + g3 0.0)

which match the gain-dependent terms in Haus ME?®3! (more
on this below).

From now on we will use the generalized adiabatic expression
(9) for the polarization.

Transforming the map into a ME via introduction of two
times. According to the field map (7) and to expression (9a) we
have been able to describe the laser dynamics in terms of variables
£(0,t), D(0,¢), ie., the field and the inversion at the amplifier
entrance plane z=0. We also observe that the inversion D
appears multiplied by the pump parameter r(37) in the map,
both in D and through p, which is linear in D. Accordingly we
introduce the following notation to keep expressions simpler and

also to pave the way to a well-founded definition of the ME:
F, () =f(0,nTy +1), (10a)

G,(t')=rD(0,nTy +1t), (10b)

n integer, where in particular we have defined the function G,(t'),
which we will refer to as the gain. We apply this notation to the
map (7) and obtain

‘7:n+l(t/) - fn(t/) = [Z + mn(tl)]]:n(tl) + Zzt’grt(t/)fﬂ(t/)
+ E(Gn/QG)at’j:n(t/)’
(11)

where m,(t') = m(nTg +t'). Recalling (6) and subtracting
nQy Ty = 2nm from the argument of the cosine, the modulation
function can be rewritten as m,(t') = M{1 — cos[Q,(t —
OnTg)]}, being 6 = (T — Tg)/Tx the modulation-period mis-
match per roundtrip. We have removed 2nm from the argument
of the cosine for mathematical convenience (the transformation is
exact): we wish that the modulation function varies slowly on the
quantity nTy (we anticipate that 6 will be very small).

Next, in the spirit of the original Haus ME?8, we introduce a
slow time T’ that counts the number of roundtrips. We also
introduce continuous fields F'(T’, ') and G'(T',¢) via

F(T =nTg,t') = F,(t), (12a)

G (T = nTy,t') =G,{t), (12b)

so that the left-hand side of map (11) is approximated by
TropF'(T',t'), and the laser equations become

Ty OF m\ , = ,, GOoF

R = —(1+—|F GF 4+ —— 13

¢ T T JF LG e g (139
Tcaa% =r—G —Re (F/*Zt,G/F/) , (13b)

where m'(T',t') = M{1 — cos[Qy (' — 0T')]}, and Eq. (13b)
derives straightforwardly from Eq. (24c) after multiplying it by
r, and setting z = 0. We remind that G’ is the average of G’ in one
period.

There are two features in these equations that make difficult
their analysis and numerical simulation:

(1) Equations (13) verify the following asynchronous boundary
conditions

X(T' + Ty, t') =X(T', ¥ + Ty), X € {F,G},

by construction, and

(2) The modulation function m'(T’,t') moves at a speed equal
to 0, because the map (11) it derives from is stroboscopic
with period Ty, which differs in general from the
modulation period T).

(14)

We remove both drawbacks by introducing the times

T=T+4"¢1=1¢-0T, (15a)
and fields
X(T,r)=X'(T',t'), X € {F,G}, (15b)
together with the chain rule for differentiation
dp — 0 — 00, 0y — dp + 0. (15¢)

This way the fields obey, by construction, standard isochronous
(in T) periodic boundary conditions (in 7),

X(T,r)=X(T,7r+ Ty), X € {F,G}, (16)
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hence we restrict the problem to 7€ [—Ty/2,Ty/2] for
definiteness. Finally the modulation function becomes

m(t) = M[1 — cos(Qy1)], (17)

recovering its original expression (6). As is customary we will
replace m(r) with its lowest-order Taylor expansion around
7= 02831, namely 1MQO;7%, as pulses can exist only close
enough to the minimal-loss point, given by m = 0.

The coherent master equation. In order to make contact with
Haus ME we split the gain in its modulation-period average
B 1 T2
G(T) = 7/ G(T, 7)dr ,
Tyt —1y2
and its remainder

(T, 7) = G(T,7) = G(T) ,

(18a)

(18b)

which is neglected in Haus treatment of active modelocking.
The dynamical equations of these variables derive from using
Egs. (15) in (13b) and averaging:

T;9,G = I(T), (19a)

Te(9r +9,)g =T(T, 1) — I(T), (19b)

where I'(T, 1) denotes the right-hand side of Eq. (13b) after using
(15). As g is a fast variable, d;¢g < 0.g, hence we approximate Eq.
(19b) with

Tod,8 = I(T,7) — I(T), (19¢)

which is a kind of adiabatic elimination of the fast gain. This
rationale must be further applied for consistency to every
equation. In particular, in the right-hand side of Eq. (13a)
transformed by (15) we set 0, = 0, and ﬁt, = ET, because F and
g are fast variables; i.e., when applying the rule (15¢) to Eq. (13a)
we neglect the derivative d; as before. Note that such an
approximation cannot be taken in the derivative d;, of the left-
hand side because 0 can be zero. The same approximations must
be done in the right-hand sides of Egs. (19a) and (19¢), i.e., in the
function T(T, 7).

The equations obtained as explained above constitute what we
call CME; however we find numerically that the gain equations
contain very small terms that can be dropped with negligible
influence in the final result. Thus we adopt a final approximation,
which merely speeds up the simulations: In the function I'(T, 7),

() L, —1- Qg'9,, i.e. we drop all second-order derivatives
on 7, and
(i) further we neglect terms containing 9. (gF).

This way we end up with the CME, which reads

TR OF [ _ P
S 57 = (G—l—yZQIZ\A12+TdaT+GQ—E F

G
20a
+(1 a1+83>(F) .
A
QO
dG = )
 — — 20b
Togp=r—G(1+IFF) = glF | (200)
2 =112 2
Ted.g =—(1+ |F")g + G(|F — |F[’)
+ 82 gy olrp .
20, gIEI,

where
7q= (T = To)/?, (21a)
is the modulation detuning, and
W =MJ20 . (21b)

We note that the validity of the final approximations (i) and
(ii) above has been assessed numerically under diverse sets of
parameters (Qg from 102s7! to 101371, T from 0.5 ns to 1 s,
and Ty S Tg), which cover usual solid-state and semiconductor
lasers. We observe that the approximations start to break down
for much longer cavities, a situation that favors the size increase
of the fast gain component g. In any case, if in a specific
application approximations (i) and (ii) did not hold, one would
end up with a CME like (20) but with some extra terms, which
however would not change the mathematical structure of the
equations. Regarding such a structure, some comments are in
order:

(a) The two times play different roles: T € [0, +00) and is the
time-like coordinate on which the system evolves, while
7 € [—-Ty/2,+Ty/2] and is the space-like coordinate on
which F and g verify the periodic boundary conditions (16)
(G is a mean field which only depends on T).

(b) Fand G obey the dynamical Eq. (20a) and (20b), while g
follows adiabatically the other quantities: Eq. (20c) is not an
evolution equation as it allows determining, at every instant
T, the value of g(T, 7) in terms of F(T,t) and G(T). This
means that, despite appearances, the complexity of the
CME is mathematically similar to that of Haus ME, which
we recover below.

The CME and the RNGH instability. A clear evidence that
the CME (20) preserves coherent effects is its ability to capture
the laser multimode RNGH instability. This instability affects the
singlemode lasing solution above a certain pump level, leading to
spontaneous self modelocking, and is an acid test for coherent
laser models.

Predicted back in 1968°3>* the RNGH instability is due to the
sideband gain originating from coherent Rabi pulsations®>, and was
considered as an academic curiosity for almost 30 years. However
the scenario changed dramatically in 1997 when Pessina and
coworkers reported experimental observations that could be a
manifestation of the RNGH instability in an erbium-doped fiber
laser®, That work triggered theoretical and experimental research
that allowed gaining insight into the role of the RNGH instability in
fiber lasers®” as well as in general terms®$°? (see ref. ©0 for a review
till year 2005). More recently the RNGH instability has gained
popularity as it has been invoked in order to understand the hot
topics of spontaneous frequency-comb formation and self mod-
elocking in quantum-dot and quantum-cascade lasers! 920246162,

The CME (20) with y = 74 = 0 describes a free-running laser
and accounts for the usual singlemode lasing solution. A linear
stability analysis of such a solution (see the “Methods” section)
reveals that coupled sidebands, symmetrically detuned by *w
from the lasing mode, experience net gain above a threshold,
signaling a multimode instability. The phenomenon is described
by a complex eigenvalue of the linear problem, Ay, whose real part
governs the instability growth. In the relevant limit Qg Tg > 1,
we get

2r(r—1)

Relg = (Q6Tg) 30— 1) - @® - 2 (22
w
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Fig. 1 Dependence of modelocked pulses on the gain recovery time. In (a) the pulses calculated from CME (20) for four different values of the gain
recovery time T (decreasing from right to left) are shown and compared with that of Haus ME (23). As T; decreases the pulse shapes departs more and
more from the Gaussian centered at 7 = 0. In (b) the corresponding profile of the fast gain is shown: g increases in magnitude for faster gain media. The
vertical dashed black lines denote the time interval shown in (a). Parameters used are Qg =102 s, Ty =Ty =1ns, £ =0.6, M=12,r=13.

to the leading order, with @ = wy/T5/Qg the normalized
sideband frequency. This expression matches the prediction of
the full Maxwell-Bloch equations®?=>48:60 in the considered
limit, which proves that the CME (20) contains the RNGH
coherent instability. On the contrary, Haus ME does not account
for this result.

Recovering Haus ME. If, in the spirit of Haus approach, we
neglect the fast component of the gain by arbitrarily setting g = 0
in Egs. (20), we obtain

T OF

¢or (232)

2
(C —1— Oy + 140, + @%)F ,
G
dGg — —3

Tagn =1~ G(l +1FP) (23b)
which is the celebrated Haus ME for AM modelocking?831,3>,
Equations (23) hold the symmetry (74, 7) — (—74, —7), mean-
ing that the only role played by the sign of the asynchrony 7 is to
reverse the fast time 7, having no consequence on the system
dynamics. As it is well known, in the steady state (d; — 0) the
stable solutions of Eq. (23) are Gaussian pulses2>28 (see the
“Methods” section).

The CME vs. Haus ME. The CME (20) has been integrated
numerically using two different methods (see the “Methods” sec-
tion). First, we compare the predictions of the CME vs Haus ME.

In Fig. 1 we show the results obtained for different values of T
and fixed Ty. In the limit T > Ty, which is typical of solid-
state, fiber or gas lasers (provided that the cavity is not extremely
long) the gain saturation can be considered constant across the
pulse profile and the classic Gaussian pulse predicted by Haus ME
is found. However, if T; » Ty a very different solution is
obtained (Fig. 1a) which is accompanied by an increase of g
(Fig. 1b). Thus we can ascribe the qualitative change in the pulse
shape when Ty » Ty to the fast gain component g arising
from the coherent light-matter interaction, neglected in the
original approach by Haus. As well, according to Haus ME, if
Ty = Ty the pulse is centered at 7 = 0, while this no longer
holds in our CME when T approaches T (Fig. la). The fast
gain component (which is positive to the left of the pulse peak)
exerts a “force” on the pulse pulling it towards negative temporal
coordinates. By applying a certain modulation frequency
detuning A = Ty — Tg' (m —lry/ TZR) the pulse can be brought

back to 7 = 0. Correspondingly, the pulse intensity is maximum
although it still preserves a slight asymmetry in its tails.

The experiment. The experimental setup is sketched in Fig. 2,
and consists of an amplitude-modulated ring laser based on a
semiconductor amplifier (see the “Methods” section).

The optical path length is about 9 m, which corresponds to a
cavity roundtrip time Ty ., ~ 29 ns, and a field lifetime of tens
of nanoseconds. The choice of such a long cavity was motivated
by the will of exploring the limit T > T where Haus theory
was expected to fail. Due to the very large roundtrip time the laser
losses can be modulated around different harmonics of the cavity
free spectral range, which is convenient for varying in a simple
way the effective cavity roundtrip time. Although the CME (20)
was derived for fundamental modelocking we can still apply it to
the analysis of these experimental results considering that the
various pulses that coexist in the cavity do not interact because of
the strong modulation of losses. Hence we regard them as
belonging to n virtually independent lasers®3%4, if n is the
harmonic order of the modulation. Therefore, in the simulations
of Eq. (20) we simply set Ty = Ty oy,/n.

Extensive experiments have been carried out from harmonic
n = 14 (modulation frequency Ty ~ 484 MHz) up to n = 175
(T3 ~ 5995MHz). Faster and faster dynamics take place at
higher harmonic number and the limited detection bandwidth
gradually filters out most of the signal. In addition, lower
harmonic numbers display slower dynamics and smaller locking
range due to the long positive net gain window opening. Here we
choose to present results obtained around harmonic n = 25
(T ~ 866 MHz), leading to the simultaneous circulation of 25
equidistant pulses along the cavity.

Deeply in the locked regime distinct pulses show no
appreciable differences. On the contrary, at the edges of the
locking region both the detailed spatio-temporal plot and the
average trace of the pulse over successive roundtrips often differ
between statistical samples, which confirms the coherence of one
pulse from one roundtrip to the next but the loss of memory
between two consecutive optical pulses (separated by about
1.15ns) within one cavity roundtrip. See Methods for details
about the data acquisition and processing.

Analysis of experimental results. We have compared the pre-
dictions of our CME (20) with experimental results obtained in
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Fig. 2 Experimental setup. The actively modelocked laser is based on an antireflection coated semiconductor optical amplifier operated in a closed loop
including an optical diode for unidirectional operation, an intensity modulator and a low transmission fiber beam splitter allowing signal detection. OA fiber-
coupled semiconductor amplifier, PM single mode polarization-maintaining fiber, Ol optical isolator, MZM Mach-Zehnder lithium niobate intensity

modulator.

the ring-cavity semiconductor laser, for different effective values
of the cavity roundtrip time Ty. Here we show results for Ty =
1.155 ns, which is of the same order of magnitude as the gain
recovery time of semiconductors (we use T;=0.75ns in the
following numerical simulations), a situation where strong
deviations from Haus theory are expected.

The long-term intensity of the pulses is plotted versus
modulator detuning in Fig. 3, corresponding to our CME (20)
(Fig. 3a), the experiment (Fig. 3b), and Haus ME (Fig. 3c).

The three most typical pulse shapes are shown in Fig. 4 for the
CME (20) (Figs. 4a, c) and for the experiment (Figs. 4d, f).

Finally the most symmetric pulses are analyzed in Fig. 5,
corresponding to our CME (Fig. 5a) and the experiment (Fig. 5b).

The detuning interval over which stable pulses can be found is
similar in CME simulations and in the experiment. In the
experiment, outside the locked regime, the width of the peaks in
the radiofrequency spectrum indicate that the mode spacing of
the device is not defined to a better precision than a few tens of
kHz. Therefore, the detuning condition cannot be precisely
determined, and the vertical axis in Fig. 3b is in absolute units.
Also note that the origin of time t = 0 is arbitrary due to the
presence of numerous electronic and optical delays between the
modulation and the laser signals.

The asymmetric action of the detuning predicted by the CME
(Fig. 3a) and already observed in some earlier experiment®® is
experimentally confirmed (Fig. 3b). Haus ME fails in this regard
because it predicts that stable pulses are always Gaussian and
there is no difference between positive and negative detuning 74
besides a trivial mirror-symmetric dynamics®® (see the “Methods”
section).

In particular, a main effect of the detuning in Haus ME is a
shift of the Gaussian pulse with respect to the minimum loss
point 7 = 0 proportional to 74. In our CME, instead, the pulse
shape depends strongly on the sign of the detuning. Mathema-
tically, this asymmetry follows from the term 0, (gF) in Eq. (20a)
and from the very structure of Eq. (20c), which prevents the
invariance of the full CME set (20) under the simultaneous
changes ;4 — — 74, and T — —7. This agrees with the findings of
ref. ©/, where a similar shift was observed in the framework of a
model for the propagation of fast pulses in a fiber which goes
beyond the rate equation approximation, although it neglects gain
coherent dynamics.

Our theory also captures well the changes in the shape of the
pulses that are observed in the experiment as the modulation
period T\ is reduced. As shown in Fig. 4 the typical sequence by
increasing the modulation frequency is: asymmetric bell-shaped
pulses, pulses with a bump in the right tail, intense symmetric
pulses.

A quantitative discrepancy can be noticed concerning the pulse
duration, which is typically longer in the experiment than in the
theory except in the broader and weaker pulses of Figs. 4a, d.
Such a discrepancy was already observed in the earlier
experiments on active modelocking, for instance in a Nd:YAG
laser?6 and in a dye laser3®, and was ascribed to the etalon effect
caused by the various intracavity elements. The theoretical
treatment remains valid but the effective bandwidth of the
atomic gain curve is drastically reduced and the pulsewidth is
much wider than expected®. Specifically, we have determined
that parasitic reflections at the amplitude modulator are
responsible for the reduced spectral width. In addition, our
model for a two-level system cannot fully capture the whole
physics of a semiconductor amplifier, in particular by neglecting
the linewidth enhancement factor (Henry’s « factor) of
semiconductors, and this could have an impact on some
important features of the pulses.

Another relevant feature of the experimental pulses, even of the
most symmetric ones, is their non-Gaussianity as shown in Fig. 5, a
fact accounted for by CME (20) but clearly not by Haus ME.
Actually the experimental pulses are sech type, a fact already pointed
out in early experimental studies of coherent effects of modelocking
in argon lasers (compare our Fig. 5 with Fig. 2 of ref. 12). Our CME
predicts pulses that interpolate between Gaussians and hyperbolic
secants, and a clue of why this is happening comes from observing
the main contribution to the pulse shape of the fast gain component
g in Eq. (20a), which is —Qg'(9,g)F. In its turn the main
contribution to the derivative comes from the pulse intensity in Eq.

(20c), namely 9.g ~ (G/Tg) (W —|F |2) Hence there is a term

+(G/QTg) |FI’F in the field equation which has the same form as
in the ME for passive modelocking via fast saturable absorber??,
whose solutions are hyperbolic secants370. Certainly there are
additional terms in the CME (20) contributing to the pulse shape,
notably the active modulation term proportional to 72, which is
responsible for the Gaussianity. Apparently in the experiment the
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Fig. 3 Dependence of modelocking on the modulation frequency. The long-term intensity of pulses averaged over few modulation periods is displayed.
Numerical results from the CME (Eq. (20)) are shown in (a) for different values of the modulator detuning A = T{,ﬂ — Tl{w, and compared to the
experimental results in (b) for different values of the modulation frequency Ty, showing good agreement. For reference, the results obtained from Haus
theory are shown in (€). The CME captures an essential feature of modelocking observed in experiment, namely the asymmetric effect of the detuning
which is absent in Haus theory. The parameters used in (a) and (c) are Qg = 108 s, Tp=1155ns, £=0.6, M=12,r=13and T; = 0.75 ns.
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Fig. 4 Typical shapes of pulses. The three paradigmatic pulse shapes predicted theoretically (a), (b) and (¢) are compared with their experimentally
observed counterparts: (d), (e) and (f) (the experimental plots show the pulse intensity statistics, light and dark colors correspond to more and less
frequent events respectively, while the blue lines show the average pulse intensity). The vertical axis in experimental plots refer to the photocurrent

measured by the detector. Same parameters as in Fig. 3, with A= —101.73, 2.63 and 148.15 kHz in (a), (b), and (c) respectively.

role of the modulation on the pulse shape is less pronounced in
certain cases, and this should be further considered in the future. In
any case we can conclude that the CME (20) can explain, at least
partially, why the sech profile was observed in early experiments!?,
while our experimental observations indicate that such a qualitative
change is robust.

Discussion

We have set a framework for the study of laser modelocking via
CME. The approach put forward here is systematic and preserves
the atomic coherence due to light-matter interaction in such
a consistent and accurate way that is able to account for the
self-modelocking initiated by the RNGH coherent instability,
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Fig. 5 Shape of the most symmetric pulses. The intensity of the most symmetric theoretical (a) and experimental (b) pulse is depicted in logarithmic scale
together with Gaussian and hyperbolic-secant fits. It is evident that pulse tails deviate substantially from the Gaussian shape predicted by Haus theory,
exhibiting a smoother decay. The pulses shown here correspond respectively to those in Fig. 4c, f.

responsible for quantum-cascade laser spontaneous modelocking
and frequency comb generation.

The structure of the CME (20) is mathematically similar to
Haus ME (23) in that there are two dynamical variables, namely
the field F and the (slow) gain G, each ruled by a first-order
differential equation on the slow time T, whereas the newly
introduced fast component of the gain g depends instantaneously
(in T) on the true dynamical variables. The field F (also the gain
g) rigorously verifies periodic boundary conditions (16) by con-
struction, due to a proper definition of the slow and fast time
scales.

In the limit of slow gain, defined by Ty /Ts < 1, our CME and
Haus ME yield virtually identical results, as expected. However, as
the ratio Ty/T; — 1 the situation changes dramatically: The
divergent predictions of our CME with respect to Haus ME in
that limit have been experimentally confirmed, evidencing that
coherence in light-matter interaction, an often neglected feature
in applied laser physics, and fast gain dynamics can play a sig-
nificant role in laser modelocking, heavily affecting the shape and
the dynamics of pulses. In particular we have been able to trace
the experimentally observed hyperbolic-secant-like shape of
pulses under active modelocking to an effective fast saturable
absorption response present in the CME, owed to the amplifier
itself.

The CME can be generalized to a variety of active (e.g., pump-
current modulation) and passive (e.g., saturable absorber, Kerr
lens) modelocking techniques. In particular, we observe that the
very large ratio Ty /T needed for the emergence of dissipative
solitons in the context of passive modelocking®® should require
using our CME properly adapted to the setup in order to reveal
possible coherent effects. Further, our theory could generalize the
cubic-quintic complex Ginzburg-Landau equation describing
dissipative solitons®>70, to the case in which gain dynamics
cannot be neglected. Moreover, the CME can account for the
most diverse intracavity effects, including spontaneous mod-
elocking initiated by the RNGH instability, superfluorescent and
superradiant coherent effects.

All this makes the CME a flexible, numerically efficient,
compact, and accurate fundamental platform for laser mod-
elocking description, which solves a longstanding and overlooked
fundamental problem. The CME is particularly suitable for
semiconductor lasers, including quantum dots and especially
quantum-cascade lasers with potentially disruptive applications
for the generation of frequency combs in the mid infrared region
of the electromagnetic spectrum. From a general perspective we

expect that the CME will contribute to the development of new
types of lasers, based on the rich phenomenology associated to
the coherent effects of light-matter interaction.

Methods

Maxwell-Bloch equations and boundary condition. The standard
Maxwell-Bloch equations for a homogeneously broadened two-level medium can
be written as*34,

9.f +vy'o,f = (a/2)p, (24a)
9,p = Qg(Df —p) , (24b)
Tgo,D=1—D—Re(p*f), (24¢)

where z is the light propagation direction and ¢ is time. The actual light electric
field, electric polarization, and population inversion are respectively proportional
to Re[f(z, t)elkoz=«oD], Tm(p(z, t)elko?~«)], and D(z,t), where w, is the atomic
transition frequency and k, = nyw,/c, being n, the background refractive index at
the frequency w,. As we are considering the relevant case when typically thousands
of cavity modes fall under the gain line, we assume that one of such modes is in
resonance with the atomic transition, and then wj, is interpreted also as the reso-
nant cavity mode frequency.

All three variables (f, p, D) are dimensionless and, in particular |f|* represents
the light intensity normalized to its saturation value. As for the parameters, v, is
the background group velocity (without taking into account the effect of the two-
level transition), a is the unsaturated gain per unit length (proportional to the
pump), Q is the HWHM gain bandwidth, and T is the population inversion
(gain) lifetime. Typical values for the time constants of semiconductor, solid-state,
and fiber lasers actually span several orders of magnitude: Qg' ~ 100 fs - 1 ps, and
T ~ 1ps — 100 ps. Note that in the modern notation of laser dynamics studies,
Qg and TG' are usually denoted by y, , resp. y*34.

Equations (24) are supplemented by the boundary condition for the light field
as imposed by the cavity and the intracavity modulator: Respectively denoting by
z =0 and by z = w the entrance and exit planes of the active medium, and
assuming a ring cavity for simplicity, the boundary condition reads

£(0,8) = e MWl £ — 1),

Here ¢ is the linear loss coefficient of the resonator (including the minimum loss
introduced by the modulator), while m(t) describes the modulator
transmission state.

The delay f, in Eq. (25) is the travel time of light along the cavity, from the
medium exit plane back to the medium entrance plane, so that

(25)

T = t, + w/v,, (26)
is the cold-cavity roundtrip time. The amplifier modifies the group velocity of light
from its cold-cavity value v, to a value v, so that the actual cavity roundtrip time
reads

T = TS + 8Ty, (27)
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with
ST =w(v ' —v1), (28)
an increment which we evaluate below.
Next we shift time by T in Eq. (25) for convenience,
0,8+ Tg) = e Ol f (w, t 4+ w/v), (29)

where we wrote m(t) instead of m(t + Ty) (it is a redefinition), and used the
relation Ty — t, = w/v, as follows from Egs. (26), (27), and (28). As losses are
assumed small, as is the effect of the modulator, the exponential in (30) is
customarily Taylor expanded?8 as 1 — ¢ — m(t),

f0, 8+ Tg) =1 —L—m)]f(w,t +w/v),

which is the form of the boundary condition we will use.

Let us now evaluate (28), which requires determining the group velocity v. We
do so from the dispersion relation of the medium as usual: we consider the
propagation of a monochromatic wave f(z, t) = f, (z)e ™, detuned by w from the
atomic resonance. The polarization has a similar expression, p(z,t) = p, (z)e !,
while the population inversion will be a constant, D. Substitution of these
expressions into Eqs. (24a) and (24b) leads to the result f, (z) = f,(0)e**, where

w aD Qgw aD Q%
R L. © _ G
(@) ("o ) Q% + w2> 2 Q% + w?
The inverse group velocity is then v~! = Re(dk/dw)
amplification) which substituted into Eq. (28) yields

(30)

(1)

weo (Im(k) accounts for

6Tg =——

LETON (32)
This expression is valid for monochromatic operation while in the modelocking
regime the field f is a superposition of modes of different frequencies and then D is
time dependent in general. However D can be split into its average value over a
modulation period, D, and a remainder, which we assume small. As this remainder
has null average by definition its effect on the pulse velocity should be somehow
neutral (clearly much less than that of D) and affect mainly its shape. We thus
approximate 8Ty by

0Ty ~

0.0 (33)

We note that an expression equivalent to (33) has been given by Haus®.

The field map. We compute the field change
O amp (1) = f(w, £+ w/v) = £(0,1),

produced by the amplifier between an input field and its output (remind that v
denotes the group velocity of light in the amplifier), assuming that the change is
small. Mathematically this is done through a Taylor expansion to the first order in
the amplifier length w which, in combination with the Maxwell Eq. (24a), yields

f amp (£) = (aw/2)p(0,t) + 6TrA,f(0, 1) .

Equating the right-hand sides of Egs. (34) and (35) leads to an expression for
f(w,t + w/v) which can be plugged into the boundary condition (30). The result of
this operation is the map

(34)

(35)

J0, 6+ Ty) = £(0,1) = = L+ m(1)[f(0, 1)
D (36)
L — 0= m(0) (0. 1) + —-3,(0,1)|.
Qg
where we introduced the usual laser pump parameter as
r=aw/2(, (37)

which is dimensionless and equals 1 at the free-running lasing threshold. Finally we
approximate (r[1 — ¢ — m(t)] by ¢r in the last term of Eq. (36) and arrive to the
sought-for map given in Eq. (7) in the main text.

The Gaussian pulses of Haus ME. We look for a solution F = F(z) and G = G,
of Eq. (23) which is stationary with respect to the slow time T' For the electric field
the solution is a Gaussian pulse in the fast time 72°

2
i 1{t—1
F(1) = (/1% - o), 38
R 1S | B
where ¢, is an arbitrary phase,
Ty r
I = - —1),
P \/Erp (GO ) (39)
is the peak intensity,
1, =Gy /a0y, (40)

is the pulse duration, and

—=l1/2
7y = 140/ (2u0,Gy*) (41)

is the shift of the pulse peak from the lowest-loss point, proportional to the
asynchrony 7.
The lasing threshold gain G, is solution of the equation

l/2 (Q(fd)z

= (),
4G,

Gy — 1 — (/) Gy (42)
and it is marginally greater than 1 in the realistic double limit Q; < Qg < 15".
Higher-order, Gauss-Hermite pulses exist as steady states of the problem?’,
which however are always unstable?8. The stability and dynamics of the Gaussian

pulses have been studied, e.g., in refs. 28:66,

The CME and the RNGH instability of free-running lasers. Equations (20) with
u = 14 = 0 (absence of loss modulation) govern the dynamics of a free-running
laser. They admit the stationary solution {F,G,g}={F,,G,,g,}, with
|F,? =r—1,G, =1,and g, = 0, which represents the resonant singlemode lasing
state. This solution exists for r > 1 and, as we show next, experiences the RNGH
instability. For that, we perform a linear stability analysis by adding perturbations
{8F(T,7),8G(T),8g(T, 1)}, to the steady state {F,, G,, g}, and keeping only
terms linear in the perturbations. As the resulting Egs. (20) (i) are linear, (ii) do not
depend explicitly on 7 (they are “translation invariant”), and (iii) verify periodic
boundary conditions in 7, the perturbations 6F(T, 7) and 8g(T,7) can be written
as Fourier series 0F(T, 1) = X,0F ,(T) exp(—iwt), analogously for 8g(T, 1)
(remind that §G(T) is not a function of 7), so that only equal-frequency coefficients
OF,(T), 8F* ,(T), and 8g,(T) are (linearly) coupled. Note that the average
exp(—iwt) = 0 because the perturbations must verify periodic boundary condi-
tions in 7 and we are considering w # 0 as we search for instabilities towards
longitudinal modes different from the lasing mode.
Let us start with dG(T), whose dynamical equation follows from Eq. (20b) and

reads

d ro—

ar 0G = Tq 0G,
whose solution is §G(T) = §G(0) exp(A;T) with A; = —r/Tg < 0. Thus we set
8 G 0 in the following. Next, Eq. (20c) determines 8g, (T) as

Y 1&
r—iwTg

(43)

0g,(T) = (44)

[6F,(T) + 0F* ,(T)].

Note that Eq. (44), unlike (43), is an algebraic equation and not a dynamical
equation, as discussed in the main text. Finally we consider the evolution of the
field perturbations. From Eq. (20a) and using (44) we obtain

Ty 9 ( SF, ) Gtew) o) < oF, ) )
AT \GSF ) o(w) %H(w) S, )’
where
o ) 1t+ige
—(r— O @) T 4
c(w) = (r 1)(1 +1QG QZG) P (46)

It is easy to check that the perturbations” amplitude and phase quadratures,
respectively defined as 6X,, = (8F,, + 6F* ) and 8Y,, = i(6F, — 6F* ), evolve as
8Q,(T) = 8Q,(0) exp(LAoT/Ty), Q € {X, Y}. Here Ay = —(w/Qg)* < 0, while
Ax = —(0/Qg)* — 2c(w) can become positive in a band of frequencies above a
given pump threshold, signaling the growth of perturbations of appropriate
frequency offset w, i.e., the RNGH instability. Considering the limit of interest

y=(Qqg TG)’l/ % < 1 (which defines so-called class B lasers), and normalizing the
frequency offset as @ = (Tg/ QG)I/ % (motivated by the fact that the growing
sidebands have frequencies of the order of (Qg/T¢)"/?52-5%38), we get

2r(r -1)

Rely = [3(r—1) — @* — yz +0("). (47)
For a pump r > 9, ReAy > 0 for @ € [&),7&4] with
20% =3(r— 1)/ (r—1)(r-9), (48)

exactly as in the RNGH instability of class B lasers52-5458,60,

To conclude we note that, on the contrary, Haus ME (23) with the same setting
(4 = 74 = 0) becomes a usual rate-equation description of laser dynamics which
cannot account for the RNGH instability.

Experimental methods. The gain element of the ring semiconductor laser is
a fiber-coupled traveling-wave high-power semiconductor optical amplifier
(Superlum SOA-482) whose central wavelength is at 970 nm. It is operated in
a polarization-maintaining fiber ring cavity which includes a 32 dB
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polarization-maintaining optical isolator and a 10 GHz and 20 dB extinction-ratio
lithium-niobate intensity modulator (Photline NIR-MX-LN-10), responsible for
the loss modulation. The laser output is picked at a 10% reflectivity fiber beam
splitter and guided to a 35 GHz photoreceiver (New Focus 1474-A). The substrate
temperature of the gain medium is actively stabilized to 0.01 °C and all of the other
components of the resonator are contained in a passive thermal stabilization
enclosure.

The intensity modulator is operated around its linear region with an amplitude
modulation close to 20 dB. At the lowest possible losses imposed by the modulator
the laser threshold is at 23.5 mA and most of the measurements have been
performed at a bias current of 30 mA. Additional tests performed at 36 mA did not
reveal critical differences.

The modulation frequency was automatically scanned from 866.15 to 866.65 MHz
by steps of 10 kHz. For each of these 50 values the photoreceiver signal has been
acquired as series of ten million points by a single shot 33 GHz and 100 GS
per second sampling rate oscilloscope (Tektronix DPO73304D). Another channel of
the oscilloscope was used to monitor the loss modulation signal provided by a 12.5
GHz synthetizer (Rohde&Schwarz SMB-B112). The statistical and spatio-temporal
analysis of the pulses have been realized on each single shot time trace using a
numerical threshold crossing on the loss modulation signal as the origin of time for
the pulse under consideration. In order to minimize the artificial jitter which would
result from the discrete sampling of the oscilloscope, both the modulation and the
detector traces have been linearly interpolated (in a mutually consistent way) such as
to ensure zero jitter for the modulation signal while conserving fully and only the real
jitter on the optical signal.

Around a modulation frequency of about 866 MHz each time trace contains
about 85,000 periods corresponding to 25 optical pulses propagating over 3400
cavity round trips. To perform the statistical and spatio-temporal analysis shown in
the next section we select one pulse out of 25 in the time series, which corresponds
to actually analyzing always the same optical pulse one roundtrip after the other.
Therefore the sample size for the statistical and spatio-temporal analysis is 3400,
i.e., the number of roundtrips in one single-shot time trace. This analysis has been
performed on several different optical pulses to check consistency.

Numerical simulation methods. We used two independent, standard algorithms
to numerically simulate Eq. (20). One uses the split-step (Fourier) method while
the other relies on a truncated modal expansion. Both methods give substantially
identical results, confirming the validity of the assumptions. Here we

illustrate them.

In the split-step method case it proves convenient to scale the slow and fast time
variables T and 7 in Eq. (20) respectively to the cavity roundtrip time Ty and to the
time 7¢_g = (QGQR)A/ 2, which gives the order of magnitude of the pulse duration
in the Kuizenga-Siegman theory; see (40). As Eq. (20c) is not a true dynamical
equation, we can solve it at each time T, which we do perturbatively in the Fourier
domain by neglecting at the lower order the nonlinear terms g|F|* and 9,|F|*. The
leading-order approximation to the fast gain obtained in that way is

o HT,0) — (T, w)

g, (T =G(T 49
folT.w) = G TP (49)
where the tilde denotes the Fourier transform with respect to 7,
p = (TyTg)/(tx_sTx)> and I(T,7) = |F(T, 7)|*. The next order in the
perturbative expansion is obtained by replacing g with g, in the term |F g,
_ G(T)¥(T,w) + §(T,0) — ¢(T, w
o (1)~ ODFT0) 4 (1.0 ~d(T.0) 50

1 +ipw

where ¢(T,7) = go(T,7)I(T,7) and y(T, ) = 10, |F(T, 7)|%. By performing the

inverse Fourier transform of Egs. (49) and (50) we obtain g, (T, 7) and g, (T, 7) and
we can finally write g(T,7) = g,(T, 1) + g, (T, 7). We have checked numerically
that the correction g, to the fast gain g is indeed very small, which supports our
perturbative treatment.

In this way we are left with Eq. (20a) for the electric field F coupled to the
mean-field Eq. (20b) for the slow gain G(T). The equation for the electric field can
be integrated using the standard split-step Fourier method, where the linear part is
solved in the frequency domain and the nonlinear one with an algorithm of the
Runge-Kutta family. The same Runge-Kutta method is used to integrate the
equation for G(T). Both equations depend on g(T,7) which is computed at each
instant T' of the slow time discretization as sketched above.

As for the truncated modal expansion, we introduce the new dimensionless
slow time ¢t = T /Ty, fast time z = 7/T, + 1/2 (which runs 0 to 1), and
parameters

1 1 CTg Ty—Ty
1= Ty ~QeTy 0 Ty Ty
(51)
R
T, ' T, b

Taking into account that Q;T\; = 27, Egs. (20) become
0719,F =[G — 1 — 4n%(z — 1/2)°+A0, + %] F

2 (52a)
+ gF — 19, (gF) + 1°9;(gF),
3G=r —6(1 +W) —glFF . (52b)
—1 _ =12 2 2 2
b7'9.g =G(|FP — |F]) + gl - gl — ¢
(52¢)

G
+ 71532\1:\2-
We now expand F and g in Fourier modes, owed to the periodic boundary
conditions (16), i.e. F(T,—Ty,/2) = F(T,+Ty/2) and
g(T,—Ty/2) = g(T, +Ty/2):

N

F(!,Z) = Z emnzfn(T) )

n=—N

N
gl) =) &g, (53)
n=—N

with «, = 27n, g, = g*,, and g, = 0 (g(2) has no dc component). By projecting
Egs. (52a) and (52¢) on the n-th mode we obtain

1

o' % =(G—1+ia,A — n’*Gal)f, — 4712;42/ e ?(z — 1/2)*Fdz

, ! (54a)

+ / e [gF — . (gF) + n°02(gF)] dz,
0

o1
(1 + iﬂ)g,« = */ ¢ (G +g)|F"dz
b Jo

= rl
nG
+ 2/,

(54b)
e %23 |F|*dz.

Making use of modal expansions (53) and of integration by parts the above
equations can be written as

22
0’1%: (6— 1 +ia,A — n*Go? —&>fn —Z/AZZf—mz

dt 3 m#n (n - m) (553)
1

+ (1 —ina, — nzai)/ e 7 gldz,
Jo
(1 + i‘i”) + Z ' i(%ﬁ%)z‘pfd = ,(1 _ i%>6 ' ’i“"Z|F|2d
b )8 | 0e zZ g, = 2 )¢ Oe z.
(55b)

The last is a set of linear equations for the g,’s that can be written in matrix form as
Ag =F , where the elements of the matrix A are

1
Ay = (1 +i%>5m‘” + / el =@z pPdz | (56)
Jo
and the elements of the vector F are
1
f,=— (1 - 1’7:")6/ e PPdz (57)
Jo

We have verified numerically that the elements out of the main diagonal of A can
be neglected so that we used the following approximation for the amplitudes g,

1
747226/ e 2| F|*dz .
1+i% 4+ 30 [l 0

1—ile

8 = (58)
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