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Highlights
e Probabilistic agent-based model of interacting cells.
e Emergence of a unique genotype-phenotype map.
e Reversal of resistance is statistically characterised.

e New microscopic proxy for measuring resistance.

Machine learning techniques can allow inclusion of real molecular data.
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s Abstract This work introduces a new probabilistic agent-based lattice model
7 for studying the emergence of anti-microbial resistance (AMR) and proposes a
s new proxy to measure it: the average death probability of the population under
o the action of the AMD. Both analytical studies and computer simulations of
10 the microscopic behaviour of a bacterial culture interacting with anti-microbial
un drugs on a discrete lattice are carried out by focusing on the dynamics of this
12 quantity. A unique genotype-phenotype map and classes of AMDs follow as
13 emergent properties and their effects on the possible reversal of resistance
1+ are analysed. We also discuss briefly the possibility of using machine learning

15 techniques to learn the model parameters.
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17 protocol
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18 1 Introduction

v Anti-microbial resistance (AMR), the resistance of pathogens to anti-microbial
2 drugs (AMDs), has been dramatically increasing during the last decades,
2 quickly becoming a threat as dangerous as climate change (Woodford and
» Livermore 2009; Andersson and Hughes 2010). With levels of resistance dan-
;s gerously close to the pre-antibiotic era and decreasing rates of AMD discovery
2 (Charles and Grayson 2004), we risk becoming once again defenceless against
s infections. The issue is so pressing that the World Health Organization (WHO)

» has suggested a global action plan to address this problem (WHO 2015).

27 Although not restricted to them, current studies focus mostly on bacteria
;s as they are responsible for a large number of serious diseases, can develop
2 AMR in a plethora of ways and their evolution can be quickly analysed in
s vitro. In addition to mutations in their chromosomal DNA, bacteria can also
s benefit from horizontal gene transfer (HGT) through the intermediate action
» of phages (bacteria-infecting viruses) or by acquiring and exchanging circular
13 DNA fragments called plasmids, which frequently encode resistance genes (Ng
s et al 2010). Plasmids are independent from the chromosomal DNA, can also
s mutate and largely contribute to HGT (San Millan et al 2015; Baltrus 2013;
s Andersson and Hughes 2010) by being exchanged between bacteria of different
37 species or freed into the environment upon death as the cell’s membrane breaks

s down.

3 There are several attempted methods to deal with resistance, although none
w0 of them has been enough to alleviate the problem satisfactorily. One common
s practice is simply to avoid (for a potentially long amount of time) using a
« certain AMD for which resistance has emerged. Although resistance seems to
s decrease in general with this protocol, its efficiency has been disputed (Barbosa

as and Levy 2000). Evidence shows that the reversal rate can be slow (Austin
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s et al 1999; Tan et al 2011) and, even if reversal is observed, AMR may not go
«  back to original levels. Although it might be possible that resistance disappears
« if one waits long enough, the time scales might be so large that they can be
s considered unattainable for all practical purposes. Other common treatment
w protocols make simultaneous use of more than one AMD (Bonhoeffer et al
so 1997) — a practice that, however, can open the door for the emergence of
s multiple resistance. As a rule of thumb, the less AMDs are used, the less
sz problems we have with resistance.

53 There is a large literature on modelling the dynamics of AMR using differ-
s« ential equations which have been used to predict and analyse different aspects
55 of the problem (Bonhoeffer et al 1997; Alexander et al 2007; D’Agata et al
5o 2008; Obolski and Hadany 2012; Ternent et al 2015). These are effective mod-
sz els in which the relevant dynamical variables are obtained by averaging local
ss  quantities over large populations. The dynamical equations contain a possibly
s high number of macroscopic adjustable parameters that have to be included
s ad hoc to allow for a better fitting of observed features — the coefficients of
61 the terms of the differential equations. In biology, they are known simply as
6 continuous models.

63 In microscopic models, one secks the behaviour of the same quantities,
s but the aim is to derive their dynamics from the interactions of the systems
s components (e.g., bacterial cells). By finding the rules that set the fundamen-
e tal processes of life and death of an individual cell and the way it interacts
& with its environment (including other cells), one seeks to derive from them the
e same equations as before, but connecting the macroscopic parameters with the
e microscopic quantities. This strategy provides a better framework for micro-
7 biology experiments and also allows for finer modelling, taking into account
n  the statistical variability of the results which is smoothed out by the effective

= equations. This variability is the result of several sources of stochasticity in
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7z the process as the variance in genotypes, the variations in initial and environ-
» mental conditions in each realisation of the process and uncontrollable sources
7 of noise which can appear in the physical and chemical processes involved,
7 which includes the death, reproduction and response to the AMDs from each
7 particular cell.

78 Effective and microscopic models are complementary rather than compet-
7 ing techniques, with their own range of applicability, advantages and draw-
s backs. The former are usually of lower computational cost, while the latter
a1 help in understanding basic principles behind the phenomenon, leading pos-
22 sibly to a better control and to refinements and/or corrections. From a more
s technical point of view, differential equations might suffer from serious conver-
s gence problems, while microscopic models are better controlled and are only
s limited by their computational running time when the number of microscopic
s components is very large (although it must be reckoned that this is typically
& the case).

88 The use of microscopic models is not uncommon in several areas of biol-
s ogy (Anderson et al 2007), in particular systems biology. There has been, for
« instance, a growing literature on using them to model cancer growth (Gerlee
o and Anderson 2009; Rejniak and Anderson 2011). As the strategies used by
o cancer cells to avoid the immune system can be similar to AMR strategies,
o3 those models can shed some light on the mechanisms of resistance. Because
o cells are autonomous units, the models are usually said to be agent-based.
o5 Their popularity resulted in the online availability of many general purpose
os open-source programs to simulate those models with varied degree of detail
o (Tisue and Wilensky 2004; Holcombe et al 2012; Gorochowski et al 2012).

o Here we introduce a new microscopic agent-based model for the study of
o0 AMR emergence and show how it can be used to improve our understanding of

100 it. By modelling bacterial cells as agents on a lattice, we have a better resolu-
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1w tion of the involved quantities, allowing the statistical analysis of the problem
102 and highlighting the probabilistic processes involved. We try to make the model
03 as simple as possible, but still sharing some key features with real situations.
s The resulting framework is easily adaptable to include other mechanisms (like
s HGT) and provides a scenario for direct comparison with experimental in vitro
106 tests.

107 In the following, we show how the model is based on reasonable biological
108 assumptions and present results of the simulations which are in qualitative
100 agreement with observations. We do not claim that such a simplified model
umo can become a sharp decision-making tool for treatments in its present form,
m  but we believe that more sophisticated versions of it, obtained with further
2 inputs from experiments, will increasingly contribute in the assessment and
us  development of new strategies against AMR.

114 In section 2 we introduce the lattice model representing an artificial bac-
us  terial culture in a Petri torus (a mathematical idealization of a Petri dish).
us  The cell’s response to a certain AMD depends only on two functions taking
uwr  as arguments the cell DNA and the AMD to which it is being exposed. The
us resulting fitness landscape is analysed in section 3. The introduced model is
o used to analyse the effects of a single drug protocol in section 4. Conclusions
2o and further discussions are presented in section 5.

121 An open-source C code for the simulations generating figs. 6, 7 and 8 is

12 available online at https://github.com/robertoalamino/AMR.

123 2 Artificial Bacteria

12« The model here introduced is inspired by a typical laboratory setting. A bac-
s terial culture is grown on a Petri dish containing some pre-defined and fixed

16 concentration of an AMD and its population is recorded as a function of time.
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127 The Petri dish is modelled by a square lattice with bacteria living on its sites.
s A certain initial configuration of cells allocated at random in the dish (spread
e randomly on the sites of the lattice) is evolved in time according to pre-defined
130 rules. The temporal data on the appropriate proxies provide information about
1 how different treatments will influence the rates of AMR emergence in the cul-

132 ture.

133 We work with a square N x N lattice with periodic boundary conditions
w  (PBC) in both directions, which we call a Petri torus due to the resulting
135 topology. The choice of periodic instead of open boundary conditions is not
136 expected to have a significant impact on the results of the simulations for larger
w  lattices and was a question of convenience. To each lattice site (i, ), ¢,7 =
s 1,..., N, we associate a binary variable o;;, which is 1 if the site is occupied by
1o a cell and 0 if it is empty, similarly to a lattice gas model (Baxter 1982). PBC
w imply 04 n,; = 0; j4+N = ;. The occupation state of the Petri torus at each
w  instant can then be represented by the occupation matriz o (t) = (0:;(t)) Nx N
12 which can be understood as a function of the time ¢ and whose entries are
1 functions of both time ¢ and space coordinates (z,7). The configuration shown
us in fig. 1 for instance has N = 4 and its occupation matrix is shown above the

us lattice in the same figure.

146 Bacteria will not be allowed to move from one site of the lattice to another.
wr  Therefore, their life cycle is equivalent to a probabilistic cellular automaton
us  (Wolfram 2002). The “natural” bacterial life cycle, which excludes the action
uo  of the AMDs, depends on two probabilities. At each time step ¢, every cell has
10 a reproducing probability r of dividing in two. The position of the new cell is
11 chosen with equal probability from the empty neighbouring sites to the parent
152 cell. If there is no empty neighbour, the cell does not reproduce. A natural

153 death probability d for each living cell at time ¢ includes all non-AMD related
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Fig. 1 Artificial bacteria on the Petri torus. The picture shows an example of a small
Petri torus with artificial bacteria living on it. The torus is a square grid with periodic
boundary conditions. Full circles represent sites occupied by cells. Each cell has its corre-
sponding DNA of dimension D = 8, which in the picture is represented by the row/column
of boxes (black boxes correspond to the +1 value and white boxes to the -1 value for easier
visualization). The matrix just above the lattice is its occupation matriz, where occupied
sites have the value 1 and empty ones have the value 0.

processes like other adverse environmental conditions, ageing and the patient’s

immune response.

It remains to model the response of the bacteria to the applied treatment,
the latter characterised by the concentrations of the AMD at each site of the
lattice. Pharmaceutical companies usually measure the efficiency of AMDs by
their Minimum Inhibitory Concentration (MIC), the lowest drug concentration
which prevents bacterial growth after a defined incubation period (Davey et al
2015). The MIC is convenient in clinical trials as it avoids the difficulties in
isolating the effects of the patients’ immune system, but it contains no informa-
tion about pharmacodynamical properties of the drug (how bacterial growth
changes with variations in drug concentrations). It has been proposed that a
better proxy is given by the Minimum Bactericidal Concentration (MBC), the
concentration that kills at least 99.9% of the bacteria within 24 hours (French

2006). Here we introduce a more convenient quantity from the microscopic
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Fig. 2 Death probability. The plot shows the death probability g as a function of the
difference A between the actual AMD concentration and ¢é for three different values of h.

The greater the value of h, the steeper is the curve at zero. In the limit h — oo, the function
has a discontinuous jump from zero to one.

s point of view — the concentration ¢ of AMD below which the probability of
o a cell to die from its action is less than 1/2. As a concentration, it can vary
wo in the continuous interval [0, 00). This definition is simpler to implement in a
i probabilistic microscopic model and, because the studied scenario comprises

w2 in vitro cultures, it can be actually measured with controlled experiments.

173 For simplicity, it is assumed that each cell has one single DNA strand
s encoding its AMD response, which is given by the total AMD death probability
s gij, the probability that the cell occupying the site (¢, j) dies if exposed to the
s local concentration c;; of the AMD. Here we do not consider any HGT, which

177 will be left for future work.

178 The total AMD death probability is modelled by the heuristic formula

1 + tanh (hA”)
qij = f»

(1)

e where A;; = ¢;; — ¢;; and whose plot is shown in fig. 2.
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180 Notice that g;; is not the actual fraction of cells dying at a certain moment.
i It rather measures the response of the organism to a potential use of the AMD.
12 Therefore, even in the absence of any concentration of AMD, random genetic
183 mutations can change the probability of death.

18 The local value of ¢;; is fixed during the whole process. We are not consid-
185 ering any diffusion of AMD, although it clearly has an important effect in any
185 bacterial culture on actual agar. Although such a variation with time would be
17 desirable in a more realistic scenario and could be implemented in principle,
188 we will refrain from doing that in the present study for simplicity.

189 There are two other local (cell/site-dependent) quantities in the above ex-
wo pression. First, the concentration &; € [0,00), whose objective is to account
11 for physical and chemical mechanisms having threshold behaviours as, for in-
12 stance, chemical pumps which can become saturated or membranes whose
103 thickness up to a certain point can prevent the AMDs from entering the cell
s interior. Second, the sensitivity h;; € [0,00) regulates the increase/decrease
105 in cell death with variations of AMD concentration and is related to the ac-
s tual toxicity of the applied substance. Both quantities can, in principle, be
17 obtained from actual designed experiments by measuring changes in bacterial
18 populations.

109 The genotype of each cell will be encoded by a binary chain 7;; € {il}D,
20 where D is its integer dimension, i.e., the total number of coordinates in it (see
a1 fig. 1) representing abstractly its biological information content. The DNA is
22 responsible for storing the organism’s information about how to survive to its
203 environment. The way this information is translated is convoluted as it de-
2s  pends on a series of hierarchical processes. Still, such a mapping is necessary
25 to allow learning and forgetting (in other words, evolution) from the envi-
26 ronment. Both are essential informational requirements of adaptation through

27 natural selection and integral elements of mathematical evolutionary models
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28 and genetic algorithms (Mitchell 1998; Schecter and Gintis 2016). Learning in
200 the present model is required for adaptation in the form of AMR acquisition,
a0 while forgetting allows acquired adaptations to fade away, as would be the
an case for reversal of AMR. One of the most studied statistical physics mod-
a2 els of biological phenomena with these characteristics is the Ising perceptron
a3 (Rosenblatt 1958; Engel and van den Broeck 2001), designed to model neu-
a4 ronal responses, with neuron’s synapses and stimuli both encoded by binary

25 chains.

216 The perceptron is one of the simplest known machine learning models and
a7 it is characterised by a function taking a multidimensional vector into a num-
a8 ber, called the activation function for biological reasons. This is usually a
219 general function of the scalar product of its synaptic vector, which is a mul-
20 tidimensional parameter encoding the information learned by the perceptron,
a1 and the input vector, a vector with the same dimensions as the synaptic vec-
2 tor and which encodes the stimuli provided by the environment to which the
23 perceptron reacts. A more detailed description of the perceptron and how it

24 works is provided in appendix A.

25 In this work, input vectors correspond to the binary encodings of the AMD
26 into a binary chain of dimension 2D, A = (a, B) € {:|:1}2D. The two model pa-
27 rameters then become functions of both the environmental conditions (applied

»s  AMDs) and the cell genotype (the DNA)

o 1+ {amy)

&; = B — 1+ <ﬂ,7‘l‘i]‘>

1—<a,7rij>’ Ea 1_<B77Tij>7 (2)

20 where we defined (x,y) = x-y/D, i.e., the normalised cross product between
230 the two vector arguments. These maps have been chosen as the simplest map-

2 pings of the given inputs into the relevant intervals.
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23 Although simple perceptrons cannot approximate general functions, it has
23 been shown that adding one extra layer, corresponding to another set of per-
24 ceptrons doing an intermediate processing of information between the stimuli
25 and the final response, turns them into universal approximators (Cybenko
26 1989). Variations with several layers, known as deep neural networks, have
2 been successfully used in machine learning applications and recently provided
238 a solution for the long sought problem of creating a computer algorithm capa-
20 ble of playing Go on a level comparable to human masters (Silver et al 2016).
a0 For our purposes, one layer is sufficient, but the model is flexible enough to

2 allow an extension to a more complex neural network structure.

22 The dimension of the AMD vector was chosen to be twice as large as the
23 DNA’s dimension to allow mutations in the latter to simultaneously affect
24 both model parameters, the well-known phenomenon of pleiotropy (Stearns
25 2010). In nature, each protein usually participates in more than one metabolic
26 process simultaneously. As a consequence, each single mutation might affect
27 more than one of them. Although the standard definition of pleiotropy concerns
25 genes and not bases, we are using here a generalised version of it. One could
29 think about working directly with genes, as it is done in a similar model called
20 MQT model (Taylor and Higgs 2000) which considers random associations and
»1  a linear fitness function, in which case the phenomenon would be the standard
»2 one. From here on, whenever we use the term pleiotropy, we mean this general

23 definition.

254 One should notice that ¢ and h are not constants of the model, they are
s functions of the genotype (7;;) and AMD (A) only. They can vary accord-
26 ing to evolving conditions, but only through the variations of m;; and A,
»7  nothing else. More precisely, the freedom comes from the choice of the activa-

s tion functions leading to them, leaving open the possibility of choosing more
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»0  complicated genotype-phenotype maps which might lead to better agreement

%0 between observation and theory if needed.

%1 3 Fitness Landscape

x2  According to our model, bacteria acquire resistance by either increasing ¢,
x3  decreasing their sensitivity h or both simultaneously. The fitness landscape
e generated by a given AMD, i.e., the value of ¢ as a function of 7= might,
%5 in general, be a complicated function. We now show that the present model
»%s mnaturally leads to a convenient simplification once we take the limit of large

%7 DNA sequences D > 1.

268 The simulations to follow will analyse AMDs generated by random dis-
20 tributions. We can then show that the scalar product inside the activation
oo functions, in the limit where the number of bases D is very large, depends
an only on the means of these distributions. In the case where the coordinates
o of the vectors a and B are i.i.d., with means represented by overbars on the
a3 variables, we can calculate the distributions of ¢ and h while D is still finite

a (but large).

275 The activation functions have the general form
1+y 1
STy Z/ZBZ:ZNU’ 3)

zs  where the z/s are the appropriate sections of the AMD encoding and the /s
a7 are the coordinates of the DNA. We can prove that the resulting distributions

zs  are (see appendix B)

Yy

1 2 1 (z—1 \°
Po) = oy WEXP[—%@(M—Q} (W
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Fig. 3 Fitness landscape. The plot shows the fitness landscape for an AMD with & =
B = —1 as a contour plot representing the total death probability ¢ as a function of the
AMD concentration ¢ and the fraction z of -1 coordinates in the DNA. The landscape
shows a global maximum of ¢ at the centre extending to the top of the graph surrounded
by decreasing profiles to both side. While higher concentrations will eventually kill all cells
leading to ¢ = 1, one can see that by changing x in any direction decreases q and, therefore,
increases resistance.

270 with
2

iz e Q_Lzz 2. %2 (5)
y—BZﬂ',—zw, Uy_DQ ,ﬂ-i_D’

s where o2 is the variance of z. For D — oo, this becomes a delta distribution.

2 Then we can readily calculate the mean of each parameter in this limit as

_ . l+ar 14 67
= h hy = ———. 6
E= (8 = 7= = (h) Ty (6)
282 As an example, consider the case @ = 8 = —1, which gives
x
c=h= 7
é=h=1—0: (M

23 where x = 1 — 7 is the fraction of coordinates in the DNA vector whose value
s is -1. In this case it becomes simpler to plot the fitness landscape. Because it
25 depends not only on the type of AMD, but also on its concentration, it is then
26 convenient to present it as a contour plot of ¢ as a function of both x and the

s AMD concentration ¢ as in fig. 3.
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288 The particular encodings above were explicitly chosen such that ¢ and the
20 sensitivity h are equal by design, which will not usually be the case in practice.
20 Qualitatively though, this is an important situation where both parameters
21 play an antagonistic role in the evolution of the genotype, contributing in
20 opposite ways for the emergence of AMR. While a higher ¢ improves resistance,
203 a higher sensitivity decreases it. This phenomenon in which the same genes
24 codes for two phenotypes, one of which is beneficial and the other is detrimental
25 to the organism’s survival, is known by the name of antagonistic pleiotropy

296 (Williams 1957) .

207 Antagonistic pleiotropy is here reflected in the fitness landscape by the
208 maximum of ¢ surrounded by descending profiles both to the left and right.
20 Because this landscape has only one global maximum, we can more clearly
w0 see that resistance will eventually emerge as we move away from it in the x
sn  direction, which is always observed in simulations.

302 A crucial point in evolutionary biology is to find appropriate genotype-
s phenotype maps (GPMs) (Stadler and Stadler 2006; Ahnert 2017). In the
s above case, we have a GPM that is completely determined by the way the

s genome interacts with the environment which is given by
D
II () :Dﬁ':Zm. (3)
i=1

306 The phenotype is therefore an emergent property — it appears as a collective
a7 effect of a very large number of DNA (binary) bases.

308 From the structural properties of GPMs considered in (Ahnert 2017), the
0 map I1 possess redundancy, as it is a many-to-one map which maps the set
s +10 of dimension 2” into the set (—D,—D +2,...,D — 2, D) of dimension
su D+ 1 (an exponential dimensional reduction in size) and bias, meaning that

sz the number of genotypes for each phenotype is not the same. More precisely,
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a3 the number of genotypes of dimension D corresponding to a phenotype IT is

s given by the binomial coefficient

((D Je) ®)

315 The other two properties, robustness and evolvability, need to be discussed
a5 better. The simulations indicate that the map allows the artificial cells to
sz adapt, but on the other hand it is not robust. The neutral networks (pre-
as  images in genotype space) of the phenotypes in this GPM are not connected.
siv - Whenever a single mutation happens, it necessarily changes the phenotype
a0 either by 42 or -2. On the other hand, clearly, the network of phenotypes is
s fully connected by single mutations and has the topology of a line segment,
s which allows any phenotype or genotype to be reached from any other by an
w23 appropriate sequence of single mutations. Although the map is not robust in
s principle, in practice, for large D, neighbouring phenotypes result in values
s of ¢ and h that differ typically by very small quantities, which we can see as
26 a quasi-robustness. Single mutations will only affect significantly the answer
27 to the phenotypes that lie very close to the value +D, but this effect is very
»s limited and does not seem to affect the evolvability of the the cells. In addition,
9 because the number of genotypes for each phenotype is given by a binomial
s coefficient, for large D it will concentrate around I = 0 with lower probability

s of being found on those extremes.

33 This GPM is, of course, a crude approximation to real ones, but as our
13 objective is to study qualitative aspects, we will not seek for further sophis-
s tication in the present study. The source of this GPM is the linearity of the
s dot product used in the activation function, which means that if one wishes
136 a more realistic mapping, additional modelling of the response to the envi-

s ronment should be made. It is true that the resulting delta function can be
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Fig. 4 Genotype-Phenotype Map The diagrams show the genotype-phenotype map
induced by the choice of the functional parameters for (A) D = 7 and (B) D = 10. The
squares squares indicate the values of the phenotypes IT given in the vertical axis, while the
horizontal axis has the decimal representation of the binary DNA sequences. The plots to
the right of each diagram shows the phenotype frequency (vertical axis) as the number of
different genotypes corresponding to each phenotype (horizontal axis) out of the respective
values of 27 = 128 and 2!9 = 1024 possible genotypes.

s softened by a different choice of scaling for the scalar product, but that would
30 lead to artificial values for the case we are studying. Fig. 4 illustrates the GPM
uo  above for two different values of D, respectively 7 and 10. The value of IT is
s plotted against the integer representation of the binary sequence of DNA with
s the convention that —1’s are represented by 0’s. For instance, (—1,1, —1) be-
u3  comes the binary number 010, which corresponds to the integer value 2. The
sa  plots to the right of each diagram show the number of genotypes per phenotype

us for each case.

6 The above formulas show that, by judiciously choosing the values for the
w7 means, one can choose what type of AMD we want to study. Clearly, one would

us like to approximate the behaviour actual AMDs. Conversely, one can search for
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s AMDs with certain desired means. For instance, for this very simplified model,
0 there exists one AMD against which resistance cannot evolve, namely the one
s with @ = 8 = 0. This choice makes the activation functions independent of
2 the DNA, completely hindering adaptation. If we do not consider the collective
13 effects, as is the case of biofilm formation which is not allowed in the present
s model, but only the resistance of each individual, this would be the analogous
35 of bleach or soap for real cells. Both have physical actions that destroy the

s membrane against which there is no known single cell adaptation.

7 4 Single Resistance Emergence

1 Given that most bacterial DNA sequences have between 10° — 107 bases, it is
30 reasonable to use equations (6) as approximations in most cases. Throughout
w0 our simulations, the values used for D are sufficient for this approximation to
1 be within acceptable precision.

362 Each initial Petri torus occupation is set randomly by putting a cell in each
w3 site with probability 1/2. We will use two different methods to set the initial
s distribution of genotypes in the lattice. The fastest method computationally is
s to simply distribute the genotypes uniformly with the same probability. This
w6 will generate a binomial distribution with a fixed variance around IT = 0. We
7 will use this initial configuration throughout the simulations.

368 To isolate the effect of the AMD, we set the natural death probability to
w0 d=0,1.e., cells donot die unless killed by the AMD (we are therefore ignoring
s cell age, any influence of the immune system or other additional environmental
s toxicity). The dynamics then follows two steps at each ¢:

BT

s (1) Reproduction with Mutation: all living cells are drawn once and only once

s with the same probability and checked whether or not they will reproduce with
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35 probability r. If reproduction is chosen, then one of the empty neighbours of
s that cell is chosen with the same probability and the cell generates a child on
sr7 it. The child cell has a certain probability of mutation, which we will later on
s specify in more details. Basically, one or more coordinates of its DNA can be
s flipped randomly each time the cell reproduces.

380

s (2) AMD Death: one checks whether each cell dies according to the probabil-
s2 ity g;; for each local AMD. As all cells are checked at this step, the order is
33 irrelevant.

384

385 These two steps above are illustrated in the example given in fig. 5. Each
s run of the simulation consists of T" time steps and the information recorded is
se7 - a double average of the death probability ¢;; — the average over all living cells
s and the quenched average over initial configurations. To avoid finite size effects,
0 like the stalling of adaptation due to lack of physical space for reproduction,
s we arbitrarily kill 50% of the cells at random whenever the network becomes
s fully occupied. For large populations, we expect this to not affect the results
32 significantly. In the simulations we present, this threshold has rarely been

303 reached.

304 The mutation rate at genotype level can be translated to one at phenotype
w5 level, making all equations dependent only on the phenotype. A mutation
w9 in the DNA means a flip (i.e., a change of sign) of one of the coordinates
s7  of m. We assume that each coordinate has an independent probability m of
s flipping at each time the cells reproduce, i.e., m is the mutation rate per base.
w0 Notice that each flip in the DNA means a change of either +2, 0 or -2 in the
wo  phenotype. Therefore, it is convenient to write Ily41 = II; £ 2A, such that
w Ae€{0,1,2,..,D}.
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Fig. 5 Simulation steps. The top picture shows an example of a possible change in
configuration of the Petri torus after a reproduction with mutation simulation step. Arrows
indicate the direction of spreading for each reproducing cell (notice the periodic boundary
conditions). Occupied sites with different shades represent mutated cells with respect to
their parents. The bottom picture illustrates a possible result of applying an AMD in which
one of the mutants from the previous round is more resistant to the AMD (the “darker”
mutant) than the other (the “lighter” mutant).

The derivation can be found in appendix C and the final result is given by

|D-A)/2

) p (D +11,) /2 (D F I1) /2

P(Iy 4, = I, £ 2A) 1;) < k )( A+k ) (10)
x mATH (1 — ) P(AT2h),

where |z] is the floor function, i.e., the greatest integer smaller than x. The
above expression needs to be calculated only once for the (D + 1)? possible
values of the pair (IT;, A) and can be stored in a file to be accessed each time
the simulation is run. Although the above expression is useful for analytical

purposes, computationally it is still more convenient to work with genotypes.
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408 In the following simulations, we choose a concentration of AMD (fixed
wo during the whole simulation) such that the initial value of ¢ is 0.3 for the
a0 wild-type Iy and set r = 1 for convenience. This value is chosen to allow time
a1 for the cells to adapt to the AMD before the population is wiped out. Higher
a2 concentrations will kill all cells before adaptation occurs and will not be useful
a3 to obtain information about the dynamics of the model.

a14 Fig. 6 shows the behaviour of the model for large ¢ by plotting the value
as  of ¢ for different AMDs. We used a lattice of linear dimensions N = 50 (2500
a6 sites in total), DNA sequences of size D = 50 and zero mutation rate, which
a7 means that adaptation becomes only a function of the diversity of the initial
ais population. The plot shows the value of ¢ after 7' = 3000 time steps aver-
no aged over 100 initial configurations of cell occupations. Although there are
20 no guarantees that at 7' = 3000 adaptation has reached a stationary state,
w1 this gives an indication of the relative difficulty to adapt to each AMD. We
w2 varied @ and B from -1 to 1 in steps of 0.2, giving a total of 112 = 121 data
w23 points. The (approximate) symmetry in the plot is clear, with the presence of
w24 some antibiotics to which adaptation is relatively easy and those to which it
w5 is difficult. Mutation will surely change this picture and we will soon analyse
w6 scenarios where it is present.

a1 As the response to each AMD can be very different, we will work with
s a set of parameters which allows for an easy visualisation of the properties
w29 we would like to assess. An analysis of the data presented in fig. 6 indicates
s that the values &= 8 = 0.5 allows for the emergence of resistance within a
a1 reasonable tinie frame throughout the simulations and will be therefore used
a2 for the sake of convenience.

233 Probably, one of the most popular questions concerning AMR, is whether
s resistance is reversible. As stated before, reversal is a process that is slower

s than adaptation. On average, the reversal is not complete. The answer, in
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. 0-3

0.15 ¢

Fig. 6 Comparative adaptation against different AMDs. The plot shows the value
of g after 3000 time steps for different values of the pair (d, B) for m = 0 (no mutations).
The values vary from -1 to 1 in steps of 0.2.

w6 fact, depend on a careful consideration of the actual scenario in which AMR
.7 appears. For instance, it is a trivial mathematical observation that if the initial
s genotype population is distributed uniformly before the selection pressure, any
w9 mutation rate will result in a regression to the original state. If the selection
wo  pressure is the introduction of an AMD, by stopping the treatment one would
w1 observe a total reversal of AMR. This does not seem to be the actual observed
w2 behaviour in real cases.

w3 The difference comes from the fact that the original bacterial population
ws in a patient is already under selection pressure from the environment. By ad-
ws  ministering an AMD), one creates an additional pressure. When the treatment
us is stopped, the population has to guarantee that it will remain adapted to
w7 the original environment. In order to simulate an analogue situation using
ws our model, we here use an initial population which is uniformly distributed in
wuo  genotype space, which is diverse enough to be able to adapt to a wide range
0 of AMDs. The choice of working with an initial uniform genotype distribu-
1 tion here is that we will take averages over 1000 realisations of each process.

2 In this case, adjusting the initial population using Metropolis-Hastings in-
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Fig. 7 AMR Reversal. Average death probability ¢ as a function of time ¢ for m = 0.001.
Each treatment is stopped at a different time, 7 = 500, 1000, 2500, 5000.

i3 creases too much the computation time, but because of the long initial adap-
s« tive phase before treatment and of the presence of “mutations” (the moves of
s the Metropolis-Hastings algorithm), does not result in significant differences

ss6  in the dynamics.

as7 The population is then subjected to a randomly chosen AMD for the first
s 5000 time steps. This first AMD simulates the action of the original environ-
w0 ment. After that, the clock is reset and another randomly chosen AMD is
w0 administered for a certain fixed interval of time 7. Fig. 7 shows the results

w1 obtained for different time intervals of treatment.

a62 The curves shown in fig. 7 are averages over 1000 different pairs of AMDs.
w3 On average, we see that AMR indeed takes longer to reverse. Although the
w4 running times should be extended in order to provide more reliable informa-
w5 tion, we can see that in practical time-scales reversal is not total.

466 The average curves, however, should be taken with a grain of salt. Due to
w7 the fact that resistance can vary widely for different AMDs, the variances of the

ws curves are very high. In fact, a better characterisation is given by the analysis
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Fig. 8 Reversal frequencies. In each plot, the back shaded histogram (online blue) shows
the distribution of ¢ at t = T, which represents the results before the treatment with the
relevant AMD is stopped. The front shaded histogram (online beige) is the same distribution
at t = 10000, which gives the long-term consequences of stopping the treatment at the
corresponding T*. as a function of time ¢ for m = 0.001. The different stopping times are
given by T* = 500, 1000, 2500, 5000 and indicated on the plots.

wo of the distribution of values at the relevant time-steps for each situation. This

s information is provided by the plots of fig. 8

an The two shaded plots show the frequencies of the values of ¢ at t = T* (back
w2 shaded are, online blue) and ¢ = 10000 (front shaded area, online beige). The
a3 bin size is 0.01. The distribution obtained before the treatment is stopped
aa shows that, the longer the AMD is used, the higher the peak near ¢ = 0.
a5 This means that a larger fraction of the population adapts very well. There is
as  a second peak around ¢ = 0.3, implying another large number of cells which
a7 however cannot adapt. This pushes the average adaptation to lower values, but
as it also signals that there is a group of cells that will become almost completely
a9 resistant. For instance, respectively for T* = 500, 1000, 2500, 5000, the fraction

a0 of cells with ¢ < 0.1 is 25%, 31%, 32% and 34%, all of them very high values.
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481 The long-term distributions obtained after the treatment has stopped tell
w2 a more optimistic story. They show that, although on average reversal is not
w3 complete, there are very high peaks around the initial value before adaptation
s ¢ = 0.3. In fact, there are even cases in which the levels of susceptibility to the
s AMD increase above this value, which we will call an over-reversal. It seems
s 0odd though that the peaks are smaller when adaptation is less efficient, i.e.,
w7 when the AMD is used for a smaller interval of time. However, this is a result
s of the fact that there is a larger spread of over-reversals. Respectively, for
wo  T* = 500,1000, 2500, 5000, the fraction of cells that end up with ¢ > 0.27 is
w0 about 73%, 73%, 72% and 70%, which shows that there is more reversal if the
w1 AMD is used for a smaller amount of time. The difference does not seem to

w2 be too significant, which means that more extensive studies need to be done.

w3 5 Conclusions and Discussion

w4 This work has introduced a new tool for studying the emergence of anti-
45 microbial resistance — an agent-based microscopic model (also know as a single-
a6 cell-based model (Anderson et al 2007)) whose agents are perceptrons, the
w7 simplest kind of machine learning model. This methodology provides a new
ws  point of view from which to study the dynamical mechanisms of resistance
w9 spreading by allowing the modelling and analysis of its inherent stochastic

so0  aspects.

s01 The use of an agent-based model required the introduction of a new proxy
so  for measuring AMR. We argued that usual ones, MBC or BIC, are not con-
s3 venient for our simulations and we proposed to use the average probability
sa  of death by AMD g¢. This represents the fact that the reaction to an AMD is

s not completely deterministic in a population, with several unknown or uncon-
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sos  trollable factors contributing to its stochasticity, which is also present in the

sor  reproduction with mutation and natural death of the cells.

508 Unlike deterministic differential equations, the model allows for the consid-
so0  eration of the variance in adaptation, as different contingent paths can lead to
sio  different final rates of resistance. This indicates that it is important to analyse
su  the distribution of resistance, which has been overlooked in previous studies.
s The case of stochastic differential equations would allow for modelling these
si3 aspects but, to our knowledge, no model based on them has been proposed so

514 far.

515 The model presented here is minimal, with few assumptions about the
sie  details of biochemical mechanisms in an attempt to be as general as possible.
si7 - Instead of being implicitly represented by parametrised terms, as is the case
s in continuous models based on differential equations, the relevant microscopic
si9 processes are modelled explicitly. This makes the model flexible enough to be
s0  expanded and generalised, including processes that are here not taken into

51 consideration.

52 For instance, HGT can be incorporated in the model by introducing a
53 probability of exchanging the DNA configuration between adjacent cells. Cell
s mobility can be achieved by erasing a cell from one site and recreating it in
s another one. Another important process would be AMD diffusion, which could
s be simulated by a spread of the AMD to adjacent sites with a corresponding

s27  dilution of its concentration.

528 In the limit of a large number of degrees of freedom, which in the present
s0 case means large DNA chains with D > 1 and grid size N > 1 (both usu-
s0 ally the case for real life scenarios), the model reveals interesting emergent

sn behaviour. In particular, we identified the following emergent properties:
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s — AMD Classes: in the large system limit, the model leads to a fitness
533 landscape that is a function of the average values of the AMD encodings

534 only. This means that AMDs can be classified into large groups with the

535 same typical anti-microbial properties. This is very similar to the real case,
536 where drugs are classified in families like penicillins or cephalosporins, with
537 some variations inside these groups.

538 The above classes of AMDs include some drugs which are impossible to
539 adapt to. Although, this would seem to be an exciting possibility in real-
540 ity, this kind of AMD already exists, except that they are those substances
sa1 which are also toxic to the patient. This might contribute to the search for

542 AMDs that can be used efficiently to kill the bacteria without compromis-

543 ing the patient’s health. One possible modification of the model to allow
544 for this kind of study could be to introduce a second structurally different
545 agent representing the patient’s cells.

s — GPM: interestingly, this model induces a unique GPM which has many
sa7 of the most important properties of real GPMs, including the exponential
548 decrease in number from microscopic states (genotype) to macroscopic ones
549 (phenotype). Also, not only the phenotypes, but their distribution emerges
550 in the large system limit too.

551 The application of this model to the case of single-drug treatments revealed

s2 - a series of interesting aspects of AMR modelling. For instance, the results of
53 the simulations showed that one must be careful when choosing the initial dis-
s tribution of bacterial populations. If one uses the simplest choice of a uniform
s distribution for the genotypes, reversal of resistance always happens in this
sss  case simply because, no matter what is the mutation rate, they will eventually

ss7 - randomise the DNA chains and reproduce the initial population.
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558 This indicates that it might be more reasonable to use phenotype distri-
ss0  butions as selection pressures act on the former instead of the latter. Because
ss0 every (relatively) stable population will be in equilibrium with respect to some
ss1  selection pressures defining the environment it is inhabiting, it is more nat-
s2  ural to assume that the population that will be treated with some AMD is
s stable under some selection pressure that will drive the phenotype (or geno-
s« type) distribution away from uniformity and favour some particular value. The
ss AMD brings new selection pressures, which forces the population to adapt to
s6  the mixed environment. After the AMD is removed, reversal means that the
s population needs to re-adapt to the initial pressures. In order to simulate
s this scenario, the initial population was generated by introducing a “dummy”
seo  AMD representing the initial environment which acts continuously in the pop-
s ulation. Although this would seem to be equivalent to a two-drugs protocol,
sn  this is not exactly the same as the first “dummy” AMD (the environment) is
sz never removed.

573 The simulations then showed that, even if average results for the reversal
su rate are in qualitative agreement with actual observations, they might hide
s some crucial information, which we uncovered by looking at frequency plots
st of the death probability ¢ at key times during the treatment protocol.

577 One exciting possibility about this model, which will require more involved
sis future research, is to use machine learning algorithms to encode the structure
so of actual AMDs and study them. The genotype can be directly translated
ss0  to binary code and the macroscopic parameters of the model can be obtained
se1 from experiments. Although perceptrons are too simple to approximate general
s2  genotype-phenotype maps, it was proven (Cybenko 1989) that more complex
sss networks, as deep networks (Silver et al 2016), are universal approximators
ssa  and can become powerful tools in the search of real new AMDs and evaluation

ses  of resistance scenarios.
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586 There are several other issues which can be tackled by the present model
s in future versions. Multiple resistance/multi-drug protocols is one of the most
sss  important of them. The use of two or more AMDs is based on the hope that
sso it will be difficult for the bacteria to adapt to more than one AMD at the
s  same time. It can be effected in different ways as, for instance, alternating two
s AMDs or using both at the same time. The efficiency of these protocols is an
s ongoing object of study with crucial importance to health systems around the
se3 world under pressure due to the lack of weapons to fight resistance infections.
see  This kind of protocol is currently being investigated by us and will the object

ss  of an upcoming work.

596 In many situations it might be important to consider the response of the
so7  cell to other kinds of external stimuli, like the presence of resources for growth,
ss  different physical conditions, competition with other microorganisms and even
so0  reaction of the host’s body. There are two ways to do that, both equivalent
so in the mathematical sense. One is to include additional neural networks with
s relevant parameters contributing to the overall value of ¢, which would be
s2 then more appropriately described as the probability of death given a certain
e3 environment. On the other hand, it could be convenient to consider these
o4 stimuli separated from the AMD, in which case one could generate a different
ss probability of death by modelling separately additional stimuli and adding

o6 another simulation round in which cells are tested against this probability.

607 Finally, it' must be stressed that the major limitation of this approach
ws is the lack of a mechanistic description. This by itself does not prevent the
eo investigation of interesting emergent behaviours, but is a critical hindrance in
si0  the use of the model for any actual in silico screenings of new anti-microbial

eu drugs as it stands.
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f(x|w, )

Fig. 9 Perceptron. The perceptron as an elementary processing unit which maps the input
vector @ into a number through the activation function f given the perceptron’s synaptic
vector w and activation threshold 6 .
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65 A The Ising Perceptron

616 The perceptron is the most elementary model of a neural network and is schematically
617 represented in fig. 9. It is intended to do a very basic processing of information by taking
618 a certain input, which is represented by an input vector @, and producing an output value
619 y. The function that maps inputs into outputs is in general non-linear (although linear
620 functions can also be used) and parametric, the so called activation function f, leading to
621 the equation

y = f(z|w,0), (11)

622 where the given parameters w and 6 are, respectively, the synaptic vector w and a real-
623 valued activation threshold. The synaptic vector has the same dimensionality of the input

624 and the activation function is usually written as a function of their scalar product

f(z|lw,0) = g(x-w+0). (12)

625 More precisely, the perceptron is intended to simulate the action of a single neuron and

626 more sophisticated neural networks are obtained by connecting them with different network
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627 topologies. They were introduced by Frank Rosenblatt (Rosenblatt 1958) based on the work
628 of McCulloch and Pitts (McCulloch and Pitts 1943) showing that neural networks with units
620 with the features of perceptrons can encode any logical function (although that is not true

630 for one single perceptron).

631 When the output y is binary, we talk about a binary perceptron. The reason for the
632 names activation function and threshold is that, in this case, g is usually chosen to be either
633 a sign function or a Heaviside theta, depending on the choice of representation for the binary
63¢ variables. The -/+ or 0/1 results then represent respectively the quiescence or firing of a
635 neuron due to the stimulus @ and only occurs if - w + 6 > 0.

636 If the input is binary, we call it an Ising perceptron as, from a statistical physics point of
637 view, each coordinate can be thought as either an up or down spin, represented respectively
633 by the values +1 and -1. It is common to use 0 and 1 for the binary variables, which are the

639 same up to a linear transformation.

640 The perceptron is capable of learning by adjusting the synaptic weights w such that the
641 correct pairs of input and output (z,y) from a given database of examples are reproduced

642 exactly or within a certain margin of error.

o3 B Distributions of Functional Parameters

644  Using the general formula for the functional parameters given in the main text, we can write

645 their probability distributions as

P) = [ arpPEn) = [ apws(s- L), (13)

646 where §(-) is the Dirac delta distribution.

647 If the AMD coordinates are generated independently and equally distributed with mean
&8z and variance o2, then the Central Limit Theorem guarantees that, in the limit D > 1, we

640 have

P(y) = N (ylg,02), (14)

650 i.e., it approaches a Gaussian distribution with mean g and variance ag given by

<
Il
SIS}

EZW' U:uﬁzwzfi (15)
D ~ (2l y_D2 - T D7
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651 where we used the fact that the DNA sequences are encoded by binary vectors with coordi-
652 nates in the set {1}. Notice that, for D >> 1, in the case the m;’s are also i.i.d. with mean

653 7 we can approximate

1 _
) Z T R (16)
7
654 In order to carry out the y integration, we have to rewrite the Dirac delta using the
655 property
6y —y")
0(9W) = -~ 7
lg' ()|

656 where y* is the solution of g(y) = 0. We can easily show that

ar —1 1+ bx)?
t= L=
bx + 1 a+b

, (18)

657 and therefore

a+b

P(z) = / dy N (y|7, Ug)mé(y -y")

a+b 1 exp 1 (az—l g)2 (19)
= ——exp|-——5 | ——— — ,
(1 + bx)2 /27705 202 \ bz +1

658 which is equivalent to equation (4). The mean and the variance of 2 can be calculated using
659 the obtained distribution. In the limit D — oo we can find simple expressions if we notice

660 that the Gaussian on y becomes a delta function centred on its mean as the variance goes

@ = () F (0)

662 and the variance of x also goes to zero, which means that the AMD’s cluster around the

661 to zero. Then

663 means. Plugging in the appropriate values of @ and b leads to the formulas (6).

es C Probability of Phenotype Change

665 Let us prove equation (10) which gives the probability of changing from phenotype IT; to
666 [Ii41 = IT + 2/ upon cell reproduction. For simplicity, let us consider the case where D is
667 even. The case of D odd is then easy to obtain.

668 Consider a genotype m with a number nt of +1’s and a number n~ of —1’s. Let us
669 start by considering the case +2A. In this case, there is an excess in the flips from —1 to
670 +1 of exactly A, but any combination of flips satisfying this condition is allowed. Suppose

671 now that A + k negative coordinates flip (k a positive integer), then k positive coordinates
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672 have to flip as well in order to maintain the overall change in the phenotype. Therefore, we

673 have a factor

(”}:) (A”; k)mAJer(l — m)D—(At2k), (21)

674 meaning that we can choose any A + k negative coordinates and k positive coordinates to
675 flip. The probability of this is then just the probability of A 4+ k + k coordinates flipping
676 while the remaining D — (A + 2k) don’t flip. All that remains is to add these factors for all
677 possible values of k. Now, we need to have at least A negative coordinates to flip. Consider
678 the case in which all coordinates are flipped. Clearly we have the constraint A 4+ 2k = D,
679 which leads to k = (D — A)/2. This works if the quantity D — A is even. When it is odd,
680 one needs to keep at least one positive coordinate fixed and, therefore, k = (D — A —1)/2,

681 which can be written in the general case as |[D — A]/2.

682 By noticing that
nT4+n" =D, nt —n= =11, (22)

683 we can write

nt = (D + IIt) /2, n~ = (D —II})/2, (23)
684 which gives

[D—A]/2
D+ IIy)/2\ /(D — 1Iy)/2
P(epr = M +24) = > (( / 0/ )(( 0/ )

k=0 Atk (24)

% mA+2k(1 . m)D—(A+2k:).

685 The case when the change is —2A is analogous, simply changing the role of nt and n~.

686 By putting the two expressions together we obtain the required probability.
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