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Abstract  

Lipid oxidation results in the formation of many reactive products, such as small aldehydes, 

substituted alkenals, and cyclopentenone prostaglandins, which are all able to form covalent 

adducts with nucleophilic residues of proteins.  This process is called lipoxidation, and the 

resulting adducts are called advanced lipoxidation end products (ALEs), by analogy with the 

formation of advanced glycoxidation end products from oxidized sugars. Modification of 

proteins by reactive oxidized lipids leads to structural changes such as increased β-sheet 

conformation, which tends to result in amyloid-like structures and oligomerisation, or 

unfolding and aggregation. Reaction with catalytic cysteines is often responsible for loss of 

enzymatic activity in lipoxidized proteins, although inhibition may also occur through 

conformational changes at more distant sites affecting substrate binding or regulation. On 

the other hand, a few proteins are activated by lipoxidation-induced oligomerisation or 

interactions, leading to increased downstream signalling. At the cellular level, it is clear that 

some proteins are much more susceptible to lipoxidation than others. ALEs affect cell 

metabolism, protein-protein interactions, protein turnover via the proteasome, and cell 

viability. Evidence is building that they play roles in both physiological and pathological 

situations, and inhibiting ALE formation can have beneficial effects.   
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Introduction 

Many types of post-translational modification (PTMs) of proteins exist, and can be 

broadly divided into those that are enzymatically catalysed and those that occur non-

enzymatically, for example through oxidation or other chemical modifications. Although 

enzymatic PTMs have received more attention based on their physiological and regulatory 

roles, non-enzymatic modifications also cause changes in protein structure and function, 

often with important downstream cellular effects. While advanced glycation (or glycoxidation) 

end products (Box 1) are well recognized as the outcomes of proteins attacked by sugars or 

oxidized sugars and thought to contribute to disease (1-4), the formation of advanced 

lipoxidation end products (ALEs) is less studied. Lipoxidation refers to the formation of 

covalent adducts between reactive products of lipid oxidation and macromolecules such as 

proteins (2, 5), DNA (6, 7) and phospholipids (8, 9). Lipid oxidation can arise in vivo during 

situations of oxidative stress and redox imbalance, such as inflammation or environmental 

toxicity (10), and generates many different primary and secondary oxidation products, as 

reviewed previously (11-13).  Lipid oxidation products (LOPs) containing aldehydes and α,β-

unsaturated moieties are most reactive and can form covalent adducts. These include full 

length oxidized fatty acyl chains, such as isoprostanes containing cyclopentenone rings (e.g. 

15-Deoxy-Δ12,14-prostaglandin J2 and isolevuglandins (isoLGs), or products arising from 

non-enzymatic Hock cleavage of the oxidized fatty acyl chains, for example 

malondialdehyde and α,β-unsaturated acyl aldehydes such as acrolein, crotonaldehyde, 4-

hydroxyhexenal (4-HHE) and 4-hydroxynonenal (4-HNE). These compounds are the most 

reactive, best known or most studied small reactive aldehydes derived from lipid 

peroxidation (12, 14), although it should be noted that some compounds, e.g. acrolein and 

glyoxal, can be formed from both lipid and sugar oxidation. 

Recently, there has been a surge in interest in lipoxidation of proteins and its 

biological effects, owing to evidence that it may play a role in the pathology of diseases such 

as atherosclerosis, neurodegenerative diseases, autoimmune diseases and type 2 diabetes 

(8, 14-16). Oxidative damage to proteins, including by reactive LOPs, has also been 

implicated in ageing, as the level of modification increases greatly in the last third of the life 

span, although evidence for a causative effect is still lacking (17). Research in the area of 

lipoxidation is wide-ranging, but this article focuses on the biochemical aspects of protein 

modification: the changes to protein primary structure and the concomitant effects on tertiary 

structure and activity from studies in vitro with model proteins or cells, but also considers 

exemplar cellular effects of lipoxidation and its role in pathology. 
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The chemistry of lipoxidation 

The electrophilic lipid oxidation products (LOPs) can react with nucleophiles on 

biomolecules, including proteins, nucleic acids and metabolites, via a number of different 

mechanisms (Figure 1).  For proteins, LOPs containing ketones and aldehydes can form 

Schiff base products with lysine or arginine, via the loss of water (Figure 1, scheme A), 

although only the primary amine nucleophiles found on lysine or the protein N-terminus form 

generally form a relatively stable Schiff base (5, 18). The nucleophilic reaction is favoured 

when the amine is unprotonated, for instance under basic conditions or where the protein 

structure results in an increase in the pKa of the amine (19).  While reaction of aldehydes 

and ketones could occur with other nucleophilic amino acids such as serine or cysteine, the 

hemi-acetal or hemi-thial products formed are unstable in aqueous solution and are not 

observed.  The formation of the Schiff base itself is freely reversible in aqueous solution, 

especially under acidic conditions, and so for isolation from a biological sample and 

subsequent analysis, e.g. by mass spectrometry, they are often reduced in situ to the amine 

using a mild reductant such as sodium borohydride to stabilize the adduct (20). 

Many LOPs have multiple functional groups that allow the formation of more stable 

adducts (21). Bifunctional aldehydes such as malondialdehyde and methylglyoxal can form 

stable adducts with arginine through intramolecular reaction of the second carbonyl group 

following the initial Schiff base formation (Figure 1, scheme B). α,β-Unsaturated carbonyl-

containing LOPs, can react via Schiff base formation with the carbonyl group, but more 

usually react by Michael addition to the β-carbon of a range of different nucleophilic amino 

acid side chains, most commonly lysine, cysteine and histidine (Figure 1, scheme C). 

Nitroalkenes from nitrated fatty acids also react via Michael addition (22, 23). While 

occasionally lipoxidation adducts with arginine have been reported, the basicity of arginine 

means that it is usually protonated and relatively unreactive with α,β-unsaturated carbonyl 

compounds.  For the other amino acids, the propensity of the adduct to form depends on:  

i) the nucleophilicity of the attacking atom of the amino acid side chain, which can be 

affected significantly by the local protein environment, but with thiol generally accepted to 

be the best nucleophile;  

ii) the reactivity of the LOP, with the shorter chain products such as acrolein and 

crotonaldehyde being more reactive, and electron-withdrawing groups in substituted 

alkenals increasing reactivity (24);   

iii) the stability of the product, which depends on the leaving group ability of the added 

moiety.  
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In practice, cysteine adducts are often observed due to good nucleophilicity of the 

thiol, while histidine adducts are generally observed as the most stable due to the poor 

leaving group nature of the imidazole at neutral pH. Additional functionality at the 4-position, 

such as the 4-hydroxy group in HNE, can help to stabilize the product, for example the 

formation of cyclic acetal in the case of 4-HNE (Figure 1, scheme D). 

The initial adducts formed by reaction with bifunctional LOPs, such as α,β-

unsaturated carbonyls, can react further with an additional molecule of the electrophile, often 

giving rise to stable cyclic products that appear to be particularly important in aberrant 

recognition of proteins (25, 26).  Examples are the formation of Nε-(3-formyl-3,4-

dehydropiperidino)lysine (FDP-lysine) from the reaction with two molecules of acrolein or the 

formation of a dihydropyridyl lysine (DHP-lysine) from reaction with two molecules of 

malodialdehyde and a molecule of acetaldehyde (Figure 2, scheme A). Alternatively, the 

adducts of one, two or more bifunctional LOPs initially formed can react with another protein 

nucleophile, resulting in inter or intramolecular crosslinks with a wide range of linear or cyclic 

structures.  Cyclic structures such as pyrroles and furans (Figure 2, scheme B) are the 

most common ones observed from the reaction of 4-substituted α,β-unsaturated carbonyl 

compounds such as HNE, presumably due to their stability. 

 

Effects on protein structure and function 

 Lipoxidation clearly alters the structure of the protein, and for larger, longer chain 

adducts, introduces relatively hydrophobic and bulky species. Thus it can have a variety of 

different effects at the structural and functional level, which are dependent both on the 

structure of the target protein and the nature of the specific aldehyde. The common types of 

effects are summarized in Figure 3 and some examples are described in more detail below. 

Unfolding and Aggregation 

With globular proteins, modification by lipid electrophiles at low levels is initially likely 

to target the reactive surface residues, but small aldehydes, e.g. acrolein, are able to 

penetrate into binding pockets or folds, causing structural instability that subsequently leads 

to protein unfolding. Studies carried out with model proteins in vitro suggest that the effects 

are concentration dependent, and that once a threshold of modification that triggers 

unfolding and exposure of normally buried residues is reached, the protein becomes more 

susceptible to further modification. Although this has been demonstrated more extensively 

for direct oxidative modifications, such as metal-catalysed oxidation or HOCl-induced 

modification (27), there have been few studies testing lipoxidation. Even for protein 
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oxidation, there is disagreement over the extent of effects. For example, it has been 

calculated that a single oxidation event is able to destabilize susceptible proteins (28), but a 

study using molecular dynamics simulations of the effect of carbonyl formation by direct 

oxidative modification on lysine, arginine, or proline residues in the headpiece of villin 

suggested that high levels of modification were required to destabilize and unfold the protein 

(29). This was despite the fact that carbonyl formation on a lysine or arginine residue was 

found to be equivalent to a hydrophobic neutral mutation, which was suggested to increase 

the intrinsic aggregation propensity of the protein. This discrepancy between reports 

probably reflects differences in susceptibility of individual proteins, and is also probably the 

case for lipoxidative modifications. In addition to direct alteration of hydrophobicity by 

introduction of acyl groups, lipoxidation often alters the charge state of the protein, as 

adducts are formed on basic residues (lysine, arginine, histidine) leading to loss of positive 

charge. Michael adduct formation on cysteine may also alter the charge, as low pKa 

cysteines exist in the thiolate form (negatively charged) under physiological conditions (28). 

Some studies have demonstrated changes in secondary structure following treatment 

of proteins in vitro with reactive lipid oxidation products, typically involving an increase in the 

proportion of β-sheet structure compared to α-helix. Modification of the plasma protein 

fibrinogen by methylgyoxal, which is a product of both sugar and lipid oxidation, was found to 

alter the structure from approximately 86% α-helix with little β-sheet to 65% β-sheet (30). 

This change was associated with increased protein aggregation, which fits with the general 

observation that β-sheet structures provide a better environment for the intermolecular 

interactions required for oligomerization and fibril formation.  A wider range of lipid 

peroxidation-derived aldehydes (4-HNE, malondialdehyde, glyoxal, and secosterols A and B) 

were tested on a human antibody and a light chain; they were also found to result in 

increased β–sheet conformation and propensity for aggregation (31). In this case, further 

investigation by transmission electron microscopy showed that two different types of 

conformational change occurred: HNE caused amyloid fibril formation, while the other 

aldehydes caused an amorphous aggregation. The mechanisms were also aldehyde 

dependent, as the secosterols induced a classic nucleated polymerization-type aggregation 

following a substantial lag phase, in contrast to the small aldehydes HNE, MDA and glyoxal, 

which caused a lag-free seeded-type aggregation. These structural changes may be induced 

by the stereochemical or electrostatic structural changes mentioned above. 

Inhibition of enzymatic activity 

As lipoxidation involves reaction with histidine, cysteine, lysine and occasionally 

arginine residues, which are often key residues in enzymatic catalytic sites, it is not 
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surprising that treatment with reactive lipid products tends to cause loss of enzymatic 

activity. Even if not directly involved in catalysis, modification of these residues at or close to 

the active site can block binding of the substrate or alter the active conformation through the 

types of hydrophobic effects described above. Consequently, lipoxidation is often perceived 

as a detrimental modification resulting in loss of function.  Inhibition by lipid oxidation derived 

aldehydes has been observed for several enzymes, usually in vitro but data from cellular 

treatments and in vivo situations also exist (Table 1). Much early work focused on glycolytic 

enzymes, such as glyceraldehyde-3-phosphate dehydrogenase (GAPDH), owing to their 

high abundance and convenient activity assays, and these continue to be well-studied 

models.  For GAPDH it is clear that inhibition by HNE or acrolein is associated with attack on 

cysteine residues, although at higher treatments histidine and lysine residues can also be 

modified (32). Similar effects have been observed more recently, and key sites of 

modification have been identified with the catalytic (C150) and regulatory cysteines (C152) 

noted as most sensitive and other cysteines (e.g. C156; C282) modified at higher acrolein 

levels (33, 34). Another enzyme with a catalytic cysteine that has been found to be 

susceptible to modification by aldehydes both in vitro and in cells is the peptidyl-prolyl 

isomerase Pin1. HNE forms Michael adducts on Pin1, while its keto analogue 4-oxononenal 

(ONE), which is more than 100-fold more reactive, led to the formation of a pyrrole-

containing cross-link between C113 and K117 in the active site (35). This modification is 

thought to be irreversible and block the active site; although the enzyme activity was not 

measured in this study, it is known that oxidative damage to Pin1 occurs in Alzheimer’s 

disease brain and causes inactivation of the enzyme (36). As tau is a substrate of Pin1 and 

cis-trans isomerisation is important in protein stabilization, this clearly offers a mechanism by 

which tau neurofibrillary tangles could occur in disease. HNE and ONE are also able to 

inhibit mitochondrial aldehyde dehydrogenase (ALDH2), an enzyme that detoxifies 

aldehydes by oxidation and contains three adjacent cysteine residues in its active site, 

although at lower levels they can act as substrates (37). Larger LOPs also cause enzyme 

inhibition, for example, the modification of the catalytic C298 of aldose reductase AKR1B1, a 

related enzyme, by PGA1 and other cyclopentenone prostaglandins (38). 

 In pyruvate kinase, which does not contain a catalytic cysteine, modification and 

inhibition in vitro by several aldehydes has also been observed: the 9-carbon LOPs HNE and 

ONE modified both cysteine and histidine residues, decreased enzymatic activity and 

increased protein cross-linking (39). Acrolein, malondialdehyde and HHE were found to 

cause different modification profiles of pyruvate kinase, reflecting their size and reactivity, 

and all caused inhibition although acrolein had the strongest effect at physiological 

concentrations (40). While some of the residues modified were close to substrate binding 
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and regulatory sites, it was concluded that the severe inhibition probably related to 

destabilization of the globular structure, especially with longer treatment times. Similarly, the 

zinc-containing enzyme SIRT3 was found to be inhibited by modification at C280, distal from 

the active site H248, which was not adducted (41). Here it also appears that inhibition 

involves structural changes in the protein, specifically a shift in the Zn-binding motif leading 

to alteration in the catalytic cleft that prevents substrate binding. 

 

Increased enzymatic or biological activity 

Interestingly, in a small number of cases, LOP adduct formation can activate or alter 

the function of some proteins. One example is the GTP-binding protein H-Ras. PTMs are 

known to play a role in its function; it is normally isoprenylated at the C-terminal domain but 

additionally has two cysteines that can be palmitoylated, C181 and C184. However, 

cyclopentenone prostaglandins such as 15-deoxy-Δ12,14-Prostaglandin J2 (15dΔ-PGJ2) and 

Δ12-PGJ2 have been found to bind selectively to the H-Ras hypervariable domain at these 

residues, cross-linking the cysteines and activating ras signalling (42). In fact, the sites of 

adduct were dependent of the CyPG structure, as PGA1 and 8-iso-PGA1 bound to cysteine 

118 in the GTP-binding motif. Activation of H-ras by CyPGs led to increased proliferation and 

protection from apoptosis, showing the physiological relevance of this mechanism (43). 

Similar studies have been carried out on GSTP1-1, a cellular defence enzyme that 

conjugates electrophilic compounds to glutathione for subsequent export, but also regulates 

stress signalling pathways. 15d-PGJ2, HNE and other reactive lipid products caused cross-

linking of GSTP1-1 via C47 and C101, but while the small aldehyde effects were reversible, 

the CyPG effects were not (44, 45).  15d-PGJ2-induced oligomerisation of GSTP1-1 caused 

sustained c-Jun NH2-terminal kinase activation and apoptosis. It has also been found that 

the mammalian intracellular lipid-binding protein epithelial fatty acid-binding protein (E-

FABP) can be covalently modified by HNE at C120, which normally forms a disulfide with 

Cys-127 within the ligand binding cavity. As retinal epithelial cell lines from E-FABP null mice 

contain higher levels of HNE-modified proteins, it has been suggested that the protein may 

protect the cell by scavenging reactive oxidized lipids (46). 

 

Differential susceptibility to modification 

There is increasing evidence that some cellular proteins are particularly susceptible 

to modification by reactive electrophilic LOPs in vivo.  Exposure of cells to an analogue of 

HNE that gave the same phenotypic response, but which had an additional azido or alkynyl 
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reactive group at the distal end of the alkyl chain, enabled the direct enrichment of HNE-

modified proteins using highly selective click chemistry, and their subsequent identification 

by mass spectrometry (47, 48). Proteins involved in stress response (e.g. HSP70 and 

HSP90) and in redox regulation (GSTP1, peroxiredoxin-1) were identified as being 

particularly sensitive to modification in vivo. A broader screen using a similar approach 

identified >400 proteins commonly modified in 2 phenotypically-distinct cell lines using HNE 

and ONE.  These were classified by cellular functional protein systems; protein synthesis 

and catabolism, mitochondrial electron transport and the cytoskeleton were identified as 

common targets (49). Interestingly, the cell lines also differed substantially in their 

intracellular GSH concentrations, and high GSH gave much lower levels of modification. This 

approach was developed further using an isotopically-tagged, photo-cleavable HNE 

derivative, to identify the sites of modification of 398 adducts (386 cysteine and 12 histidine) 

on 335 proteins, and demonstrated that these adducts are rapidly lost in intact cells and the 

rate of loss is also site-selective (50).  Targets of reactive environmental electrophiles (e.g. 

hydroquinone and the antifungal chlorothalonil) showed a similar selectivity, with 

modification of enzymes from glycolysis and lipid metabolism, and cytoskeletal proteins 

predominating (51), while a different sub-set has been found for 2-trans-hexadecenal 

adducts (52).  In an orthogonal approach, thiol groups on proteins were identified using a 

thiol-reactive click chemistry probe to enrich cysteines unmodified by the added electrophile, 

which enabled targets of HNE (53) and acrolein (54) to be mapped. These chemical 

proteomics approaches overcome some of the limitations of previous approaches using 

biotin hydrazide, which reacts with any aldehyde- or ketone-containing moiety, and antibody 

approaches where cross-reactivity is a significant issue. A common finding is that the 

susceptible proteins tend to be modified on hyper-reactive cysteine residues with low pKas. 

This is supported by a recent meta-analysis of electrophilic adduct formation, which 

suggested that lysine and histidine modification was more random than that of cysteines 

(55). 

 

Cellular outcomes of lipoxidation 

 The cellular outcome of protein lipoxidation depends on the protein being modified, 

the nature of the modification, and the extent of the modification. The latter is likely a critical 

factor that may switch the response from protective to deleterious, which can be illustrated 

by considering the effect of protein unfolding. Slight modification by longer chain adducts 

increases the hydrophobicity of the protein, both directly and through mild unfolding 

exposing hydrophobic residues. Exposure of hydrophobic regions leads to enhanced 
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degradation by the 20S proteasome, the system mainly responsible for degradation of 

oxidatively modified proteins. In contrast, extensive modification involving covalent cross-

linking of proteins causes aggregation, and these stabilized aggregates usually inhibit 

proteasomal activity, resulting in cellular accumulation of non-degradable products as 

reviewed by (15, 56, 57). Some amyloid-type aggregates cause similar effects, and this 

outcome is thought to contribute to neuronal death in Alzheimer’s disease and retinal 

damage in ageing (58). Moreover, protein modification and unfolding can also trigger the 

unfolded protein response (UPR) (59, 60). On the other hand, proteasomal inhibition 

following modification by reactive lipids and cross-linking proteins by photodynamic therapy 

has been suggested as an approach to tumour cytotoxicity (61). 

 Electrophilic modification of proteins may also alter gene expression, either by direct 

or indirect effects. KEAP1-Nrf-2 is a prominent example: adduction of KEAP-1 cysteine 

residues inhibits the E3 ligase activity, causing accumulation of the leucine-zipper 

transcription factor Nrf-2 in the nucleus, where it binds to the antioxidant response element 

(ARE, also known as EpRE or the electrophile response element) in target genes encoding 

phase II detoxifying enzymes, antioxidant and anti-inflammatory proteins (62). KEAP-1 

contains many cysteines that can be cross-linked by a variety of electrophilic compounds, 

including α,β-unsaturated aldehydes and nitro-lipids, as reviewed previously (23, 63).  This is 

a protective response, as is the heat shock response (HSR) regulated by chaperone heat 

shock proteins (HSPs) and heat shock transcription factors (HSFs). HSP70 and HSP90 can 

be modified by HNE and nitro-fatty acids (48), allowing detachment of HSF1 and its binding 

to target genes, which leads to transcription a variety of molecular chaperones, regulatory 

and repair enzymes (64, 65). A moonlighting transcription factor function is also known for 

acrolein-conjugated GAPDH, which can translocate to nucleus and induce apoptosis (66). In 

other cases, epigenetic mechanisms may be involved: methylglyoxal causes specific 

disruption of histone H2B acetylation, affecting chromatin structure and altering gene 

transcription, especially in cells lacking glyoxylase-1 (67). 

 As mentioned above, cytoskeletal proteins, in particular actin, lamins, glial fibrillary 

acidic protein (GFAP) and vimentin, have been reported as common targets of lipoxidation 

by electrophilic oxidized lipids (68). These modifications cause significant rearrangements of 

the cytoskeleton, such as strong filament bundling, retraction from the cell periphery and 

juxtanuclear condensation of intermediate filaments such as GFAP (69) or vimentin (70). 

Nitro-phospholipids have similar effects (71). For vimentin, the response depends on C382 

and a close interplay with protein phosphorylation and zinc binding has been demonstrated 

(72). The functional relevance of these effects still not well understood; it has been 

suggested that they could be protective, by isolating abnormally folded proteins for 
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lysosomal clearance, or detrimental via mitotic abnormalities or increased immunogenicity. 

Indeed, increased immunogenicity has been reported for several lipoxidized proteins, such 

as IgG modified by acetaldehyde (73), and methylglyoxal adducts of histone H2A, which 

form amorphous aggregates (26). 

 Modification of extracellular proteins can also affect cells via binding and activation of 

cell surface receptors; for example, RAGE is a known receptor for AGEs that can lead to 

activation of NFκB and inflammatory signalling (74). Recent work has demonstrated that 

ALEs on albumin that involve neutralization of a positive charge surrounded by acidic 

residues are also binders of RAGE (75), unveiling a novel mechanism for influencing 

immune function. AGEs and ALEs are essentially damage-associated molecular patterns 

(DAMPs); AGEs can also interact with other pattern recognition receptors, such as Toll-like 

receptors (76), and ALEs are considered to be oxidation-specific epitopes with effects on 

innate immunity (77).  

 

Conclusions and perspectives 

In this short overview, some examples of cellular proteins known to be modified by reactive 

electrophilic lipids and their effects have been described, but the full list is long and steadily 

expanding. Several reviews address this, and consider their occurrence and importance in a 

variety of diseases (8, 13, 15, 78). Consequently, there is steadily growing interest in the 

therapeutic potential of interventions targeting the formations of both AGEs and ALEs. “AGE-

breakers” were reported more than 20 years ago and reported to be beneficial in diabetes 

(79) and arterial disease (80). More recently, carnosine-based scavengers of ALEs have 

been investigated (81) and found to improve inflammatory conditions associated with obesity 

(82).   As well as biochemical and biological in mammalian cells, it is important to bear in 

mind that plant proteins are also susceptible to modification, and plants have analogous 

response systems that are of considerable interest in the development of stress resistance 

(83). Research is also ongoing in the food industry, where lipoxidation of plant- or meat-

derived proteins is considered to contribute to food deterioration (84-86). In view of the 

importance across several disciplines, advanced methods to analyse lipoxidized proteins 

and determine the nature and location of the modification are important, as has been 

described elsewhere (5, 12). In particular, it is important to appreciate that methods other 

than liquid chromatography tandem mass spectrometry may not discriminate between 

carbonyls formed by direct oxidation and lipoxidation adducts (Box 2). Characterization of 

specific adducts is important, as it may offer more potential for diagnosis of different 

inflammatory diseases, although this is likely to remain a challenging area for some years.  
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Summary Points 

 Reactive oxidized lipid products form a wide variety of covalent structural adducts with 

proteins, a process called lipoxidation. 

 Proteins containing hyper-reactive cysteine residues are most susceptible to 

modification, although adducts on lysine and histidine residues also occur. 

 Lipoxidation can cause inactivation of enzymes, altered macromolecular interactions, 

unfolding and enhanced proteasomal degradation, but also upregulate cellular defence 

responses. 

 Under extreme conditions, lipoxidized proteins form aggregates that disrupt proteasomal 

function and cytoskeletal structure, causing cytotoxicity and contributing to pathology.  
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Figure Legends 

Figure 1.  Formation of lipid peroxidation product adducts with protein residues. (A) 

shows the formation of the Schiff base between an aldehyde (nonanal in this case), and 

stabilization of the adduct by reduction with sodium borohydride to form the secondary 

amine. (B) shows the intramolecular reaction of the bis-carbonyl containing compounds 

methylglyoxal and malondialdehyde with arginine to give stable imidazole and pyrimidine 

products respectively. (C) shows the mechanism of Michael addition to 2-nonenal as a 

model αβ-unsaturated aldehyde, where X can be lysine, cysteine, histidine or arginine, and 

stabilization of the adduct by reduction with sodium borohydride to form the alcohol. (D) 

shows the additional stabilization of the Michael adduct of HNE by the formation of the cyclic 

acetal. Red denotes Schiff base formation, blue denotes Michael addition.  

  

Figure 2. Rearrangements and cross-linking by LOP adducts. (A) shows the reaction of 

lysine with two molecules of acrolein, a model αβ-unsaturated aldehyde, to form the 

formyldihydropyridyl lysine (FDP lysine), or two molecules of malondialdehyde and a 

molecule of acetaldehyde to give the dihydropyridinyl adduct (DHP-lysine). (B) shows the 

formation of a pyrrole crosslink formed from 4-HNE, an example of the many crosslinking 

reactions of LOPs. 

  

Figure 3. Overview of the effects of lipoxidation on proteins and enzymes. The main 

types of effects are shown, including activation, inactivation, secondary structural changes 
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from α-helix to β-sheet motifs leading to oligomerization, and unfolding leading to random 

aggregation. Key cellular outcomes are written in italics. 
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Boxes 

Box 1. AGEs and ALEs 

 Advanced Glycation End products (AGEs): the formation of non-enzymatic covalent 

adducts of proteins with sugars. Precursors: e.g. glucose, fructose and galactose.  

[Sometimes also used to refer to glycoxidation end products.] 

 Advanced Glycoxidation End products (also called AGEs): the adducts formed from the 

reaction of oxidized sugars with proteins. Precursors: e.g. glyoxal and methylglyoxal, 

glycolaldehyde, dehydroascorbate. 

 Advanced Lipoxidation End products (ALEs): covalent adducts formed by the analogous 

reaction of lipid oxidation products with proteins, DNA or phospholipids. Precursors: e.g. 

glyoxal and methylglyoxal, common with AGEs, and also lipid-specific products e.g. 

MDA, acrolein, HNE, 15dΔ-PGJ2. 

 

 

Box 2. “Carbonylation” vs carbonyl formation vs lipoxidation 

The term “carbonylation” is often used scientific articles on the reactions of lipid-derived 

aldehydes with proteins. However, in chemistry carbonylation refers to the addition of carbon 

monoxide (CO) to organic or inorganic compounds, in a process that yields products 

containing a carbonyl group (-CO). The term has subsequently been adopted to mean the 

formation of carbonyl groups on proteins by other mechanisms, such as oxidative 

deamination, oxidative decarboxylation, hydroperoxide degradation, or Michael addition of 

carbonyl-containing molecules. None of these reactions involve addition of CO to the protein, 

and therefore chemically are not carbonylation. We recommend “protein carbonyl formation” 

as a more correct term. Furthermore, it is important to note that protein carbonyls can be 

formed by direct oxidation of several amino acids, and lipoxidation does not always result in 

adducts containing a free carbonyl, especially those formed by Schiff’s reactions. Therefore 

methods involving carbonyl-reactive probes do not confirm the occurrence of lipoxidation 

unless further analysis using mass spectrometry is carried out. Advanced LC-MSMS 

techniques are required to determine the molecular location of the adduct. 

 

 



Table 1. Examples of protein targets of lipoxidation, the reactive carbonyl species they have 
been reported to be modified by, and the biochemical effect. 

 Target Modifier / 

modification 

Effect Ref 

Unfolding, 

aggregation, 

structural 

changes 

Villin 
a
 Oxidation modification  

of lys, arg or pro 

High levels required to 

cause destabilization. 

29 

Fibrinogen Methylglyoxal Alteration of secondary 

structure, 86% α-helix to 

65% β-sheet 

30 

Human 

antibody LC 

4-HNE, 

malodialdehyde, 

glyoxal, secosterols A 

and B 

Increase in β-sheet leading 

to aggregation. HNE 

caused fibril formation, 

other aldehydes 

amorphous aggregation 

31 

Cytoskeletal 

proteins (actin, 

lamins, etc) 

Electrophilic LOPs Cytoskeletal 

rearrangement 

68 

Histone H2A Methylglyoxal Aggregation 26 

Inhibition 

GAPDH HNE and acrolein Attack on active site and 

regulatory cys leading to 

inhibition. High levels 

cause other modifications 

35 

Pin-1 HNE and ONE HNE - Michael adducts, 

ONE - pyrrole crosslinks 

36 

ALDH2 HNE and ONE Cys modification 37 

Aldose 

reductase 

AKR1B1 

PGA1 and other 

cyclopentenone 

prostaglandins  

Cys modification at higher 

concentrations 

38 

Pyruvate 

kinase 

Acrolein, HNE and 

ONE 

Cys and his modification, 

loss of activity, crosslinking 

39, 40 

SIRT3  Cys modification leading to 

structural changes 

41 

Enzyme or 

signaling 

activation 

H-Ras Cyclopentenone 

prostaglandins  

Cysteine modification. 

Activate Ras signalling 

42 

GSTP1-1 HNE, CyPG, other 

aldehydes 

Crosslinking and activation, 

CyPG effects irreversible 

44, 45 

E-FABP HNE Modification of inhibitory 

cysteine 

46 

KEAP-1 Electrophiles Modification of cys, 

activation of Nrf2 

62 

HSP70 and 

HSP90  

HNE, nitro-FA Detatchment and activation 

of HSF1  

48, 64, 

65 

GAPDH Acrolein Moonlighting as TF leading 

to apoptosis 

66 

RAGE AGEs and ALEs Activation of NFκB 

signaling 

74 

a Involved molecular dynamics simulations. All other studies involved practical analysis.  



A Schiff base formation 

B 

Michael addition 

D Stabilization of HNE adducts by acetal formation 

X = 
C 

Reaction of dicarbonyls with arginine 

methylglyoxal malondialdehyde 

Figure 1.  Formation of lipid peroxidation product adducts with protein residues. 
(A) shows the formation of the Schiff base between an aldehyde (nonanal in this 
case), and stabilization of the adduct by reduction with sodium borohydride to 
form the secondary amine. (B) shows the intramolecular reaction of the bis-
carbonyl containing compounds methylglyoxal and malondialdehyde with arginine 
to give stable imidazole and pyrimidine products respectively. (C) shows the 
mechanism of Michael addition to 2-nonenal as a model αβ-unsaturated aldehyde, 
where X can be lysine, cysteine, histidine or arginine, and stabilization of the 
adduct by reduction with sodium borohydride to form the alcohol. (D) shows the 
additional stabilization of the Michael adduct of HNE by the formation of the cyclic 
acetal. Red denotes Schiff base formation, blue denotes Michael addition.  



(B) Crosslinking; intramolecular crosslinking of HNE via pyrrole shown 

Formation of HNE 
Michael adduct 
(as in Figure 1C) 

(A) Addition of multiple reactive species (2 acroleins or 2 malondialdehydes + acetaldehyde)     

acrolein 

malondialdehyde 

FDP-lysine 

Figure 2. Rearrangements and cross-linking by LOP adducts. (A) shows the 
reaction of lysine with two molecules of acrolein, a model αβ-unsaturated 
aldehyde, to form the formyldihydropyridyl lysine (FDP lysine), or two molecules of 
malondialdehyde and a molecule of acetaldehyde to give the dihydropyridinyl 
adduct (DHP-lysine). (B) shows the formation of a pyrrole crosslink formed from 4-
HNE, an example of the many crosslinking reactions of LOPs. 

DHP-lysine 

Formation 
of Schiff 

base 

Cyclization 

-H2O -H2O 



Figure 3. Overview of the effects of lipoxidation on proteins and enzymes. The 
main types of effects are shown, including activation, inactivation, secondary 
structural changes from α-helix to β-sheet motifs leading to oligomerization, and 
unfolding leading to random aggregation. Key cellular outcomes are written in 
italics. 
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Native 
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