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Highlights

• Probabilistic agent-based model of interacting cells.

• Emergence of a unique genotype-phenotype map.

• Reversal of resistance is statistically characterised.

• New microscopic proxy for measuring resistance.

• Machine learning techniques can allow inclusion of real molecular data.
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Abstract This work introduces a new probabilistic agent-based lattice model6

for studying the emergence of anti-microbial resistance (AMR) and proposes a7

new proxy to measure it: the average death probability of the population under8

the action of the AMD. Both analytical studies and computer simulations of9

the microscopic behaviour of a bacterial culture interacting with anti-microbial10

drugs on a discrete lattice are carried out by focusing on the dynamics of this11

quantity. A unique genotype-phenotype map and classes of AMDs follow as12

emergent properties and their effects on the possible reversal of resistance13

are analysed. We also discuss briefly the possibility of using machine learning14

techniques to learn the model parameters.15
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1 Introduction18

Anti-microbial resistance (AMR), the resistance of pathogens to anti-microbial19

drugs (AMDs), has been dramatically increasing during the last decades,20

quickly becoming a threat as dangerous as climate change (Woodford and21

Livermore 2009; Andersson and Hughes 2010). With levels of resistance dan-22

gerously close to the pre-antibiotic era and decreasing rates of AMD discovery23

(Charles and Grayson 2004), we risk becoming once again defenceless against24

infections. The issue is so pressing that the World Health Organization (WHO)25

has suggested a global action plan to address this problem (WHO 2015).26

Although not restricted to them, current studies focus mostly on bacteria27

as they are responsible for a large number of serious diseases, can develop28

AMR in a plethora of ways and their evolution can be quickly analysed in29

vitro. In addition to mutations in their chromosomal DNA, bacteria can also30

benefit from horizontal gene transfer (HGT) through the intermediate action31

of phages (bacteria-infecting viruses) or by acquiring and exchanging circular32

DNA fragments called plasmids, which frequently encode resistance genes (Ng33

et al 2010). Plasmids are independent from the chromosomal DNA, can also34

mutate and largely contribute to HGT (San Millan et al 2015; Baltrus 2013;35

Andersson and Hughes 2010) by being exchanged between bacteria of different36

species or freed into the environment upon death as the cell’s membrane breaks37

down.38

There are several attempted methods to deal with resistance, although none39

of them has been enough to alleviate the problem satisfactorily. One common40

practice is simply to avoid (for a potentially long amount of time) using a41

certain AMD for which resistance has emerged. Although resistance seems to42

decrease in general with this protocol, its efficiency has been disputed (Barbosa43

and Levy 2000). Evidence shows that the reversal rate can be slow (Austin44
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et al 1999; Tan et al 2011) and, even if reversal is observed, AMR may not go45

back to original levels. Although it might be possible that resistance disappears46

if one waits long enough, the time scales might be so large that they can be47

considered unattainable for all practical purposes. Other common treatment48

protocols make simultaneous use of more than one AMD (Bonhoeffer et al49

1997) – a practice that, however, can open the door for the emergence of50

multiple resistance. As a rule of thumb, the less AMDs are used, the less51

problems we have with resistance.52

There is a large literature on modelling the dynamics of AMR using differ-53

ential equations which have been used to predict and analyse different aspects54

of the problem (Bonhoeffer et al 1997; Alexander et al 2007; D’Agata et al55

2008; Obolski and Hadany 2012; Ternent et al 2015). These are effective mod-56

els in which the relevant dynamical variables are obtained by averaging local57

quantities over large populations. The dynamical equations contain a possibly58

high number of macroscopic adjustable parameters that have to be included59

ad hoc to allow for a better fitting of observed features – the coefficients of60

the terms of the differential equations. In biology, they are known simply as61

continuous models.62

In microscopic models, one seeks the behaviour of the same quantities,63

but the aim is to derive their dynamics from the interactions of the systems64

components (e.g., bacterial cells). By finding the rules that set the fundamen-65

tal processes of life and death of an individual cell and the way it interacts66

with its environment (including other cells), one seeks to derive from them the67

same equations as before, but connecting the macroscopic parameters with the68

microscopic quantities. This strategy provides a better framework for micro-69

biology experiments and also allows for finer modelling, taking into account70

the statistical variability of the results which is smoothed out by the effective71

equations. This variability is the result of several sources of stochasticity in72
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the process as the variance in genotypes, the variations in initial and environ-73

mental conditions in each realisation of the process and uncontrollable sources74

of noise which can appear in the physical and chemical processes involved,75

which includes the death, reproduction and response to the AMDs from each76

particular cell.77

Effective and microscopic models are complementary rather than compet-78

ing techniques, with their own range of applicability, advantages and draw-79

backs. The former are usually of lower computational cost, while the latter80

help in understanding basic principles behind the phenomenon, leading pos-81

sibly to a better control and to refinements and/or corrections. From a more82

technical point of view, differential equations might suffer from serious conver-83

gence problems, while microscopic models are better controlled and are only84

limited by their computational running time when the number of microscopic85

components is very large (although it must be reckoned that this is typically86

the case).87

The use of microscopic models is not uncommon in several areas of biol-88

ogy (Anderson et al 2007), in particular systems biology. There has been, for89

instance, a growing literature on using them to model cancer growth (Gerlee90

and Anderson 2009; Rejniak and Anderson 2011). As the strategies used by91

cancer cells to avoid the immune system can be similar to AMR strategies,92

those models can shed some light on the mechanisms of resistance. Because93

cells are autonomous units, the models are usually said to be agent-based.94

Their popularity resulted in the online availability of many general purpose95

open-source programs to simulate those models with varied degree of detail96

(Tisue and Wilensky 2004; Holcombe et al 2012; Gorochowski et al 2012).97

Here we introduce a new microscopic agent-based model for the study of98

AMR emergence and show how it can be used to improve our understanding of99

it. By modelling bacterial cells as agents on a lattice, we have a better resolu-100

                  



5

tion of the involved quantities, allowing the statistical analysis of the problem101

and highlighting the probabilistic processes involved. We try to make the model102

as simple as possible, but still sharing some key features with real situations.103

The resulting framework is easily adaptable to include other mechanisms (like104

HGT) and provides a scenario for direct comparison with experimental in vitro105

tests.106

In the following, we show how the model is based on reasonable biological107

assumptions and present results of the simulations which are in qualitative108

agreement with observations. We do not claim that such a simplified model109

can become a sharp decision-making tool for treatments in its present form,110

but we believe that more sophisticated versions of it, obtained with further111

inputs from experiments, will increasingly contribute in the assessment and112

development of new strategies against AMR.113

In section 2 we introduce the lattice model representing an artificial bac-114

terial culture in a Petri torus (a mathematical idealization of a Petri dish).115

The cell’s response to a certain AMD depends only on two functions taking116

as arguments the cell DNA and the AMD to which it is being exposed. The117

resulting fitness landscape is analysed in section 3. The introduced model is118

used to analyse the effects of a single drug protocol in section 4. Conclusions119

and further discussions are presented in section 5.120

An open-source C code for the simulations generating figs. 6, 7 and 8 is121

available online at https://github.com/robertoalamino/AMR.122

2 Artificial Bacteria123

The model here introduced is inspired by a typical laboratory setting. A bac-124

terial culture is grown on a Petri dish containing some pre-defined and fixed125

concentration of an AMD and its population is recorded as a function of time.126
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The Petri dish is modelled by a square lattice with bacteria living on its sites.127

A certain initial configuration of cells allocated at random in the dish (spread128

randomly on the sites of the lattice) is evolved in time according to pre-defined129

rules. The temporal data on the appropriate proxies provide information about130

how different treatments will influence the rates of AMR emergence in the cul-131

ture.132

We work with a square N × N lattice with periodic boundary conditions133

(PBC) in both directions, which we call a Petri torus due to the resulting134

topology. The choice of periodic instead of open boundary conditions is not135

expected to have a significant impact on the results of the simulations for larger136

lattices and was a question of convenience. To each lattice site (i, j), i, j =137

1, ..., N , we associate a binary variable σij , which is 1 if the site is occupied by138

a cell and 0 if it is empty, similarly to a lattice gas model (Baxter 1982). PBC139

imply σi+N,j = σi,j+N = σij . The occupation state of the Petri torus at each140

instant can then be represented by the occupation matrix σ(t) = (σij(t))N×N ,141

which can be understood as a function of the time t and whose entries are142

functions of both time t and space coordinates (i, j). The configuration shown143

in fig. 1 for instance has N = 4 and its occupation matrix is shown above the144

lattice in the same figure.145

Bacteria will not be allowed to move from one site of the lattice to another.146

Therefore, their life cycle is equivalent to a probabilistic cellular automaton147

(Wolfram 2002). The “natural” bacterial life cycle, which excludes the action148

of the AMDs, depends on two probabilities. At each time step t, every cell has149

a reproducing probability r of dividing in two. The position of the new cell is150

chosen with equal probability from the empty neighbouring sites to the parent151

cell. If there is no empty neighbour, the cell does not reproduce. A natural152

death probability d for each living cell at time t includes all non-AMD related153
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Fig. 1 Artificial bacteria on the Petri torus. The picture shows an example of a small
Petri torus with artificial bacteria living on it. The torus is a square grid with periodic
boundary conditions. Full circles represent sites occupied by cells. Each cell has its corre-
sponding DNA of dimension D = 8, which in the picture is represented by the row/column
of boxes (black boxes correspond to the +1 value and white boxes to the -1 value for easier
visualization). The matrix just above the lattice is its occupation matrix, where occupied
sites have the value 1 and empty ones have the value 0.

processes like other adverse environmental conditions, ageing and the patient’s154

immune response.155

It remains to model the response of the bacteria to the applied treatment,156

the latter characterised by the concentrations of the AMD at each site of the157

lattice. Pharmaceutical companies usually measure the efficiency of AMDs by158

their Minimum Inhibitory Concentration (MIC), the lowest drug concentration159

which prevents bacterial growth after a defined incubation period (Davey et al160

2015). The MIC is convenient in clinical trials as it avoids the difficulties in161

isolating the effects of the patients’ immune system, but it contains no informa-162

tion about pharmacodynamical properties of the drug (how bacterial growth163

changes with variations in drug concentrations). It has been proposed that a164

better proxy is given by the Minimum Bactericidal Concentration (MBC), the165

concentration that kills at least 99.9% of the bacteria within 24 hours (French166

2006). Here we introduce a more convenient quantity from the microscopic167
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Fig. 2 Death probability. The plot shows the death probability q as a function of the
difference ∆ between the actual AMD concentration and c̃ for three different values of h.
The greater the value of h, the steeper is the curve at zero. In the limit h→∞, the function
has a discontinuous jump from zero to one.

point of view – the concentration c̃ of AMD below which the probability of168

a cell to die from its action is less than 1/2. As a concentration, it can vary169

in the continuous interval [0,∞). This definition is simpler to implement in a170

probabilistic microscopic model and, because the studied scenario comprises171

in vitro cultures, it can be actually measured with controlled experiments.172

For simplicity, it is assumed that each cell has one single DNA strand173

encoding its AMD response, which is given by the total AMD death probability174

qij , the probability that the cell occupying the site (i, j) dies if exposed to the175

local concentration cij of the AMD. Here we do not consider any HGT, which176

will be left for future work.177

The total AMD death probability is modelled by the heuristic formula178

qij =
1 + tanh (h∆ij)

2
, (1)

where ∆ij ≡ cij − c̃ij and whose plot is shown in fig. 2.179
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Notice that qij is not the actual fraction of cells dying at a certain moment.180

It rather measures the response of the organism to a potential use of the AMD.181

Therefore, even in the absence of any concentration of AMD, random genetic182

mutations can change the probability of death.183

The local value of cij is fixed during the whole process. We are not consid-184

ering any diffusion of AMD, although it clearly has an important effect in any185

bacterial culture on actual agar. Although such a variation with time would be186

desirable in a more realistic scenario and could be implemented in principle,187

we will refrain from doing that in the present study for simplicity.188

There are two other local (cell/site-dependent) quantities in the above ex-189

pression. First, the concentration c̃ij ∈ [0,∞), whose objective is to account190

for physical and chemical mechanisms having threshold behaviours as, for in-191

stance, chemical pumps which can become saturated or membranes whose192

thickness up to a certain point can prevent the AMDs from entering the cell193

interior. Second, the sensitivity hij ∈ [0,∞) regulates the increase/decrease194

in cell death with variations of AMD concentration and is related to the ac-195

tual toxicity of the applied substance. Both quantities can, in principle, be196

obtained from actual designed experiments by measuring changes in bacterial197

populations.198

The genotype of each cell will be encoded by a binary chain πij ∈ {±1}D,199

where D is its integer dimension, i.e., the total number of coordinates in it (see200

fig. 1) representing abstractly its biological information content. The DNA is201

responsible for storing the organism’s information about how to survive to its202

environment. The way this information is translated is convoluted as it de-203

pends on a series of hierarchical processes. Still, such a mapping is necessary204

to allow learning and forgetting (in other words, evolution) from the envi-205

ronment. Both are essential informational requirements of adaptation through206

natural selection and integral elements of mathematical evolutionary models207
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and genetic algorithms (Mitchell 1998; Schecter and Gintis 2016). Learning in208

the present model is required for adaptation in the form of AMR acquisition,209

while forgetting allows acquired adaptations to fade away, as would be the210

case for reversal of AMR. One of the most studied statistical physics mod-211

els of biological phenomena with these characteristics is the Ising perceptron212

(Rosenblatt 1958; Engel and van den Broeck 2001), designed to model neu-213

ronal responses, with neuron’s synapses and stimuli both encoded by binary214

chains.215

The perceptron is one of the simplest known machine learning models and216

it is characterised by a function taking a multidimensional vector into a num-217

ber, called the activation function for biological reasons. This is usually a218

general function of the scalar product of its synaptic vector, which is a mul-219

tidimensional parameter encoding the information learned by the perceptron,220

and the input vector, a vector with the same dimensions as the synaptic vec-221

tor and which encodes the stimuli provided by the environment to which the222

perceptron reacts. A more detailed description of the perceptron and how it223

works is provided in appendix A.224

In this work, input vectors correspond to the binary encodings of the AMD225

into a binary chain of dimension 2D,A = (α,β) ∈ {±1}2D. The two model pa-226

rameters then become functions of both the environmental conditions (applied227

AMDs) and the cell genotype (the DNA)228

c̃ij =
1 + 〈α,πij〉
1− 〈α,πij〉

, hij =
1 + 〈β,πij〉
1− 〈β,πij〉

, (2)

where we defined 〈x,y〉 ≡ x · y/D, i.e., the normalised cross product between229

the two vector arguments. These maps have been chosen as the simplest map-230

pings of the given inputs into the relevant intervals.231
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Although simple perceptrons cannot approximate general functions, it has232

been shown that adding one extra layer, corresponding to another set of per-233

ceptrons doing an intermediate processing of information between the stimuli234

and the final response, turns them into universal approximators (Cybenko235

1989). Variations with several layers, known as deep neural networks, have236

been successfully used in machine learning applications and recently provided237

a solution for the long sought problem of creating a computer algorithm capa-238

ble of playing Go on a level comparable to human masters (Silver et al 2016).239

For our purposes, one layer is sufficient, but the model is flexible enough to240

allow an extension to a more complex neural network structure.241

The dimension of the AMD vector was chosen to be twice as large as the242

DNA’s dimension to allow mutations in the latter to simultaneously affect243

both model parameters, the well-known phenomenon of pleiotropy (Stearns244

2010). In nature, each protein usually participates in more than one metabolic245

process simultaneously. As a consequence, each single mutation might affect246

more than one of them. Although the standard definition of pleiotropy concerns247

genes and not bases, we are using here a generalised version of it. One could248

think about working directly with genes, as it is done in a similar model called249

MQT model (Taylor and Higgs 2000) which considers random associations and250

a linear fitness function, in which case the phenomenon would be the standard251

one. From here on, whenever we use the term pleiotropy, we mean this general252

definition.253

One should notice that c̃ and h are not constants of the model, they are254

functions of the genotype (πij) and AMD (A) only. They can vary accord-255

ing to evolving conditions, but only through the variations of πij and A,256

nothing else. More precisely, the freedom comes from the choice of the activa-257

tion functions leading to them, leaving open the possibility of choosing more258
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complicated genotype-phenotype maps which might lead to better agreement259

between observation and theory if needed.260

3 Fitness Landscape261

According to our model, bacteria acquire resistance by either increasing c̃,262

decreasing their sensitivity h or both simultaneously. The fitness landscape263

generated by a given AMD, i.e., the value of q as a function of π might,264

in general, be a complicated function. We now show that the present model265

naturally leads to a convenient simplification once we take the limit of large266

DNA sequences D � 1.267

The simulations to follow will analyse AMDs generated by random dis-268

tributions. We can then show that the scalar product inside the activation269

functions, in the limit where the number of bases D is very large, depends270

only on the means of these distributions. In the case where the coordinates271

of the vectors α and β are i.i.d., with means represented by overbars on the272

variables, we can calculate the distributions of c̃ and h while D is still finite273

(but large).274

The activation functions have the general form275

x =
1 + y

1− y , y =
1

D

∑

i

ziπi, (3)

where the z′is are the appropriate sections of the AMD encoding and the π′is276

are the coordinates of the DNA. We can prove that the resulting distributions277

are (see appendix B)278

P(x) =
1

(1 + x)2

√
2

πσ2
y

exp

[
− 1

2σ2
y

(
x− 1

x+ 1
− ȳ
)2
]
, (4)
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Fig. 3 Fitness landscape. The plot shows the fitness landscape for an AMD with ᾱ =
β̄ = −1 as a contour plot representing the total death probability q as a function of the
AMD concentration c and the fraction x of -1 coordinates in the DNA. The landscape
shows a global maximum of q at the centre extending to the top of the graph surrounded
by decreasing profiles to both side. While higher concentrations will eventually kill all cells
leading to q = 1, one can see that by changing x in any direction decreases q and, therefore,
increases resistance.

with279

ȳ =
z̄

D

∑

i

πi = z̄π̄, σ2
y =

σ2
z

D2

∑

i

π2
i =

σ2
z

D
, (5)

where σ2
z is the variance of z. For D →∞, this becomes a delta distribution.280

Then we can readily calculate the mean of each parameter in this limit as281

c̃→ 〈c̃〉 =
1 + ᾱπ̄

1− ᾱπ̄ , h→ 〈h〉 =
1 + β̄π̄

1− β̄π̄ . (6)

As an example, consider the case ᾱ = β̄ = −1, which gives282

c̃ = h =
x

1− x, (7)

where x = 1− π̄ is the fraction of coordinates in the DNA vector whose value283

is -1. In this case it becomes simpler to plot the fitness landscape. Because it284

depends not only on the type of AMD, but also on its concentration, it is then285

convenient to present it as a contour plot of q as a function of both x and the286

AMD concentration c as in fig. 3.287
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The particular encodings above were explicitly chosen such that c̃ and the288

sensitivity h are equal by design, which will not usually be the case in practice.289

Qualitatively though, this is an important situation where both parameters290

play an antagonistic role in the evolution of the genotype, contributing in291

opposite ways for the emergence of AMR. While a higher c̃ improves resistance,292

a higher sensitivity decreases it. This phenomenon in which the same genes293

codes for two phenotypes, one of which is beneficial and the other is detrimental294

to the organism’s survival, is known by the name of antagonistic pleiotropy295

(Williams 1957).296

Antagonistic pleiotropy is here reflected in the fitness landscape by the297

maximum of q surrounded by descending profiles both to the left and right.298

Because this landscape has only one global maximum, we can more clearly299

see that resistance will eventually emerge as we move away from it in the x300

direction, which is always observed in simulations.301

A crucial point in evolutionary biology is to find appropriate genotype-302

phenotype maps (GPMs) (Stadler and Stadler 2006; Ahnert 2017). In the303

above case, we have a GPM that is completely determined by the way the304

genome interacts with the environment which is given by305

Π(π) = Dπ̄ =

D∑

i=1

πi. (8)

The phenotype is therefore an emergent property – it appears as a collective306

effect of a very large number of DNA (binary) bases.307

From the structural properties of GPMs considered in (Ahnert 2017), the308

map Π possess redundancy, as it is a many-to-one map which maps the set309

±1D of dimension 2D into the set (−D,−D + 2, ..., D − 2, D) of dimension310

D + 1 (an exponential dimensional reduction in size) and bias, meaning that311

the number of genotypes for each phenotype is not the same. More precisely,312
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the number of genotypes of dimension D corresponding to a phenotype Π is313

given by the binomial coefficient314

(
D

(D +Π)/2

)
. (9)

The other two properties, robustness and evolvability, need to be discussed315

better. The simulations indicate that the map allows the artificial cells to316

adapt, but on the other hand it is not robust. The neutral networks (pre-317

images in genotype space) of the phenotypes in this GPM are not connected.318

Whenever a single mutation happens, it necessarily changes the phenotype319

either by +2 or -2. On the other hand, clearly, the network of phenotypes is320

fully connected by single mutations and has the topology of a line segment,321

which allows any phenotype or genotype to be reached from any other by an322

appropriate sequence of single mutations. Although the map is not robust in323

principle, in practice, for large D, neighbouring phenotypes result in values324

of c̃ and h that differ typically by very small quantities, which we can see as325

a quasi -robustness. Single mutations will only affect significantly the answer326

to the phenotypes that lie very close to the value +D, but this effect is very327

limited and does not seem to affect the evolvability of the the cells. In addition,328

because the number of genotypes for each phenotype is given by a binomial329

coefficient, for large D it will concentrate around Π = 0 with lower probability330

of being found on those extremes.331

This GPM is, of course, a crude approximation to real ones, but as our332

objective is to study qualitative aspects, we will not seek for further sophis-333

tication in the present study. The source of this GPM is the linearity of the334

dot product used in the activation function, which means that if one wishes335

a more realistic mapping, additional modelling of the response to the envi-336

ronment should be made. It is true that the resulting delta function can be337
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Fig. 4 Genotype-Phenotype Map The diagrams show the genotype-phenotype map
induced by the choice of the functional parameters for (A) D = 7 and (B) D = 10. The
squares squares indicate the values of the phenotypes Π given in the vertical axis, while the
horizontal axis has the decimal representation of the binary DNA sequences. The plots to
the right of each diagram shows the phenotype frequency (vertical axis) as the number of
different genotypes corresponding to each phenotype (horizontal axis) out of the respective
values of 27 = 128 and 210 = 1024 possible genotypes.

softened by a different choice of scaling for the scalar product, but that would338

lead to artificial values for the case we are studying. Fig. 4 illustrates the GPM339

above for two different values of D, respectively 7 and 10. The value of Π is340

plotted against the integer representation of the binary sequence of DNA with341

the convention that −1’s are represented by 0’s. For instance, (−1, 1,−1) be-342

comes the binary number 010, which corresponds to the integer value 2. The343

plots to the right of each diagram show the number of genotypes per phenotype344

for each case.345

The above formulas show that, by judiciously choosing the values for the346

means, one can choose what type of AMD we want to study. Clearly, one would347

like to approximate the behaviour actual AMDs. Conversely, one can search for348
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AMDs with certain desired means. For instance, for this very simplified model,349

there exists one AMD against which resistance cannot evolve, namely the one350

with ᾱ = β̄ = 0. This choice makes the activation functions independent of351

the DNA, completely hindering adaptation. If we do not consider the collective352

effects, as is the case of biofilm formation which is not allowed in the present353

model, but only the resistance of each individual, this would be the analogous354

of bleach or soap for real cells. Both have physical actions that destroy the355

membrane against which there is no known single cell adaptation.356

4 Single Resistance Emergence357

Given that most bacterial DNA sequences have between 105 − 107 bases, it is358

reasonable to use equations (6) as approximations in most cases. Throughout359

our simulations, the values used for D are sufficient for this approximation to360

be within acceptable precision.361

Each initial Petri torus occupation is set randomly by putting a cell in each362

site with probability 1/2. We will use two different methods to set the initial363

distribution of genotypes in the lattice. The fastest method computationally is364

to simply distribute the genotypes uniformly with the same probability. This365

will generate a binomial distribution with a fixed variance around Π = 0. We366

will use this initial configuration throughout the simulations.367

To isolate the effect of the AMD, we set the natural death probability to368

d = 0, i.e., cells do not die unless killed by the AMD (we are therefore ignoring369

cell age, any influence of the immune system or other additional environmental370

toxicity). The dynamics then follows two steps at each t:371

372

(1) Reproduction with Mutation: all living cells are drawn once and only once373

with the same probability and checked whether or not they will reproduce with374
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probability r. If reproduction is chosen, then one of the empty neighbours of375

that cell is chosen with the same probability and the cell generates a child on376

it. The child cell has a certain probability of mutation, which we will later on377

specify in more details. Basically, one or more coordinates of its DNA can be378

flipped randomly each time the cell reproduces.379

380

(2) AMD Death: one checks whether each cell dies according to the probabil-381

ity qij for each local AMD. As all cells are checked at this step, the order is382

irrelevant.383

384

These two steps above are illustrated in the example given in fig. 5. Each385

run of the simulation consists of T time steps and the information recorded is386

a double average of the death probability qij – the average over all living cells387

and the quenched average over initial configurations. To avoid finite size effects,388

like the stalling of adaptation due to lack of physical space for reproduction,389

we arbitrarily kill 50% of the cells at random whenever the network becomes390

fully occupied. For large populations, we expect this to not affect the results391

significantly. In the simulations we present, this threshold has rarely been392

reached.393

The mutation rate at genotype level can be translated to one at phenotype394

level, making all equations dependent only on the phenotype. A mutation395

in the DNA means a flip (i.e., a change of sign) of one of the coordinates396

of π. We assume that each coordinate has an independent probability m of397

flipping at each time the cells reproduce, i.e., m is the mutation rate per base.398

Notice that each flip in the DNA means a change of either +2, 0 or -2 in the399

phenotype. Therefore, it is convenient to write Πt+1 = Πt ± 2∆, such that400

∆ ∈ {0, 1, 2, ..., D}.401
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Fig. 5 Simulation steps. The top picture shows an example of a possible change in
configuration of the Petri torus after a reproduction with mutation simulation step. Arrows
indicate the direction of spreading for each reproducing cell (notice the periodic boundary
conditions). Occupied sites with different shades represent mutated cells with respect to
their parents. The bottom picture illustrates a possible result of applying an AMD in which
one of the mutants from the previous round is more resistant to the AMD (the “darker”
mutant) than the other (the “lighter” mutant).

The derivation can be found in appendix C and the final result is given by402

P(Πt+1 = Πt ± 2∆) =

bD−∆c/2∑

k=0

(
(D ±Πt)/2

k

)(
(D ∓Πt)/2

∆+ k

)

×m∆+2k(1−m)D−(∆+2k),

(10)

where bxc is the floor function, i.e., the greatest integer smaller than x. The403

above expression needs to be calculated only once for the (D + 1)2 possible404

values of the pair (Πt, ∆) and can be stored in a file to be accessed each time405

the simulation is run. Although the above expression is useful for analytical406

purposes, computationally it is still more convenient to work with genotypes.407
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In the following simulations, we choose a concentration of AMD (fixed408

during the whole simulation) such that the initial value of q is 0.3 for the409

wild-type Π0 and set r = 1 for convenience. This value is chosen to allow time410

for the cells to adapt to the AMD before the population is wiped out. Higher411

concentrations will kill all cells before adaptation occurs and will not be useful412

to obtain information about the dynamics of the model.413

Fig. 6 shows the behaviour of the model for large t by plotting the value414

of q for different AMDs. We used a lattice of linear dimensions N = 50 (2500415

sites in total), DNA sequences of size D = 50 and zero mutation rate, which416

means that adaptation becomes only a function of the diversity of the initial417

population. The plot shows the value of q after T = 3000 time steps aver-418

aged over 100 initial configurations of cell occupations. Although there are419

no guarantees that at T = 3000 adaptation has reached a stationary state,420

this gives an indication of the relative difficulty to adapt to each AMD. We421

varied ᾱ and β̄ from -1 to 1 in steps of 0.2, giving a total of 112 = 121 data422

points. The (approximate) symmetry in the plot is clear, with the presence of423

some antibiotics to which adaptation is relatively easy and those to which it424

is difficult. Mutation will surely change this picture and we will soon analyse425

scenarios where it is present.426

As the response to each AMD can be very different, we will work with427

a set of parameters which allows for an easy visualisation of the properties428

we would like to assess. An analysis of the data presented in fig. 6 indicates429

that the values ᾱ = β̄ = 0.5 allows for the emergence of resistance within a430

reasonable time frame throughout the simulations and will be therefore used431

for the sake of convenience.432

Probably, one of the most popular questions concerning AMR is whether433

resistance is reversible. As stated before, reversal is a process that is slower434

than adaptation. On average, the reversal is not complete. The answer, in435
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Fig. 6 Comparative adaptation against different AMDs. The plot shows the value
of q after 3000 time steps for different values of the pair

(
ᾱ, β̄

)
for m = 0 (no mutations).

The values vary from -1 to 1 in steps of 0.2.

fact, depend on a careful consideration of the actual scenario in which AMR436

appears. For instance, it is a trivial mathematical observation that if the initial437

genotype population is distributed uniformly before the selection pressure, any438

mutation rate will result in a regression to the original state. If the selection439

pressure is the introduction of an AMD, by stopping the treatment one would440

observe a total reversal of AMR. This does not seem to be the actual observed441

behaviour in real cases.442

The difference comes from the fact that the original bacterial population443

in a patient is already under selection pressure from the environment. By ad-444

ministering an AMD, one creates an additional pressure. When the treatment445

is stopped, the population has to guarantee that it will remain adapted to446

the original environment. In order to simulate an analogue situation using447

our model, we here use an initial population which is uniformly distributed in448

genotype space, which is diverse enough to be able to adapt to a wide range449

of AMDs. The choice of working with an initial uniform genotype distribu-450

tion here is that we will take averages over 1000 realisations of each process.451

In this case, adjusting the initial population using Metropolis-Hastings in-452

                  



22

Fig. 7 AMR Reversal. Average death probability q as a function of time t for m = 0.001.
Each treatment is stopped at a different time, T ∗ = 500, 1000, 2500, 5000.

creases too much the computation time, but because of the long initial adap-453

tive phase before treatment and of the presence of “mutations” (the moves of454

the Metropolis-Hastings algorithm), does not result in significant differences455

in the dynamics.456

The population is then subjected to a randomly chosen AMD for the first457

5000 time steps. This first AMD simulates the action of the original environ-458

ment. After that, the clock is reset and another randomly chosen AMD is459

administered for a certain fixed interval of time T ∗. Fig. 7 shows the results460

obtained for different time intervals of treatment.461

The curves shown in fig. 7 are averages over 1000 different pairs of AMDs.462

On average, we see that AMR indeed takes longer to reverse. Although the463

running times should be extended in order to provide more reliable informa-464

tion, we can see that in practical time-scales reversal is not total.465

The average curves, however, should be taken with a grain of salt. Due to466

the fact that resistance can vary widely for different AMDs, the variances of the467

curves are very high. In fact, a better characterisation is given by the analysis468
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Fig. 8 Reversal frequencies. In each plot, the back shaded histogram (online blue) shows
the distribution of q at t = T ∗, which represents the results before the treatment with the
relevant AMD is stopped. The front shaded histogram (online beige) is the same distribution
at t = 10000, which gives the long-term consequences of stopping the treatment at the
corresponding T ∗. as a function of time t for m = 0.001. The different stopping times are
given by T ∗ = 500, 1000, 2500, 5000 and indicated on the plots.

of the distribution of values at the relevant time-steps for each situation. This469

information is provided by the plots of fig. 8470

The two shaded plots show the frequencies of the values of q at t = T ∗ (back471

shaded are, online blue) and t = 10000 (front shaded area, online beige). The472

bin size is 0.01. The distribution obtained before the treatment is stopped473

shows that, the longer the AMD is used, the higher the peak near q = 0.474

This means that a larger fraction of the population adapts very well. There is475

a second peak around q = 0.3, implying another large number of cells which476

however cannot adapt. This pushes the average adaptation to lower values, but477

it also signals that there is a group of cells that will become almost completely478

resistant. For instance, respectively for T ∗ = 500, 1000, 2500, 5000, the fraction479

of cells with q ≤ 0.1 is 25%, 31%, 32% and 34%, all of them very high values.480

                  



24

The long-term distributions obtained after the treatment has stopped tell481

a more optimistic story. They show that, although on average reversal is not482

complete, there are very high peaks around the initial value before adaptation483

q = 0.3. In fact, there are even cases in which the levels of susceptibility to the484

AMD increase above this value, which we will call an over-reversal. It seems485

odd though that the peaks are smaller when adaptation is less efficient, i.e.,486

when the AMD is used for a smaller interval of time. However, this is a result487

of the fact that there is a larger spread of over-reversals. Respectively, for488

T ∗ = 500, 1000, 2500, 5000, the fraction of cells that end up with q ≥ 0.27 is489

about 73%, 73%, 72% and 70%, which shows that there is more reversal if the490

AMD is used for a smaller amount of time. The difference does not seem to491

be too significant, which means that more extensive studies need to be done.492

5 Conclusions and Discussion493

This work has introduced a new tool for studying the emergence of anti-494

microbial resistance – an agent-based microscopic model (also know as a single-495

cell-based model (Anderson et al 2007)) whose agents are perceptrons, the496

simplest kind of machine learning model. This methodology provides a new497

point of view from which to study the dynamical mechanisms of resistance498

spreading by allowing the modelling and analysis of its inherent stochastic499

aspects.500

The use of an agent-based model required the introduction of a new proxy501

for measuring AMR. We argued that usual ones, MBC or BIC, are not con-502

venient for our simulations and we proposed to use the average probability503

of death by AMD q. This represents the fact that the reaction to an AMD is504

not completely deterministic in a population, with several unknown or uncon-505
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trollable factors contributing to its stochasticity, which is also present in the506

reproduction with mutation and natural death of the cells.507

Unlike deterministic differential equations, the model allows for the consid-508

eration of the variance in adaptation, as different contingent paths can lead to509

different final rates of resistance. This indicates that it is important to analyse510

the distribution of resistance, which has been overlooked in previous studies.511

The case of stochastic differential equations would allow for modelling these512

aspects but, to our knowledge, no model based on them has been proposed so513

far.514

The model presented here is minimal, with few assumptions about the515

details of biochemical mechanisms in an attempt to be as general as possible.516

Instead of being implicitly represented by parametrised terms, as is the case517

in continuous models based on differential equations, the relevant microscopic518

processes are modelled explicitly. This makes the model flexible enough to be519

expanded and generalised, including processes that are here not taken into520

consideration.521

For instance, HGT can be incorporated in the model by introducing a522

probability of exchanging the DNA configuration between adjacent cells. Cell523

mobility can be achieved by erasing a cell from one site and recreating it in524

another one. Another important process would be AMD diffusion, which could525

be simulated by a spread of the AMD to adjacent sites with a corresponding526

dilution of its concentration.527

In the limit of a large number of degrees of freedom, which in the present528

case means large DNA chains with D � 1 and grid size N � 1 (both usu-529

ally the case for real life scenarios), the model reveals interesting emergent530

behaviour. In particular, we identified the following emergent properties:531
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– AMD Classes: in the large system limit, the model leads to a fitness532

landscape that is a function of the average values of the AMD encodings533

only. This means that AMDs can be classified into large groups with the534

same typical anti-microbial properties. This is very similar to the real case,535

where drugs are classified in families like penicillins or cephalosporins, with536

some variations inside these groups.537

The above classes of AMDs include some drugs which are impossible to538

adapt to. Although, this would seem to be an exciting possibility in real-539

ity, this kind of AMD already exists, except that they are those substances540

which are also toxic to the patient. This might contribute to the search for541

AMDs that can be used efficiently to kill the bacteria without compromis-542

ing the patient’s health. One possible modification of the model to allow543

for this kind of study could be to introduce a second structurally different544

agent representing the patient’s cells.545

– GPM: interestingly, this model induces a unique GPM which has many546

of the most important properties of real GPMs, including the exponential547

decrease in number from microscopic states (genotype) to macroscopic ones548

(phenotype). Also, not only the phenotypes, but their distribution emerges549

in the large system limit too.550

The application of this model to the case of single-drug treatments revealed551

a series of interesting aspects of AMR modelling. For instance, the results of552

the simulations showed that one must be careful when choosing the initial dis-553

tribution of bacterial populations. If one uses the simplest choice of a uniform554

distribution for the genotypes, reversal of resistance always happens in this555

case simply because, no matter what is the mutation rate, they will eventually556

randomise the DNA chains and reproduce the initial population.557
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This indicates that it might be more reasonable to use phenotype distri-558

butions as selection pressures act on the former instead of the latter. Because559

every (relatively) stable population will be in equilibrium with respect to some560

selection pressures defining the environment it is inhabiting, it is more nat-561

ural to assume that the population that will be treated with some AMD is562

stable under some selection pressure that will drive the phenotype (or geno-563

type) distribution away from uniformity and favour some particular value. The564

AMD brings new selection pressures, which forces the population to adapt to565

the mixed environment. After the AMD is removed, reversal means that the566

population needs to re-adapt to the initial pressures. In order to simulate567

this scenario, the initial population was generated by introducing a “dummy”568

AMD representing the initial environment which acts continuously in the pop-569

ulation. Although this would seem to be equivalent to a two-drugs protocol,570

this is not exactly the same as the first “dummy” AMD (the environment) is571

never removed.572

The simulations then showed that, even if average results for the reversal573

rate are in qualitative agreement with actual observations, they might hide574

some crucial information, which we uncovered by looking at frequency plots575

of the death probability q at key times during the treatment protocol.576

One exciting possibility about this model, which will require more involved577

future research, is to use machine learning algorithms to encode the structure578

of actual AMDs and study them. The genotype can be directly translated579

to binary code and the macroscopic parameters of the model can be obtained580

from experiments. Although perceptrons are too simple to approximate general581

genotype-phenotype maps, it was proven (Cybenko 1989) that more complex582

networks, as deep networks (Silver et al 2016), are universal approximators583

and can become powerful tools in the search of real new AMDs and evaluation584

of resistance scenarios.585
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There are several other issues which can be tackled by the present model586

in future versions. Multiple resistance/multi-drug protocols is one of the most587

important of them. The use of two or more AMDs is based on the hope that588

it will be difficult for the bacteria to adapt to more than one AMD at the589

same time. It can be effected in different ways as, for instance, alternating two590

AMDs or using both at the same time. The efficiency of these protocols is an591

ongoing object of study with crucial importance to health systems around the592

world under pressure due to the lack of weapons to fight resistance infections.593

This kind of protocol is currently being investigated by us and will the object594

of an upcoming work.595

In many situations it might be important to consider the response of the596

cell to other kinds of external stimuli, like the presence of resources for growth,597

different physical conditions, competition with other microorganisms and even598

reaction of the host’s body. There are two ways to do that, both equivalent599

in the mathematical sense. One is to include additional neural networks with600

relevant parameters contributing to the overall value of q, which would be601

then more appropriately described as the probability of death given a certain602

environment. On the other hand, it could be convenient to consider these603

stimuli separated from the AMD, in which case one could generate a different604

probability of death by modelling separately additional stimuli and adding605

another simulation round in which cells are tested against this probability.606

Finally, it must be stressed that the major limitation of this approach607

is the lack of a mechanistic description. This by itself does not prevent the608

investigation of interesting emergent behaviours, but is a critical hindrance in609

the use of the model for any actual in silico screenings of new anti-microbial610

drugs as it stands.611
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Fig. 9 Perceptron. The perceptron as an elementary processing unit which maps the input
vector x into a number through the activation function f given the perceptron’s synaptic
vector w and activation threshold θ .
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A The Ising Perceptron615

The perceptron is the most elementary model of a neural network and is schematically616

represented in fig. 9. It is intended to do a very basic processing of information by taking617

a certain input, which is represented by an input vector x, and producing an output value618

y. The function that maps inputs into outputs is in general non-linear (although linear619

functions can also be used) and parametric, the so called activation function f , leading to620

the equation621

y = f(x|w, θ), (11)

where the given parameters w and θ are, respectively, the synaptic vector w and a real-622

valued activation threshold. The synaptic vector has the same dimensionality of the input623

and the activation function is usually written as a function of their scalar product624

f(x|w, θ) = g(x ·w + θ). (12)

More precisely, the perceptron is intended to simulate the action of a single neuron and625

more sophisticated neural networks are obtained by connecting them with different network626
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topologies. They were introduced by Frank Rosenblatt (Rosenblatt 1958) based on the work627

of McCulloch and Pitts (McCulloch and Pitts 1943) showing that neural networks with units628

with the features of perceptrons can encode any logical function (although that is not true629

for one single perceptron).630

When the output y is binary, we talk about a binary perceptron. The reason for the631

names activation function and threshold is that, in this case, g is usually chosen to be either632

a sign function or a Heaviside theta, depending on the choice of representation for the binary633

variables. The -/+ or 0/1 results then represent respectively the quiescence or firing of a634

neuron due to the stimulus x and only occurs if x ·w + θ ≥ 0.635

If the input is binary, we call it an Ising perceptron as, from a statistical physics point of636

view, each coordinate can be thought as either an up or down spin, represented respectively637

by the values +1 and -1. It is common to use 0 and 1 for the binary variables, which are the638

same up to a linear transformation.639

The perceptron is capable of learning by adjusting the synaptic weights w such that the640

correct pairs of input and output (x, y) from a given database of examples are reproduced641

exactly or within a certain margin of error.642

B Distributions of Functional Parameters643

Using the general formula for the functional parameters given in the main text, we can write644

their probability distributions as645

P(x) =

∫
dyP(y)P(x|y) =

∫
dyP(y)δ

(
x− 1 + y

a− by

)
, (13)

where δ(·) is the Dirac delta distribution.646

If the AMD coordinates are generated independently and equally distributed with mean647

z̄ and variance σ2
z , then the Central Limit Theorem guarantees that, in the limit D � 1, we648

have649

P(y)→ N
(
y|ȳ, σ2

y

)
, (14)

i.e., it approaches a Gaussian distribution with mean ȳ and variance σ2
y given by650

ȳ =
z̄

D

∑

i

πi, σ2
y =

σ2
z

D2

∑

i

π2
i =

σ2
z

D
, (15)
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where we used the fact that the DNA sequences are encoded by binary vectors with coordi-651

nates in the set {±1}. Notice that, for D >> 1, in the case the πi’s are also i.i.d. with mean652

π̄ we can approximate653

1

D

∑

i

πi ≈ π̄. (16)

In order to carry out the y integration, we have to rewrite the Dirac delta using the654

property655

δ(g(y)) =
δ(y − y∗)
|g′(y∗)| , (17)

where y∗ is the solution of g(y) = 0. We can easily show that656

y∗ =
ax− 1

bx+ 1
, g′(y∗) = − (1 + bx)2

a+ b
, (18)

and therefore657

P(x) =

∫
dyN

(
y|ȳ, σ2

y

) a+ b

(1 + bx)2
δ(y − y∗)

=
a+ b

(1 + bx)2
1√

2πσ2
y

exp

[
− 1

2σ2
y

(
ax− 1

bx+ 1
− ȳ
)2
]
,

(19)

which is equivalent to equation (4). The mean and the variance of x can be calculated using658

the obtained distribution. In the limit D → ∞ we can find simple expressions if we notice659

that the Gaussian on y becomes a delta function centred on its mean as the variance goes660

to zero. Then661

〈x〉 =

〈
1 + y

a− by

〉
=

1 + ȳ

a− bȳ , (20)

and the variance of x also goes to zero, which means that the AMD’s cluster around the662

means. Plugging in the appropriate values of a and b leads to the formulas (6).663

C Probability of Phenotype Change664

Let us prove equation (10) which gives the probability of changing from phenotype Πt to665

Πt+1 = Πt ± 2∆ upon cell reproduction. For simplicity, let us consider the case where D is666

even. The case of D odd is then easy to obtain.667

Consider a genotype π with a number n+ of +1’s and a number n− of −1’s. Let us668

start by considering the case +2∆. In this case, there is an excess in the flips from −1 to669

+1 of exactly ∆, but any combination of flips satisfying this condition is allowed. Suppose670

now that ∆+ k negative coordinates flip (k a positive integer), then k positive coordinates671
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have to flip as well in order to maintain the overall change in the phenotype. Therefore, we672

have a factor673

(n+

k

)( n−

∆+ k

)
m∆+2k(1−m)D−(∆+2k), (21)

meaning that we can choose any ∆ + k negative coordinates and k positive coordinates to674

flip. The probability of this is then just the probability of ∆ + k + k coordinates flipping675

while the remaining D− (∆+ 2k) don’t flip. All that remains is to add these factors for all676

possible values of k. Now, we need to have at least ∆ negative coordinates to flip. Consider677

the case in which all coordinates are flipped. Clearly we have the constraint ∆ + 2k = D,678

which leads to k = (D −∆)/2. This works if the quantity D −∆ is even. When it is odd,679

one needs to keep at least one positive coordinate fixed and, therefore, k = (D −∆− 1)/2,680

which can be written in the general case as bD −∆c/2.681

By noticing that682

n+ + n− = D, n+ − n− = Πt, (22)

we can write683

n+ = (D +Πt)/2, n− = (D −Πt)/2, (23)

which gives684

P(Πt+1 = Πt + 2∆) =

bD−∆c/2∑

k=0

((D +Πt)/2

k

)((D −Πt)/2
∆+ k

)

×m∆+2k(1−m)D−(∆+2k).

(24)

The case when the change is −2∆ is analogous, simply changing the role of n+ and n−.685

By putting the two expressions together we obtain the required probability.686
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