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Abstract One of the aims of cognitive robotics is to endow robots with the ability
to plan solutions for complex goals and then to enact those plans. Additionally,
robots should react properly upon encountering unexpected changes in their envi-
ronment that are not part of their planned course of actions. This requires a close
coupling between deliberative and reactive control flows. From the perspective of
robotics, this coupling generally entails a tightly integrated perceptuomotor sys-
tem, which is then loosely connected to some specific form of deliberative system
such as a planner. From the high-level perspective of automated planning, the em-
phasis is on a highly functional system that, taken to its extreme, calls perceptual
and motor modules as services when required.

This paper proposes to join the perceptual and acting perspectives via a unique
representation where the responses of all software modules in the architecture are
generalized using the same set of tokens. The proposed representation integrates
symbolic and metric information.

The proposed approach has been successfully tested in CLARC, a robot that
performs Comprehensive Geriatric Assessments of elderly patients. The robot was
favourably appraised in a survey conducted to assess its behaviour. For instance,
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using a 5-point Likert scale from 1 (strongly disagree) to 5 (strongly agree), pa-
tients reported an average of 4.86 when asked if they felt confident during the
interaction with the robot.

This paper proposes a mechanism for bringing the perceptual and acting per-
spectives closer within a distributed robotics architecture. The idea is built on top
of the blackboard model and scene graphs. The modules in our proposal communi-
cate using a short-term memory, writing the perceptual information they need to
share with other agents and accessing the information they need for determining
the next goals to address.

Keywords Cognitive robotics · Automatic planning · software architectures

1 Introduction

Abstract reasoning about concrete phenomena is intimately tied with the exis-
tence of an internal representation of this reality. From a robotics perspective,
this implies the establishment and maintenance of a connection between what the
robot reasons about and what it can sense [1]. At the core of this connection re-
sides the symbol binding problem, which is deeply connected to the more general
question of meaning. It directly points at the problem of creating and keeping a
bond between a concrete object and a symbol. This problem is complex due to the
high dimensionality of the spaces required to represent real world entities. More-
over, there are many parameters that can affect the internalization process. For
example, the same entity may have different representations according to multiple
conditions, not only related to external factors such as illumination, motion or the
dynamic essence of the outer reality, but also related to internal issues such as the
specific properties of the sensor or the internal parameters of the observer. On the
other hand, given the importance of actions for Robotics, binding references and
referents are usually enhanced by the additional matching of entities with goals
and affordances [2]. As Marvin L. Minsky noted in 1986 [3]: we need to combine
at least two different kinds of descriptions. On one side, we need structural de-
scriptions for recognizing chairs when we see them and, on the other side, we need
functional descriptions in order to know what we can do with chairs. The concept
of object-action complexes [4] postulates a human-like description by which an en-
tity is identified considering (a) its inherent features and (b) the actions that can
be performed with it. This augments the internal representation of the world by
including what the robot wants to achieve, and the opportunities afforded by a sit-
uation to achieve those objectives. New tokens -symbols- should then be employed
to reflect the perceptual and acting views describing the same reality [5].

The symbol binding problem has been approached from very different points
of view and by many researchers in recent decades (see some examples in the brief
survey by Coradeshi et al. [1]). Among these proposals, recent contributions [6]
[40] point towards the use of a shared, highly structured, internal representation.
Contrary to purely symbolic representations, this shared memory is fed with the
symbolic and numeric tokens that are collaboratively generated by all the software
components participating in the control architecture. The power of this idea lies in
the use of a graph as the supporting data structure whose growth is controlled by a
generative grammar. Perceptive and action modules can edit the graph according



to the rules of the grammar and thus, maintain a formally correct, rich represen-
tation of the robot itself and of the environment. With this scheme, symbols can
be grounded not only using a combination of local features but also considering
the context provided by other modules as modifications to the graph.

When looking into actions instead of perceptions, new interesting issues arise.
The shared-memory idea can be extended into a deliberative architecture com-
posed of modules -some of which can reason using high-level domain knowledge.
One of these agents, the task planner, computes solutions to missions that are
executed by the other modules sharing the graph. These same modules must nev-
ertheless autonomously react to unforeseen changes and update the internal model
accordingly. In this architecture there must be a balanced relationship between the
top-down and bottom-up flows of control. The initial version of this model was
proposed in [40]. In that work, the coordination of the agents executing a plan was
assigned to a special agent called the Executive. In classical three-layer architec-
tures, this role resembles the one in the Sequencer module [30] or the goal manager
in the original Cosy Architecture Schema [7]. This agent sets a direct pipeline with
the participating agents to determine the current goal and the behaviour to be ex-
ecuted to achieve that goal. This mechanism alleviates the internal, shared model
from annotating actions and the agents from reasoning about those actions.

Significantly, this scheme implies that the modules will execute the required
sub-task as they receive a direct command. Hence, the internalized state of the
world does not guide its behaviour and it will be only used, as is typical in black-
board models, to share information about goals or partial results among the agents.
This paper proposes to change this scheme by removing this goal manager and forc-
ing all the modules in the architecture to encode perceptions and actions using
the same set of tokens. Briefly, as it occurs with perceptions, actions will also be
thought of as changes to the inner world. It is in this new proposal where the shared
representation truly becomes the core of the architecture, storing all the data that
is required for the software modules to perform their activities. This simplifies the
architecture as a whole, as no further modules are required to take the responsi-
bility of understanding the whole state of the robot and its context. Furthermore,
this simplification eases intercommunication and generalization. The evolution of
the representation with time will provide a complete, semantic description of the
robot’s activities, opening new doors to learning from previous experiences [9] or
agency [10]. One major disadvantage, however, is that this scheme forces task-
dependent modules to use a more complex logic to infer their activities from the
state (affordances), as they will not receive specific action commands. However,
they are also more easily modified, added or removed without affecting the rest of
the architecture. This approach also eases the deployment of different behavioural
schemes, such as stigmergic collaboration or competitive approaches (e.g. using
more than one planner).

1.1 Relevant novelty with respect to our previous work

The use of a unique, shared representation including symbolic and metric informa-
tion was already implemented with remarkable success in previous works [25–27].
These initial efforts introduced the so-called Deep State Representation (DSR)
which will be described in Section 3. The relevant novelty of this contribution



with respect to previous works is the elimination of the Executive agent, which
imposes a more centralized flow of control by a distributed policy of annotating
intentions and actions in the DSR in real-time. This improvement allows agents,
for instance, to know that the robot is interacting with a person, but also that it is not

speaking when that is the case. Although in our previous approach agents had lim-
ited access to what the robot was doing and with who, in the current approach all
the action space could be read from the shared representation. The improvement
introduced here is a crucial element to facilitate the reactive, fast response of all
the agents in the architecture, for example allowing a Dialog agent to quickly be
aware of attentive or physical changes in the human interlocutor. As a field val-
idation of the complete CORTEX architecture and of the changes introduced in
this paper, a series of experiments with the CLARC robot have been performed
in real-world health care scenarios.

1.2 Organization of the paper

The rest of the paper is organized as follows. Section 2 introduces the use of shared
representations on cognitive architectures for robotics. Section 3 briefly presents
how concrete and symbolic information is included in the representation used in
this work, including actions and perceptions. The proposal has been implemented
in CLARC1, a robot in charge of performing different comprehensive tests on
geriatric patients. CLARC has been developed within one of the Public end-user
Driven Technological Innovation (PDTI) programmes of the ECHORD++ project,
which offers the research consortia funding to develop robotics technologies for real
use-cases as Comprehensive Geriatric Assessments (CGA). Sections 4 and 5 show
the unfolding of the proposal for performing a CGA test and practical results
obtained from this work. An open discussion about the advantages or inherent
problems of using the proposed scheme is sketched in Section 6. Conclusions and
future work are outlined in Section 7.

2 Related work

The existence of explicit representation mechanisms is common to most cognitive
architectures, which use a working memory for driving attention, reasoning and
learning. The idea can be traced back to blackboard models [11] and architectures
such as SOAR [12] and ACT-R [13], which emphasized the existence of this shared
workspace. The blackboard model basically proposes a structure consisting of inde-
pendent agents, which work on their own portion of the problem and manage their
own data; a control module, which is responsible for choosing the agent/s whose
response/s must be executed; and the blackboard, a common solution space where
all agents write their partial results. Thus, the blackboard is a shared repository
of problems, objectives and partial outcomes, which can be accessed and updated
by the agents. For instance, in the AIS architecture [14], the blackboard scheme is
used as an implementation of the cognitive layer with a central working memory,
where all behaviours write perceptual inputs or previously executed behaviours,

1 http://echord.eu/essential grid/clark/



and to which all behaviours are connected to be triggered when certain conditions
are fulfilled. The CoSy Architecture Schema (CAS) [7] employs a communica-
tion paradigm based on shared memories. Similarly, the Mala architecture uses
different blackboards to provide storage and serve as a communications mecha-
nism [15]. In the CRAM/KnowRob architecture, an active hub is employed for
pro–actively querying perceptual agents to acquire and store knowledge within a
central base [17]. In the architecture described by Lemaignan et al. [16], knowledge
is centrally managed in an active semantic blackboard (the ORO server). Another
usual mechanism for sharing information is the global workspace (GW) model.
Here, several parallel agents compete and cooperate to modify a global workspace.
Agents are responsible for task-dependent functionalities, such as visual percep-
tion, path planning, or speech understanding. When an agent modifies the global
workspace, the information this agent offers is broadcast back to the rest of agents.
The means by which access is granted to the common workspace is an attention
mechanism. CERA is an architecture structured in layers that uses the blackboard-
based model provided by CRANIUM [18]. Within CRANIUM, global workspace
dynamics are modelled as an information processing system, whose input is the
raw sensory data and whose output is a stream of artificial qualia (integrated mul-
timodal representations). In the ARCADIA architecture [19], low-level processes
are encapsulated in modules called components. Each component communicates
its content and the focus of attention through interlingua, a repository of struc-
tured elements organized by topic. In CHARISMA [20], the relatively small chunk
of information that is currently deemed most important is broadcast to a set of
processes that work together to extract information, make associations, decompose
problems, etc.

Complementary to the scheme proposed to manage this shared memory, the
aforementioned proposals must determine how to represent the stored knowledge.
CHARISMA organizes the representation as a semantic hyper network (SHYNE).
SHYNE is composed of nodes (basic and complex) and links characterized by
unique identifiers. These identifiers are passed between processes. The CAST
model represents knowledge as a diffuse, pervasive resource [21]. In the ORO
server [16], knowledge is represented as RDF (Resource Description Framework)
triples (subject, predicate and object) in the OWL (description logics) sub-language.
RDF triples imply the setting of binary predicates, an issue that constraints
the expressiveness of the representation. To solve this problem, KnowRob inter-
leaves RDF with Prolog [22]. Answer Set Programming (ASP) is a non-monotonic
logic programming paradigm that is well-suited for representing and reasoning
with common sense knowledge [23]. These proposals usually manage high-level,
symbolic concepts. For instance, the ORO server is connected to deliberative
agents [16]. When required, concrete knowledge is managed within dedicated
agents. However, this information is not represented in the knowledge base. Samuel
Wintermute and John E. Laird noted the problems that can arise when spatial ab-
straction does not capture the details necessary for correct internal reasoning [24].
To manage concrete and symbolic representations within an unified framework,
the CORTEX architecture employs a central knowledge base that stores all infor-
mation coming from the agents within an annotated graph [25–27]. Figure 1(left)
shows how two different agents interact through this representation to unfold a
’go to person’ behaviour provided by the deliberative agent (in this specific case,
the PELEA module [28]). Domain-dependent agents, in charge of solving the nec-



essary perceptual and acting tasks, use this plan and the shared world model to
perform their activities. In this naive case, the Person agent detects the pose of
the person and provides these data to the representation, and the Navigation

agent takes these data and moves the robot. Contrary to other approaches such
as KnowRob [17], where symbolic facts are evaluated when needed, the shared
representation is cooperatively built and updated by all the agents. These agents
are continuously running in the background, computing and asserting the knowl-
edge representation. In this sense, our architecture works like the one proposed by
Lemaignan [16].

Fig. 1 (left) A brief scheme of a possible instantiation of the CORTEX architecture, showing
its three main components: PELEA (a high-level module for planning, monitoring, and learning),
an Executive in charge of redirecting the plans from the planning module to the corresponding
low-level modules and managing the representation of the world, and a set of domain-dependent
agents (in this case represented by Navigation and Person). Modules with a red background
(Battery level, Laser, etc.) provide inputs to the agents, while those with a green background
(Platform motion) receive the results from the agents. Both sets constitute the Hardware
Abstraction Layer (HAL) of the system. (right) Our proposed scheme for dealing with this same
task. There is no Executive agent; instead, PELEA is responsible for changing the representation
to achieve the correct response from the Person and Navigation agents (see text).

As Figure 1(left) depicts, the execution of the high-level action originating from
PELEA is controlled by the Executive agent, a component that also provides the
interface for the representation. The Executive interfaces with PELEA, from which
it receives the plan to execute and to which it reports changes in the representation
through asynchronous events. The Executive publishes the representation to all
agents (blank arrows in Figure 1(left)), and it is also the only module in charge
of checking whether the changes in the representation coming from the agents
are valid or not. More details can be read in [8]. The scheme proposed in this
work is depicted in Figure 1(right). The idea is that all agents in the architecture,
deliberative or reactive, annotate the internal representation not only with percep-
tual information but also with acting information. Thus, the current action is not
directed from a specific manager to the rest of agents in the architecture, alleviat-
ing the interaction among agents and reducing the response time to any detected
event. On the contrary, this forces the representation to include information about
the running tasks (e.g., robot goes to x,y), as the rest of agents must be informed
through the shared representation. The agents must now have some specific knowl-
edge about the domain. The example shows an additional objective of our design:



by leaving out the lowest-level representations, we have tried to make this annota-
tion as close as possible to the one used by humans. In a human-robot interaction
context, this will allow the effective support of human-robot communication.

Finally, Table 1 summarizes a qualitative comparison of the CORTEX archi-
tecture with respect to some of the architectures described in this Section. The
relevant features of this comparison are a subset of those proposed in the deep
analysis addressed by I. Kotseruba et al. (2016) [39]. Four topics are considered:
sensory modalities, action selection, memory and learning. The first topic is es-
sential to the development of a cognitive robot, as it should need to have channels
to perceive the outer world and internalize this information. In the Table, eight
options are considered. Smell, audition, touch, proprioception and vision refer to
typical sensory modalities. Vision is present in all architectures, and the rest could
be surely added if needed. Symbolic inputs include inputs in the form of text com-
mands and are not considered in most hybrid architectures. Crucially, CORTEX is
able to consider these inputs if they come from a Dialogue agent. The Multimodal
option refers to the ability to perform feature extraction from several sensors in
an independent and concurrent manner. The second topic refers to how the course
of action is determined. CORTEX merges reactive mechanisms of actuation with
a planning framework that determines the sequence of actions for reaching a goal.
As these are the typical methods in most hybrid approaches, other solutions con-
sider a set of alternatives and then use a selection method (winner-take-all (WTA),
probabilistic, predefined) and selection criteria (relevance, utility, emotion). The
choice is the best action according to these criteria (i.e., action with the highest
activation value). The memory topic refers to the systems implemented in most
architectures for managing the intermediate results of computations. It is difficult
to address cognition without an internal representation. Just as the other architec-
tures in the table, CORTEX manages a working memory where the information
related to the current task is available. As shown in Section 3, CORTEX also stores
information about objects and the relationships among them (semantic memory)
and a long-term procedural memory of implicit knowledge (the ”Grammar” boxes
in Figure 1). Contrary to the rest of the approaches in this qualitative comparison,
CORTEX manages all of these representations within a unified structure (a global
memory), where both sensory data and high-level symbols describing the state of
the robot and the environment are stored. Finally, the learning topic determines
the ability of an architecture to improve over time. It is one of the most active
topics we are working on to improve CORTEX, as our architecture currently only
implements procedural learning (see Section 4.2).

3 The Deep State Representation

The Deep State Representation (DSR) is a multi-labelled directed graph that holds
symbolic and geometric information within the same structure. Symbolic tokens
are defined as logic attributes related by predicates that are stored within the graph
in nodes and edges. Geometric information is stored as predefined object types
linked by 4 × 4 homogeneous matrices. This information is also stored as nodes
and edges of the graph. Figure 2 shows a reduced view of the state associated with



Table 1 Qualitative comparison of several cognitive architectures [39]

CORTEX [7] [18] [19] [20] [21]

sensory modalities

Multimodal X X X
Smell
Audition X X X
Touch X
Proprioception X X X
Symbolic input X
Vision X X X X X X
Other senses X X X

action selection

Planning X X X X
WTA
Probabilistic
Predefined X
Relevance X X
Utility X X
Internal factors X X
Reactive X X X X X

memory

Sensory X X
Working Memory X X X X X X
Semantic X X X X X
Procedural X X X X X
Episodic X X
Global X

learning

Declarative X X
Perceptual X
Procedural X X
Associative X X
Nonassociative
Priming X

the execution of a test (see Section 4). The person and robot nodes are geometrical
entities, both linked to the world node (a specific anchor providing the origin of
coordinates) by a rigid transformation. However, at the same time that we can
compute the geometrical relationship between both nodes (RT−1×RT ′), the person

can be located (is with) close to the robot. Furthermore, an agent can annotate that
the robot is not speaking.

3.1 Data structure

As a hybrid representation that stores information at both geometric and symbolic
levels, the nodes of the DSR store concepts that can be symbolic, geometric or a
combination of the two. Metric concepts describe numeric quantities of objects in
the world, which can be structures such as a three-dimensional mesh, scalars such
as the mass of a link, or lists such as revision dates. Edges represent relationships
between nodes. Two nodes may have several kinds of relationships but only one of
them can be geometric. The geometric relationship is expressed with a fixed label
called RT . This label stores the transformation matrix (expressed as a rotation-
translation) between them.

The DSR can be described as the union of two quivers: one associated with the
symbolic part of the representation, Γs = (V,Es, ss, rs), and the other related to
the geometric part, Γg = (Vg, Eg, sg, rg). A quiver is a quadruple, consisting of a



Fig. 2 Unified representation as a multi-labelled directed graph. For instance, edges labelled
as is with or is not denote logic predicates between nodes and they belong to Γs. On the other
hand,edges starting at world and ending at person and robot are geometric and they encode a
rigid transformation (RT ′ and RT respectively) between them. Geometric transformations can
be chained or inverted to compute changes in coordinate systems (see text).

set V of nodes, a set E of edges, and two maps s, r : E → V . These maps associate
each edge e ∈ E with its starting node u = s(e) and ending node v = r(e).
Sometimes we denote an edge by e = uv : u → v with u = s(e) and v = r(e).
Within the DSR, both quivers are finite, as both sets of nodes and edges are
finite sets. A path of length m is a finite sequence {e1, ...em} of edges such that
r(ek) = s(ek+1) for k = 1...m− 1. A path of length m ≥ 1 is called a cycle if s(e1)
and r(em) are identical.

The properties of the symbolic quiver Γs can be stated as follows:

1. The set of symbolic nodes V contains the geometric set Vg (i.e. Vg ∈ V )
2. Within Γs there are no cycles of length one. That is, there are no loops
3. Given a symbolic edge e = uv ∈ Es, we cannot infer its inverse e−1 = vu
4. The symbolic edge e = uv can store multiple values

Similarly, given the properties of the transformation matrix RT , the characteristics
of the geometric quiver Γg can be stated as follows:

1. Within Γg there are no cycles (acyclic quiver)
2. For each pair of geometric nodes u and v, the geometric edge e = uv ∈ Eg is

unique
3. Any two nodes u,v ∈ Vg can be connected by a unique simple path
4. For each geometric edge e = uv = RT , we can define the inverse of e as
e−1 = vu = RT−1

Thus, the quiver Γg defines a directed rooted tree or rooted tree quiver [31]. The
kinematic chain C(u,v) is defined as the path between the nodes u and v. The



equivalent transformation matrix RT of C(u,v) can be computed by multiplying
all RT transformations associated with the edges on the paths from nodes u and
v to their closest common ancestor w. Note that the values from u to the com-
mon ancestor w will be obtained by multiplying the inverse transformations. One
example of computing a kinematic chain is shown in Figure 2.

3.2 Internalizing the outer world within the DSR

The complexity of the domain-dependent modules typically implies that they
will be internally organized as networks of software components, or (compoNets).
Within each compoNet, the connection with the DSR is achieved through a specific
component, the so-called agent. These agents are also present in previous architec-
tures, such as CAS or RoboCog. In fact, they are needed in any blackboard-based
scheme. However, the degree of complexity significantly changes when we move
from these schemes to the proposed one. With the removal of the goal managers,
the agents in our architecture need to search for those changes in the DSR that
launch the specific problem-solving skills (actions) of the compoNets they represent
(e.g. detecting a person’s pose, or starting to say a sentence). This mapping be-
tween subgraphs in the DSR and actions constitutes the knowledge of each agent,
which is intimately linked to our definition of affordances. The internal data flow
of these agents is briefly outlined in Algorithm 1.

subscribe to DSR updates;
while (1) do

search for changes { output: action };
process { action };
if DSR changes then

update DSR;
end

end

Algorithm 1: Procedure of an agent in our proposal

The search for changes skill depends on each agent and the behaviours that
the compoNet can solve. Within the algorithm, it is stated that this function
returns the action to perform. This is the most significant difference between other
blackboard-based approaches and our proposal: in other approaches, the action is
imposed by an external module, but in our approach, the action is determined
by the agent. As we will briefly discuss in Section 6, this opens new ways for
dealing with the top-down and bottom-up mechanisms that determine what the
next action to perform will be or that implement reflexive behaviours. The whole
execution of the compoNet is conditioned by the rules of its internal grammar,
i.e., triplets with the states of the DSR after, during and before the compoNet
executes a specific action. Figure 3 shows one example stored in the Speech agent
(see Section 4). Figure 3(left) shows the state of the DSR before the deliberative
planner indicates that the robot should say the sentence yyy. When the planner
changes the DSR (changing the attribute xxx to yyy between test and test part),
and the agent Speech receives the new state, Speech uploads the DSR to inform
all agents that the robot is speaking. When the sentence ends, Speech changes the



Fig. 3 (left) The state of the DSR before PELEA states that the robot should say a sentence
yyy; (center) PELEA changes the text to speech (from xxx to yyy) and then, when the
Speech agent reads the DSR, the robot starts to speak (robot is speaking). (right) The sentence
has been said and the Speech agent informs the rest of the agents through the DSR (robot finish

speaking).

DSR to indicate that the robot finish speaking. It is important to note how our agents
must inform the rest of the architecture that they are executing an action. Initially,
this constitutes the current way to prevent other agents in the architecture from
modifying that part of the DSR while an action is being executed. However, a
sudden change in the outer world could force an agent to propose speaking a new
sentence or could even stop the execution of the Speech agent. To achieve this, it
is sufficient to update the sentence yyy or to change it to a null sentence. This
assures that the architecture reacts fast enough to change the goals [7]. This
also hides a problem: the agents are responsible for not unnecessarily disturbing a
course of action. Their inherent grammar rules must be carefully designed.

4 Building a whole architecture around the DSR

4.1 The CLARC project

CLARC is waiting in Room 1 for its first patient. When Dr. Cesar presses
the Start button on his mobile phone, CLARC wakes up and looks for
Carlos, his patient, who should be sitting in front of it. When CLARC sees
him, it greets him and presents itself as the one responsible for conducting
a small test, which will help the doctor to know how he is. It also briefly
describes to him what the test will be: a collection of questions that must
be answered by selecting one of 3-4 options described. Then, the test starts.
Sometimes, CLARC hears words that it does not understand. Sometimes,
it just hears nothing. However, these situations are detected... and there
are planned solutions for solving them. CLARC is patient and can repeat



Fig. 4 (left) Global overview of the CLARC framework, and (right) the CLARC robot

the phrase several times, suggests leaving it and going to the next question,
and always offers the option to answer using the touch screen on its chest.
After 10-15 minutes, the test ends. It is time to say goodbye to Carlos and
to send an internal message to Dr. Cesar indicating that the result of the
test is stored on the CGAmed server for validation.

This brief summary describes how the CLARC robot should administer a CGA
test, in this case the Barthel one. To perform the required actions, the robot uses
specific sensors and is endowed with a software framework that allows it to manage
its own hardware and task-dependent functionalities, as well as the vast amount
of data (videos included) associated with a session. This last point is essential,
as the robot is a tool whose behaviour during the test should be subsequently
analysed by a medical expert. It is then necessary to collect all the information
required by the doctor for review and to end the evaluation. Figure 4 depicts a
global overview of the CLARC solution. It has two major parts: the robot and the
CGAmed server. The server stores the database with information about patients,
doctors, rooms and the schedule of sessions designed by the clinicians. It also stores
the application that Dr. Cesar used to launch the test. Finally, the CGAmed is
responsible for connecting the whole CLARC framework with the Clinical Data
Management System (CDMS).

Figure 4 also shows the presence of three human-computer interfaces in the
architecture. One of them allows the medical expert to supervise the data stored
in the CGAmed server. For instance, it can be used to check and edit the scores
assigned by the robot to a CGA test, to watch the video associated with the
session, or to compare two administrations of the same test performed at different
times. The clinician can also use a second interface to connect with the robot.
Among other functionalities, this interface allows the doctor to watch the session
online or to pause the test. However, in this proposal, the most relevant interface



Fig. 5 Overview of the software architecture within the CLARC robot.

is the patient-robot interface. This interface is fully managed by the robot and,
therefore, is linked to the Deep State Representation that drives its behaviour.
The next sections provide a detailed description of the software architecture in the
robot and the agents involved in the patient-robot interface.

4.2 Overview of the architecture

Figure 5 shows an overview of the whole architecture in charge of administering
the CGA tests within the CLARC project. There are eight agents surrounding
the inner world provided by the DSR: PELEA, Speech, Panel, Tablet, CogniDrive,
Recorder, HMC and Person. The PELEA agent is in charge of providing the deliber-
ative skills to the architecture. It is an instantiation of the Planning, Learning and
Execution Architecture (PELEA) [28], which maintains its own internal memory
and the software modules for monitoring the course of action. It interacts with the
rest of agents using the same procedure, changing the DSR. The Recorder agent
manages an IP camera, which provides a stream of video for online supervision
and also records the session for offline visualization.

The channels for patient-robot interaction are provided by the Speech, Panel
and Tablet agents. The Speech agent is in charge of interpreting the answers
of the patient or guardian and translating text into speech, generating the voice
of CLARC. It is internally connected to WinSpeechComp, a module in charge of
generating the voice from text using the Text-To-Speech (TTS) software provided



Fig. 6 Augmented tablet used for interacting with the robot.

by Microsoft Speech Platform SDK. This software is also used for voice recognition
with the help of specific grammars that are loaded for each question in order to
maximize recognition rates. The transcription system of the ASR system achieved
a 5.1% error rate, the same rate measured for humans [32]. Furthermore, the
use of the Microsoft SDK made the implementation of a multi-language interface
easier. The robot is currently able to interact with the patient in French, English or
Spanish. The verbal channel is enhanced by using a touchscreen on the torso of the
robot [27]. The Panel agent manages the tactile interaction and the information
shown in this touchscreen, which has been carefully designed for dealing with
elderly people [34,33]. The position of the touchscreen on the robot is shown in
Figure 4(right). Intense use of this quasi-vertical touchscreen forces the patient to
adopt an uncomfortable position, not only because the patient must keep his/her
arm extended but also because the robot is prevented from being too close to
the patient, resulting in the patient having to continuously approach/move away
from the screen to touch it. To avoid this discomfort, we add a third element to
the interface: an external device whose core is a tablet with large buttons used to
answer typical questions in a Barthel test (see Figure 6).

The CLARC robot is built over the MetraLabs SCITOS G3 platform2. This
base uses a LIDAR sensor for localization, navigation and obstacle avoidance,
functionalities that are provided by the CogniDrive software running over MIRA
middleware3. The CogniDrive agent implements a bridge to connect these software
modules to our cognitive architecture.

Finally, the Person and HMC agents are in charge of detecting, tracking and
capturing the motion of the people sharing the environment with the robot. The
Person agent is responsible for detecting and tracking the upper body of the
interviewed person, while the HMC agent captures the motion of the full body of
the patient. To solve these tasks, both agents are connected to the WinKinectComp

module. This module is in charge of capturing the preprocessed data provided by
a Kinect sensor v2 (i.e. joints and face of the person).

PELEA is the most complex compoNet within the architecture. The use of PELEA
and, in particular, of Automated Planning in the proposed cognitive architecture is
motivated by its ability to react to unexpected or unforeseen situations. Automated

2 http://www.metralabs.com/en/
3 http://www.mira-project.org/joomla-mira/



Fig. 7 (left) An example of modelization of the Barthel test as a FSM; (right) Modelization
of the Barthel test as a planning problem.

Planning gives a domain description (in terms of available actions), an initial state
and a set of goals, and generates a plan that allows achieving those goals from the
initial state by executing the generated plan of actions. This form of deliberative
reasoning is being increasingly used in robotic systems because it contains its own
explicitly represented, symbolic and high-level model of the world, which is used
to perform a forward projection (reasoning in depth about goals, preconditions,
resources, and timing constraints). Systems with this type of reasoning generate
plans to accomplish their goals and are therefore better suited to coping with
uncertainty, reacting to unforeseen situations and recovering from bad decisions.
In contrast, reactive systems, such as Finite State Machines (FSMs) or rule-based
systems, do not hold a symbolic view of their environment, and designing them
can be a complex and time-consuming endeavour because of the need to pre-code
all of the behaviours of the system for all foreseeable circumstances.

By way of example, Figure 7 shows an example of a Barthel test modelled as
an FSM (left) and using automated planning (right). The use of an FSM requires
explicitly enumerating the states, then for each state, specifying the actions that
are possible in that state, and finally, for each state-action pair, specifying the
new state that results from carrying out the action in the prior state. Therefore, it
requires explicitly defining the sequence of actions that lead from the initial state
(blue node in Figure 7 (left)) to the goal state (green node). Obviously, this is
an unpractical approach for a domain with a large number of states and actions.
In fact, Figure 7 (left) presents only part of the full FSM required to perform a
Barthel test. Instead, the modelization of this test as a planning problem (right)
replaces the explicit enumeration of states and transitions with a description of
the initial state (blue node), the goals (green node) and available actions (with its
preconditions and effects), and lets the planner decide the sequence of actions to
satisfy those goals. Therefore, automated planning makes the code more modular
and easier to maintain. By decoupling the states from each other, each action
can be worked on independently of the others. Additionally, if PELEA detects an
unexpected state during the execution of a plan, the planner is invoked again to
obtain a new plan that takes the system from that unexpected state to a state
where the goals are met, even though the unexpected state has not been explicitly
modelled. For instance, if at any time during a test the patient is outside the



field of view of the robot, PELEA generates a new plan: it calls out to the patient
and then continues with the rest of the test. This type of deliberative reasoning
perfectly suits complex robotic tasks.

Furthermore, PELEA allows us to model the available actions, the initial state
and the goals to be reached in a declarative form using a Planning Domain Defini-
tion Language (PDDL), regardless of the robotic platform or the specific program-
ming language used in the low-level modules of the architecture. Such declarative
language makes it easier to integrate new low-level modules in the architecture.
The integration of such modules usually results in new robot skills (e.g., manipu-
lation); hence, in the PDDL, the definitions in the domain description are updated
with the new available actions along with their preconditions and effects. Such in-
tegration also requires from PELEA the translation of these high-level actions into
low-level commands that are annotated in the DSR and interpreted by the corre-
sponding new low-level modules, as well as the translation of the annotations of
these modules in the DSR to a high level of abstraction to verify that the course
of action is correct. Finally, this integration also requires the definition of the new
module itself, with its corresponding agent able to annotate and read from the
DSR.

In this project, PELEA includes the following components:

– The High Level Executive (HLE) module manages the whole compoNet. It
receives the global goals and invokes the Monitoring module to obtain a plan
that can achieve these goals. Then, the HLE module takes the first action of
the plan and invokes the HighToLow module to decompose the action into
low-level actions. These actions are then inserted into the DSR as changes in
the model. The HLE looks at the changes in the DSR and, after a conversion
to high level knowledge performed by LowToHigh, sends them to Monitoring,
which checks whether the plan is executing properly.

– The Monitoring module is in charge of maintaining a high level model of the
environment and of invoking the Decision Support module when any deviation
in the execution of the plan arises. It detects, for example, that the user has
not answered a question or is not facing the robot and tries to find alternate
plans to solve these problems.

– The Decision Support module creates a plan starting from the current state,
the goals to be achieved, the possible states of the world and the description
of the changes the actions produce in the world state. To create this plan, the
module invokes an automated planner that returns the sequence of actions that
can achieve the desired goals.

– The HighToLow module converts the high-level actions of the plan created by
the Decision support module into low-level actions that can be included in the
inner world.

– The LowToHigh module converts the information contained in the inner world,
which represents knowledge in the form of binary predicates, into n-ary pred-
icates that the Monitoring module can use to reason about the correctness of
the execution of the plan.



4.3 Encoding the grammar rules within the agents

One important idea of the proposed scheme is the distribution of the control,
which is encoded within the agents in the architecture (see Figure 5). Thus, each
compoNet gains its own set of rules that, as the example in Figure 3 shows, consists
of triplets representing the states of the DSR after, during and before the execution
of a specific action. This Grammar is local to the compoNet and is encoded at that
moment within the code of the agent. In an architecture that is mainly driven by
how the internalized world changes, the coherence of the encoding of each change
and its global synchronization are fundamental aspects. Although we have briefly
described how the world is internalized in the DSR in Section 3.2, we will provide
here a more detailed description of how a Grammar is encoded within an agent.

Algorithm 2 illustrates how the specific grammar of the Speech compoNet is
encoded in the agent. The Speech compoNet is in charge of translating the chosen
sentence from text to speech and of recognizing the responses from the patient
(via the Automatic Speech Recognition (ASR) set on the WinKinectComp). There
are three main modules within Algorithm 2. finishSpeaking is launched by the TTS

module to the Speech agent to inform the agent that a sentence has been said.
In the DSR, this implies that robot is speaking must change to robot finish speaking.
setAnswer is launched by the Answer module to the agent to inform the agent that
a response has been captured. The DSR is changed from person waiting answer to
person got answer. The DSR also provides the specific answer. Thus, these functions
encode the final state of the two rules driving the responsibilities of the Speech

compoNet (e.g., Figure 3(right) shows the result of launching finishSpeaking). The
main loop of the (compute) agent searches for the changes mentioned in Algorithm 1
. In this case, we document the two situations that are launched: the waiting for
a new response from the patient (waitingAnswer) and the saying of a new sentence
(startSpeaking). In the first case, the change in the DSR is done without evaluating
any additional constraint. In the second case, we will evaluate if the label, i.e., the
sentence to say, has been changed (see Figure 3). The procedures to be addressed
(i.e., the process { action } of Algorithm 1) are also launched (canAnswer() and
setText(label), respectively). However, as described in Section 3.2, just before
launching one of these procedures, the agent notifies the rest of agents that the
process is under execution (publishing the new DSR model).

5 Experimental results

5.1 Comprehensive Geriatric Assessment (CGA)

The experimental setting was briefly presented in Section 4.1. This section pro-
vides additional details. Comprehensive Geriatric Assessment (CGA) is a clinical
procedure for the evaluation of the frailty of older people and adequate treatment
prescriptions. CGA is an interdisciplinary effort that requires the coordination
of several clinical professionals with the aim of increasing both the quality and
quantity of life of elderly people. Some of its benefits include improving diag-
noses, creating correct, customized and proportional therapeutic plans, increasing
functional autonomy, and reducing complications during hospitalizations and the



finishSpeaking
if getEdge(robot,speaking) == is then

removeEdge(robot,speaking, is);
addEdge(robot,speaking, finish);
publishModification();

end
setAnswer
if getEdge(person,answer) == waiting then

removeEdge(person,answer, waiting);
addEdge(person,answer, got [answer]);
publishModification();

end
compute
if worldChanged then

waitingAnswer
if getEdge(person,answer) == can then

removeEdge(person,answer, can);
addEdge(person,answer, waiting);
canAnswer();
model modified = true;

end
startSpeaking
if getEdge(test,test part) == is in then
{q, label} = getEdgeAttribute(test,test part);
if label != label back then

removeEdge(robot,speaking, is not);
addEdge(robot,speaking, is);
setText(label);
model modified = true;

end

end
changeConfig
if ... then...
end
if model modified then

publishModification();
end

end

Algorithm 2: Example of the Grammar encoded within the Speech agent

incidents of mortality. Considering the ageing of the world population, the impor-
tance of CGA and its associated costs will no doubt continue to increase.

CLARC is currently able to perform three tests: a functional test (Barthel [35]),
a cognitive test (MMSE [36]) and a motion analysis test (Get Up & Go [37]). To
evaluate how the proposed scheme works, we first summarize that these tests
include closed-answer questions (”Select option 1, 2 or 3”), open-answer questions
(”What day is it today?”) and monitoring of simple (”Close your eyes”) or complex
(”Get up from the chair and walk three metres”) patient movements. CLARC
is intended to work with real patients in real-life hospital environments; thus,
it needs to be much more than a simple survey tool. Before starting the tests,
CLARC needs to introduce itself as an accessible and helpful assistant (or, at least,
tool). Elderly people undergoing CGA tests are often not familiar with robotic
technologies. It is crucial for CLARC to make the patients feel comfortable and
reassured and to offer them natural and intuitive ways to interact with it. The



hypothesis driving the design of CLARC is that the proposed architecture allows
management of the interaction with the patient and adaptation of the course of
action to exogenous events, such as the patient not answering a question, asking
for help or leaving the room. This hypothesis was confirmed by the results of user
tests performed in Seville with real patients. We evaluated the interaction through
questionnaires. Furthermore, the scores provided by the robot were assessed and
compared with those provided by medical experts. Section 5.3 summarizes these
evaluations. The evolution of the DSR when the robot is performing a test is
presented in Section 5.2.

Finally, during the tests, CLARC collects, saves and displays the responses.
Using the CGAmed interface, the physician can either monitor the tests online
or access and edit the results once the test finished. As the development of these
abilities is not related to the organization and management of the DSR or the
cognitive architecture built around it, they will not be evaluated in this work.

5.2 Qualitative analysis of our proposal

This section provides a qualitative analysis of how the DSR interacts with the
agents to administer a Barthel test. Briefly, the Barthel test consists of ten items
that measure a person’s daily functioning, specifically the activities of daily living
and mobility: Bladder and bowel function, transfers and mobility, grooming and
dressing, bathing and toilet use, and feeding and stairs use. Because actions and
perceptions are internalized within the DSR , the monitoring of its evolution allows
us to track the whole execution of the use case. To reduce the complexity of
the representation, we did not use the external tablet in this example. Thus, the
patient-robot interface only involves the Speech and Panel agents.

The Barthel test requires that the robot speak and show on the touchscreen
specific sentences that either ask test questions or provide assistance to the patient
. The touchscreen is also used for showing introductory videos to the patient. The
robot must hear or capture from the touchscreen the answers from the patient or
relative. Finally, the robot needs to track the presence of the person, as s/he must
remain seated in front of the robot. As mentioned above, the use case includes a
first introduction, where the robot is introduced and the test is explained to the
user. Then, the robot asks the user for ten items. Each item requires that the user
chose the option that best fits his/her condition from a list. The presentation of
each item follows the same scheme:

1. The robot introduces the item through voice and a message on the touchscreen
2. The robot describes each possible option (voice and text)
3. The robot asks the user to give an answer (voice or touchscreen interaction)
4. If after a specific time there is no response

(a) The robot describes each possible option via voice again
(b) The robot shows all options on the touchscreen

If after this second try the patient still does not answer, the robot will go to the
next item in the test. Two non-answered items will cause the robot to ask the
clinician to enter the room. Figure 8 shows the evolution of the DSR during the
management of one question of the Barthel test. The figure shows how the state
evolves when the person is lost and then is detected again. It can be noted that



Fig. 8 Evolution of the DSR: During the execution of the Barthel test, the robot loses sight of
the person for several frames and then asks the patient to sit in front of it again. More-related
nodes and edges are coloured and in bold, respectively. The figure shows a sequence of views of
the DSR: (top-left) before losing the person, the robot has just finished asking a question and
is showing a message on the touchscreen; (top-center) the robot is speaking a new sentence but
then it loses sight of the person. The situation is reported to PELEA; (top-right) the Speech
agent immediately stops speaking; (bottom-left) the Speech and Panel agents return the DSR
to its original state (robot is not speaking and robot is not showing) and PELEA changes the world,
prompting the robot to say a specific sentence (’Please, sit down in front of me’). This sentence
is encoded as a label on the is in attribute between test and testPart; (bottom-centre) the Panel
also shows this sentence on the touchscreen; and (down-right) the person is with robot again and
PELEA determines that the test can continue

the DSR practically provides a semantically annotated view of the scene. We have
not measured response times, but currently, all the tests can be run online and
without remarkable latencies. Section 5.3 captures the opinions of the patients
about the interaction with the robot.

5.3 Quantitative evaluation

The CLARC robot was evaluated at a retirement home in Seville in November
2017. Following a voluntary interview with a professional physiotherapist working
at the residence, eight patients were recruited. They formed a representative sam-
ple of the residence population in terms of IT (Information Technology) use and
functional and cognitive abilities:

– Inclusion criteria: patients should be volunteers, over 55 years old and with a
Mini-Mental State Examination (MMSE) score greater than 20 [36].



Table 2 Characteristics of the patients who participated in the evaluation of CLARC at a
retirement home (Seville)

User ID Gender Age Hearing Imp. Visual Imp. Cognitive Imp.
#1 Woman 86 no no no
#2 Woman 75 light no no
#3 Woman 84 light medium light due to the age
#4 Woman 55 no light light
#5 Man 93 medium light no
#6 Woman 84 no light light
#7 Woman 82 no no no
#8 Woman 92 light no no

– Exclusion criteria: patients were excluded if they had severe vision and/or
serious hearing impairments.

Table 2 describes the main characteristics of the patients who participated in this
evaluation. Some of them had serious motor impairments (patients #1 and #4
needed a wheelchair, patients #2 and #3 a walker). None of the patients had
previously interacted with another robot. All patients had a mobile phone, but
most used it only for phone calls or for taking photographs. Five of the patients also
sporadically used tablets or computers with some simple computer applications.
Only one of the patients (#4) used her smartphone and tablet continuously and
extensively (using chat applications, navigating the Internet, etc.). The mean age
of the patients was 81.37± 12.07 years. There were seven women (87.5%) and one
man (12.5%).

Before starting the session with the robot, each patient was interviewed. There
were three parts to the pre-test interview. The first was informed consent: the pa-
tient was given an explanation of the study protocol in detail and of his/her rights
before s/he signed the informed consent document. Then, sociodemographic vari-
ables were collected: the patients age and IT tool use and proficiency. Finally, the
user was asked his/her opinion about his/her perception of robots. The objective
of this question was to acquire knowledge about a possible link between familiar-
ity with technological interfaces and better performance in interacting with the
robot and whether an a priori positive/negative attitude towards robots influenced
performance.

Then, the patient was taken to a second room where he/she was introduced
to the robot. The patient was invited to sit comfortably, and the robot’s main
features were explained. The patient answered the Barthel test with the robot.
The patients were previously informed that the CLARC robot would explain to
them at any times how to interact with it and that unless a technical problem
should arise, they were not to communicate with the engineer in the room. The
physiotherapist that designed the interaction with the robot for the Barthel test
was present in the room and proceeded with his own Barthel Test evaluation while
he observed the interaction of each patient with the CLARC robot. He coded
his usual grid based on his observations and the patient’s answers to the robots
questions. However, in order to reflecting the patients current functional state as
objectively as possible, after the sessions, the clinician compared and completed his
scores (as necessary) with a previous Barthel Test administered a few days before
at the retirement home as part of the medical care facilities of the institution.
Once the test was finished, the patients were accompanied back to the first room.



Table 3 Patient’s responses to specific questions from the post-test interview

Question ID Description Mean SD
q1 I could hear and understand the robot clearly 4.14 1.21
q18 The robot was engaging and made me feel at ease 4.43 0.53

interacting with it
q23 I had the impression that my oral answers 2.5 1.49

were well taken into account
q24 It was easy to answer using the touchscreen or 5 0

remote control when the robot ’did not hear’
q25 I had the feeling that it was ’natural’ to speak with, 4.85 0.37

the robot or use the touchscreen or the remote control
q28 I felt confident during the interaction with the robot 4.86 0.37

A post-test interview and satisfaction questionnaire were administered. Table 3
summarizes the mean and standard deviation of the patients answers on a 5-point
Likert scale from 1 (strongly disagree) to 5 (strongly agree). The table provides
some of the more significant questions evaluating the patient-robot interaction.
From these responses, we can conclude that the proposed scheme allows the robot
to interact with the patient in a fluent and natural manner.

Finally, although this is out of the scope of this proposal, we note that the
robot and the clinician had complete agreement in the scores assigned to two of
the questions of the Barthel test. In the other eight questions, a maximum of two
users per question answered differently between the robot and the clinician. After
revising the recorded videos and taking into account the clinician’s notes taken
while observing the session, four situations were detected:

1. the patient accidentally pressed the wrong button on the remote control (1
case);

2. the patients did not understand the question (2 cases);
3. the patients did not answer during the allocated time (2 cases);
4. the patients got confused with the remote device buttons: instead of pressing

one of the option buttons (physical buttons labelled 1-4) after the question,
they pressed the ”yes”/”no” buttons immediately after listening to each option
(they did not wait for the response period following the presentation of the
whole question) (3 cases).

Only in one case could a patient not answer due to a technical issue.

6 Discussion

As Section 5.3 shows, the proposed scheme has been evaluated with real patients
at a retirement home in Seville. Although the number of patients was very small,
the initial tests were nonetheless successful. The agents interact using the DSR
to allow the robot to follow the correct course of action but also to act against
exogenous events such as the sudden absence of the interviewee (as shown in
Figure 8). However, the distribution of global control comes with a cost: the major
complexity of the DSR and the effort of the software developers to synchronize
the interactions of the agents without discharging this responsibility onto a specific
manager. This section briefly outlines the main advantages and disadvantages of
this proposal based on our experience with CLARC.



Cons. It is clear that the complexity of the software components in charge of
monitoring the evolution of the DSR (our agents) is higher than that of these same
agents when they must only wait for a command to act. Although the architecture
may give the impression of being modular, this is not so in its current version: the
definition of the agents demands a high degree of coupling among all developers
in charge of the implementation of each one of the agents. The reason for this
dependence can be the need to work with the same collection of symbols/tokens,
which was unfortunately not defined in advance. Thus, each change requires that
all agents know how the change will be ’written’ in the DSR. Agents must also
carefully manage how they will advise the rest of the agents that they are working
on a specific part of the DSR. The current messages in the DSR (such as robot is

speaking) must be correctly interpreted by other agents that could be assigned to
use the robots speakers. We must also endow the Grammars with priority levels
to access a shared resource. This problem was noted by Hartley [29], as similar
states of the world could mean different things depending on the context. Thus,
this would result in a behavior being activated when another behavior accidentally
allowed the world to satisfy its preconditions. Therefore, we again require a very
close interaction among the whole team of programmers.

Pros. On the one hand, we have been able to encode the action and perception
possibilities using the same scheme and collection of tokens, more or less elaborated
by the domain-dependent modules, but always coming from the sensors. It is
interesting to note that this provides a natural mechanism for merging top-down
and bottom-up procedures for determining the course of action. In this proposal,
the domain-dependent modules can respond in the same way to both kinds of
processes. For instance, when the robot loses sight of a person, the Speech agent
can immediately stop talking, and PELEA can change the global course of action.
The local behaviour of the Speech module does not need to wait to receive a specific
command from PELEA (or from any other goal manager). Thus, these modules can
learn how to react to specific stimuli. In the scenario where CLARC works, this
implies a fluent interaction with the patients.

However, the major advantage of this proposal is that the DSR stores a com-
plete view of the activities that the robot is performing, joining perceptions and
actions. Although the knowledge of the Grammars is defined by hand, the evo-
lution of the DSR is driven by the agents without supervision. The sequence of
sentences that any agent can read in the DSR (e.g., the robot is not speaking)
allows the agents to have at their disposal a detailed source of information for
improving the management of a given situation. The context information is anno-
tated in the DSR (e.g., the robot knows the questions in the test, the room, the
name of the next patient, etc.) and can be augmented by adding new modules (e.g.,
an agent could monitor the face of the patient and easily annotate the expression
on the graph) if required. The different leaves of the DSR evolve independently as
there are no bounds. The coupling of several planners (the path planner for tracing
new routes in a populated environment included on the CogniDrive agent and the
conversational ability originating from the PELEA planner) can be synchronized in
the DSR, as it is unnecessary to design a complex manager for determining what
the current, and unique, task to be achieved is. The filtering required to prevent
several agents from simultaneously accessing a resource, such as the speakers, can
be set by joining the resource to a unique agent. This was the case for the Speech

agent.



7 Conclusions and future work

This paper proposes a mechanism for bridging the perceptual and acting per-
spectives within a software architecture for robotics. The idea can resemble the
blackboard model or scene graphs, as the agents in our proposal annotate on a
short-term memory, the DSR, all the perceptual information they need to share
with other agents for solving a task. Instead of maintaining a specific agent for
determining the next goal/s to address, agents are now able to capture this in-
formation from the shared memory space. To correctly unfold this behaviour,
each agent must manage its own knowledge base, where it maps configurations
of the DSR (subgraphs) with actions. This constitutes an augmented mechanism
for defining the affordance concept. In simpler cases, the existence of an object
in the DSR can allow an agent to launch a specific action (welcoming a person).
In most cases, the agent will need to verify a more global context. For instance,
when the robot is navigating from one resident to another, a chair is simply an
obstacle to avoid. When the robot is administering a Get up & Go test in a room,
the chair is a key item, as the robot should ask the patient to stand up from this
chair, walk in a straight line for approximately three metres, turn back, return to
the chair and sit down. The contextual information should then be present in the
representation. Additionally, when an agent is performing an action (e.g., navi-
gating, speaking), it is consuming a significant resource (e.g., motors, speakers).
We suggest that the agents inform their counterparts in the representation that
an action has been launched and that, therefore, the resource is occupied. The
current actions can be stopped or modified by any agent in the architecture. They
are responsible for avoiding undesirable modifications of a course of actions. It
is important to emphasize that the proposed scheme is currently running within
a robot that is working with real patients. The preliminary results provided in
this paper will be extended to significantly increase the number of tests. We have
recently tested the ability of the robot to conduct the Get Up & Go test in the
Rehabilitation Unit of the Hospital Civil at Malaga. There, nineteen patients with
physical and/or neurological issues performed this test, while the CLARC robot
autonomously evaluated their gait. This application opens the discussion about fu-
ture work. Currently, the knowledge stored on the agents is set by our developers.
This is applicable to the PELEA agent, which maintains a specific domain, but also
to the rest of agents in the architecture. The idea of improving this knowledge by
learning from experience is probably the most interesting work to be addressed.
However, we will not conduct this research on CLARC. Interaction with the el-
derly in a real scenario is currently well defined and not open to exploration. We
should instead instantiate the architecture on other scenarios where we can have
the freedom to make mistakes.

Future work will focus on dealing with the main problems detected from these
trials. We need to define a common dictionary of terms and predicates that cover
all the knowledge bases of our agents. We also need to develop a mechanism that
allows the agents to access specific parts of the DSR (e.g., the person) and not
the whole representation. It is mandatory to set and manage priority levels for
using resources, a complex task that should be addressed by mid-level planners.
It is also mandatory to change the way agents are currently encoded, providing
a mechanism that can allow an easier way to map subgraphs to actions. Finally,
the collection of symbols must be generalized as a way to achieve the desired



modularity of the agents. The current encoding, which allows reading the state
of the outer world by a simple observation of the DSR, can be a good option for
achieving this generalization. However, we must also be open to the possibility
that while this encoding can ease our monitoring of the evolution of the DSR (and
thus, the possibilities for sharing the information with humans), it might not be
the best option for achieving autonomous learning by the task-dependent modules.
Other encodings (e.g., low-level features or outcomes generated/employed by these
modules) could be employed by the graph items that are closer to the sensors.
This will increase the data volume represented in the DSR but also open the
architecture to techniques such as deep learning, which could be applied by specific
agents to generate the current symbols encoded using natural language. It is also
essential to improve the ability of the robot to interact with users. Specifically,
we need to work on speech entrainment [38], i.e., the capacity of interlocutors to
become similar to each other during spoken interaction. Speech entrainment plays
a relevant social role, since humans perceive people who entrain to their speaking
style as more socially attractive and competent. Because of the significance of the
verbal channel, this is clearly a necessary skill for a robot that needs to engage
with elderly patients.
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