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Abstract 

Rice husk is a rich source of waste silica which has potential for application in the preparation of 

porous materials for use as catalyst supports or sorbents. Here we report on the synthesis of rice 

husk silica (RHS) and mesoporous templated rice husk silica (MT-RHS) using sodium silicate, 

obtained from rice husk ash, and castor oil as a pore directing agent. The resulting silicas were 

functionalized with 3-aminopropyltriethoxysilane (APTS) or 3-

diethylaminopropyltrimethoxysilane (DEPA), and their catalytic activity evaluated in the 

transesterification of model C4-C12 triglycerides (TAG) to their corresponding fatty acid methyl 

esters, of relevance to biodiesel synthesis. Castor oil templating enhances the surface area of rice 

husk silica, and introduces uniform 4 nm mesopores, albeit as a disordered pore network. Post-
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synthetic grafting of silica by APTS or DEPA resulted in base site loadings of 0.5 and 0.8 

mmolg-1 respectively on RHS and MT-RHS. Turnover frequencies of amine-functionalized MT-

RHS were 45-65% greater than those of their amine-functionalized RHS counterparts for 

tributyrin transesterification. Switching from a primary (APTS) to tertiary (DEPA) amine 

increased activity three-fold, delivering 80 % tributyrin conversion to methyl butyrate in 6 h. 

DEPA-MT-RHS was effective for the transesterification of C8 and C12 triglycerides, with methyl 

caproate and methyl laurate selectivities of 93 % and 71 % respectively in 24 h.  

 

 

1. Introduction 

Anthropogenic CO2 emissions and associated climate change, resulting from continued use of 

fossil fuel energy feedstocks, continues to drive the development of carbon neutral renewable 

energy technologies. The bio-refinery concept is widely advanced as one such route to 

sustainable fuels and chemicals from non-fossil feedstocks, notably agricultural, forestry, or food 

waste,[1, 2] but requires cost-effective catalysts to improve the economics of bio-based 

products.[3] Biodiesel comprises fatty acid methyl esters (FAMEs), and when derived from 

waste oils [4] or inedible plants or algae, [5] is an important renewable (liquid) fuel that can 

contribute to greenhouse gas mitigation in the transport sector. However, commercial production 

of FAME proceeds by transesterification of triglyceride (TAG) components of such oils 

catalyzed by NaOMe or NaOH, and is inherently inefficient due to energy-intensive processing 

required to remove the soluble base catalyst and purify the fuel, and associated large quantities of 

contaminated water.[6] Sustainable biodiesel therefore requires both appropriately sourced bio-

oil feedstocks, and the development of solid (heterogeneous) base catalysts enabling facile 

FAME separation and continuous processing. The cost of catalyst synthesis can be mitigated 

through using waste-derived materials as catalyst precursors.[7] Rice husk waste, a low value by-

product of the rice milling process with poor nutritional value and high silica content, is a 

potential precursor for the synthesis of silica catalysts. Risk residue valorization is a priority for 

developing countries where it can mitigate health and environmental problems associated with 

current field burning disposal;[8],[9] uncontrolled burning of rice husk waste releases crystalline 

silica particles, which when airborne can cause health problems such as silicosis.[10] 

 Rice husk waste is a significant energy source for methane and hydrogen production,[11, 12] 
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from biomass power plants, however environmental concerns remain regarding the resulting ash 

disposal.[13] Ash produced by the controlled burning of rice husk waste contains amorphous 

silica, a potential precursor for the production of functional materials including silicon carbides, 

silicon nitrides and zeolites. Rice husk silicas are also employed in the industrial manufacturing 

of cement, cleaning agents, and reinforced rubber or polymer composites.[14] Rice husk 

valorization as a silica source for the preparation of porous materials including zeolites, [15] and 

mesoporous templated materials (e.g. SBA-15 and MCM-41),[16, 17] has attracted attention for 

adsorption [18, 19] and catalysis [20, 21] applications.  

 Mesoporous silicas are typically synthesized from expensive silicon alkoxides such as 

tetraethylorthosilicate (TEOS),[22] hence an alternative, low cost silica source is desirable. The 

conversion of rice husk ash to sodium silicate (a precursor to mesoporous silicas) is thus 

attractive from both an economical and environmental perspective. Several methods have been 

employed to produce silica from rice husk,[23] with organic functionalization commonly used 

for the production of adsorbents for water purification,[24-26] CO2 sequestration,[27-29] or 

immobilization of metal nanoparticles.[30-32] Organo-functionalized (non-templated) variants 

have been explored for acetic acid esterification and phenol alkylation.[33, 34] The synthesis of 

mesoporous silicas from rice husk silica using synthetic templates such as Pluronic P-123 and 

cetyltrimethylammonium bromide yields materials with high surface areas and narrow pore size 

distributions.[35, 36] However, the use of bioderived templates is preferable to improve the 

sustainability of templated silica production.[37] Castor oil, a viscous pale yellow oil extracted 

from non-edible castor seeds, has been successfully used as a mesopore template during the sol-

gel synthesis of silica from TEOS.[38] However, there are no reports of castor oil as a surfactant 

template for sodium silicate extracted from rice husk ash.  

 Here we report the synthesis and characterization of castor oil templated rice husk derived 

silica (RHS), its subsequent functionalization with primary and tertiary organo-amines, and 

catalytic application in the transesterification of C4-12 TAGs as model reactants for biodiesel 

production. Castor oil templating of RHS increased the mesoporosity and activity of the resulting 

solid base catalysts, with tertiary amine functionalised RHS exhibiting a 5-fold rate enhancement 

over the primary amine analogue. 
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2. Experimental 

i. Materials and chemicals 

Rice husks were collected from a local rice mill at Toangoma, Kigamboni District, Dar es 

Salaam City, Tanzania. Toluene (>99.5 %), n-hexane (<97 %), sodium hydroxide, hydrochloric 

acid, diethyl-3-(trimethoxysilyl)propylamine (DEPA) (96 %), (3-aminopropyl)trimethoxysilane 

(APTS) (97 %), ethanol (>99.8 %), methanol (>99.9 %), tributyrin (>99 %) , tricaprylin (>90 %), 

trilaurin  (>99 %) and butanol (99.8 %) were purchased from Sigma Aldrich and used without 

further purification. Castor oil was extracted from castor seeds collected from Iringa and 

Dodoma Regions of Tanzania. 

 

ii. Castor oil extraction:  

Castor oil extraction was performed according to our recently reported method.[38] Briefly, 

castor oil was obtained by Soxhlet extraction using 250 ml n-hexane as the extracting solvent. 10 

g of crushed castor seeds were placed in a thimble in the centre of the extractor and n-hexane 

heated in a round bottom flask at 60 °C, and the n-hexane vapor condensed and passed through 

the thimble. The extract was collected in the round bottom flask for 6 h, with 2 mL of castor oil 

obtained per 10 g of crushed castor seeds after evaporation of residual hexane. 

 

iii. Preparation of silica from rice husk ash: 

Rice husk ash (RHA) was obtained by burning 20 g of rice husks in a high temperature muffle 

furnace (Model F46120CM) at 600 ºC for 5 h. Rice husk silica was subsequently obtained as 

previously reported,[26] by dissolution of 10 g portions of RHA in 200 mL of 2 M NaOH 

solution, followed by heating to 100 °C for 1 hour, and cooling to room temperature. The 

mixture was filtered to obtain sodium silicate solution, and the residue discarded. Equation 1 

shows the formation of sodium silicate from the reaction of rice husk ash and NaOH (used as 

limiting reagent to ensure its completion in the reaction). 4.6 g (23%) of RHA were obtained 

from each 20 g of rice husk. 

 

SiO��Ash	 + 	2NaOH	 → Na�SiO� + H�O     1 
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Equation 2 shows the process of obtaining SiO2 from sodium silicate solution, with 8.5 g (85%) 

of silica obtained for every 10 g of rice hush ash converted to sodium silicate. 

 

Na�SiO� + 	2HCl		 → SiO�	 + 	2NaCl			 + 			H�O   2 

 

Silica was precipitated from sodium silicate performed by lowering the pH of the solution from 

11.8 to 7.2 through the dropwise addition of 2 M HCl. The resulting precipitates were vacuum 

filtered and washed with excess distilled water to remove residual sodium chloride. The obtained 

rice husk silica (RHS) materials were then oven dried at 90 °C for 24 h. 

 

iv. Synthesis of micelle templated silica with castor oil 

Castor oil (2.5 g) was dissolved in a stirred mixture of 53 mL distilled water and 47 mL ethanol. 

The resulting mixture was stirred at 35 °C for 2 h prior to the addition of 23 mL of sodium 

silicate solution from RHA (corresponding to a ricinoleic acid:sodium silicate molar ratio of 

approximately 1:2), stirred for a subsequent 24 h, and then aged at 80 °C for an additional 24 h in 

the sealed vessel. Formation of a complex fatty acid/sodium salt vesicular system is expected to 

result from partial neutralization of ricinoleic acid from castor oil by the Na+ from sodium 

silicate as previously observed for oleic acid.[39] The organic castor oil template was 

subsequently removed by Soxhlet extraction using 200 mL ethanol as the refluxing solvent at 70 

°C for 10 h. The solid materials obtained were then washed in ethanol and dried at 90 °C to give 

a white powder. The resulting solid materials were termed micelle templated-rice husk silica 

(MT-RHS). 

 

v. Functionalization of RHS and MT-RHS 

Silica functionalization was performed by post-synthetic derivatization. In a typical experiment, 

2 g of either RHS or MT-RHS were oven dried at 100 °C for 1 h and then dispersed in 60 mL of 

dry toluene under stirring for 1 h, followed by the addition of 1 mL of APTS or DEPA. The 

resulting mixtures were refluxed at 130 °C for 24 h. In all cases, the resulting solid powders were 

filtration, washed with methanol, and dried overnight at 100 °C. The primary and tertiary amine 

functionalized silicas were termed APTS-RHS, APTS-MT-RHS, DEPA-RHS and DEPA-MT-

RHS (Scheme 1).  
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Scheme 1: Functionalisation of rice husk silica (RHS) and micelle templated rice husk silica 

(MT-RHS) with primary or tertiary amines. 

 

vi. Materials characterization 

Powder X-ray diffraction patterns were measured on a Bruker AXS D8 Advance X-Ray 

diffractometer, equipped with nickel filtered Cu Kα radiation (λ = 1.5406 Å). Nitrogen 

physisorption was performed using a Quantachrome Nova 4200 porosimeter. Pore size 

distributions were determined using the Barrett-Joyner-Halend (BJH) method, applied to the 

desorption branch of the isotherms, while surface areas were determined by the Brunauer- 

Emmett-Teller (BET) method for p/po between 0.05-0.3. Samples were degassed at 120 °C for 3 

h prior to analysis. Analysis of the surface morphology of the materials was performed using a 

Zeiss Ultra Plus Field Emission Gun Scanning Electron Microscopy (FEG SEM) at 10 kV. 

Samples were carbon coated using a Quorum coater (Model Q150TE) prior to SEM 

characterization. DRIFTS measurements were conducted in air using a Thermo Nicolet 6700 

FTIR spectrometer; samples were prepared by compressing a well-mixed sample containing 25 

mg of catalyst powder and 225 mg KBr into the sample holder. KBr was used for a background 

subtraction. Surface compositions were determined by XPS using a Kratos Axis HSi 

spectrometer equipped with a charge neutralizer and monochromated Al Kα source (1486.7 eV) 

at normal emission; binding energies were referenced to adventitious carbon at 284.8 eV. TGA 

Si-(CH2)3N(CH2CH3)2

DEPA-RHS/MT-RHS

APTS-RHS/MT-RHS

DEPA

APTS

RHS/MT-RHS  

RHS/MT-RHS
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was performed using PerkinElmer Pyris 6 thermal analyzer under flowing N2 (30 ml/min) 

between 40-800 °C (ramp rate 10 °C/min). 

 

vii. Transesterification reactions 

Initial transesterification tests were performed using tributyrin, a C4 triglyceride (TAG). 

Reactions were conducted at 60 °C in a Radleys reaction station employing 10 mmol of 

tributyrin, 1 mmol of dihexylether (internal standard), 300 mmol of methanol and 50 mg of 

catalyst in a two-necked round bottom flask. Reactions were run for 24 h, with samples 

periodically withdrawn, filtered, and diluted in dichloromethane prior to analysis by gas 

chromatography. 

 Transesterification of longer chain TAGs were also performed at 90 °C in a 100 ml ACE 

pressure flask, employing 10 mmol of tributyrin, tricaprylin (C8), or trilaurin (C12), 1 mmol 

dihexyl ether, 45 ml of methanol and 37 wt% of butanol (to ensure dissolution of the longer 

chain TAGs) and 50 mg of catalyst. Reactions were run for 24 h with samples periodically 

withdrawn, filtered, and diluted in dichloromethane prior to analysis by gas chromatography. 

 Tributyrin conversion and corresponding methyl butyrate production were monitored using a 

Varian 450-GC equipped with a Phenomenex ZB-5HT Inferno 15 m × 0.32 mm × 0.10 µm, 

while analysis of C8 and C12 TAGs and corresponding FAMEs used a 1079 programmable, direct 

on-column injector and Phenomenex ZB-1 HT Inferno 15 m × 0.53 mm × 0.15 µm capillary 

column. All catalytic data points are the average of 3 injections. FAME selectivity was 

calculated from ([FAME]/[TAG conversion]) x 100, with initial rates determined from the linear 

portion of the conversion profile during the first 60 min of the reaction. Recycle tests were 

performed for tributyrin transesterification, with the catalyst recovered by centrifugation after 24 

h reaction, washed with methanol and dried before re-use. All recycle experiments were 

performed at 60 °C, using 50 mg catalyst and a 1:30 molar ratio of tributyrin to methanol. 

 

3. Results and Discussion 

i. Materials characterisation 

Elemental analysis of the parent RHS (Table S1) confirms that it was free from transition metal 

contaminants and only contained trace residual sodium from the sodium silicate precursor, most 

likely as NaCl. Successful synthesis of RHS and MT-RHS was first verified by N2 porosimetry 



Elimbinzi et al   Microporous and Mesoporous Materials submitted 

8 
 

(Figure 1 and Table 1). RHS exhibited a type II isotherm consistent with a non-porous or 

macroporous structure, whereas the castor oil templated MT-RHS exhibited a type IV isotherm 

with a hysteresis loop at p/p0 = 0.45-1.0, indicating the formation of mesopores. BET surface 

areas increased from 146 to 224 m2g-1 with castor oil templating, with corresponding BJH 

analysis revealing well-defined 4 nm mesopores for MT-RHS (Figure 1 inset), demonstrating 

that ricinoleic acid was an effective mesopore-directing template during silica sol-gel synthesis 

from sodium silicate, as previously reported for oleic acid.[39] No low angle reflections were 

observed by XRD for the templated materials indicating the absence of long-range pore order in 

MT-RHS, with only a broad peak at 2θ = 22° consistent with amorphous silica (Figure S2). 

 

Figure 1: N2 adsorption isotherms and pore size distribution for MT-RHS and RHS. 

 

Table 1: Textural properties and functional group loading of rice husk silica materials. 

Sample BET surface 

area 

/ m2g-1 

Pore 

Volume 

/ cm3g-1 

Average BJH 

pore diameter 

/ nm 

Amine loadinga 

/ mmol.g-1 

RHS 146 0.22 - - 

APTS-RHS 116 0.21 - 0.54 

DEPA-RHS 73 0.15 - 0.46 

MT-RHS 224 1.24 4.0 - 
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APTS-MT-RHS 192 0.49 3.6 0.78 

DEPA-MT-RHS 98 0.21 3.7 0.85 
aTGA analysis between 250-780 °C, assuming the complete decomposition and loss of C3H6NH2 and C3H6N(C2H5)2. 

 

 The surface morphologies of parent RHS and MT-RHS were examined by SEM (Figure 2). 

Both exhibited a coral sponge-like appearance similar to fumed silica[40] comprising fused 

agglomerates of spherical microstructures.  

  Amine functionalization decreased the surface areas and pore volumes of RHS and MT-RHS 

materials (Table 1, Figure 3 and Figure S1), and mesopore diameters for MT-RHS, with the 

tertiary amine inducing a larger pore contraction than the primary amine, presumably reflecting 

the greater steric bulk of the former. The higher area MT-RHS support afforded higher APTS 

and DEPA loadings than their RHS counterparts (Table 1 and Figure S3), reflecting the 

corresponding greater silanol density of the former (Figure S4). The similar ATPS and DEPA 

loading observed for each support are consistent with a common coordination mode to surface 

silanols. 

 

 

Figure 2: SEM micrographs for a) RHS and b) MT-RHS. 
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Figure 3: N2 adsorption-desorption isotherms and corresponding pore size distributions for 

amine functionalized MT-RHS. 

 

Surface analysis by XPS revealed a single nitrogen chemical environment for amine 

functionalized RHS and MT-RHS with a N 1s binding energy of 400 eV consistent with that 

expected for amine groups (Figure 4).[41]  

 

Figure 4: N 1s XPS spectra for RHS and MT-RHS functionalized with primary and tertiary 

amines 
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Surface chemistry of the parent and functionalized RHS and MT-RHS materials was analysed by 

DRIFTS (Figure 5 and Figures S4-5). As-synthesized RHS and MT-RHS exhibited a strong 

peak at 1076 cm-1 due to siloxane (Si-O-Si) and silanol (Si-O-H) modes at 803 and 3569 cm-1 

respectively. The intensity of the latter decreased upon functionalization, concomitant with the 

appearance of new bands at 3250-3400 cm-1 (assigned to νs and νas in NH2) and 1626 cm-1 (δ N-

H) for APTS, and 1250 cm-1 (νC-N stretch) for DEPA, consistent with amine grafting at silanol 

grafting at surface silanols. Amine functionalized silicas also exhibited bands at 2915 and 2859 

cm-1 (νCH2 of the propyl linker), with DEPA exhibiting additional bands at 2798 and 2967 cm-1 

attributed to the CH2 and CH3 modes of the ethyl groups of the tertiary amine. 

 

Figure 5: DRIFT spectra of primary (APTS-MT-RHS) and tertiary (DEPA-MT-RHS) amine 

functionalized micelle templated rice husk silica. 

 

ii. Catalytic Activity: 

Amine derivatized RHS and MT-RHS were first evaluated for the transesterification of tributyrin 

with methanol to evaluate the impact of mesoporosity and amine selection (Table 2 and Figure 

6). Control reactions revealed tributyrin conversions of 5 % and 11 % for the parent MT-RHS 
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and RHS. Turnover frequencies (TOFs) for tributyrin conversion, and the yield of methyl 

butyrate, were higher for the MT-RHS than RHS catalysts, and for the tertiary versus primary 

amine (correlating with their basicity). The higher activity of the MT-RHS is attributed to 

improved mass transport and amine accessibility, while the higher TOF of the tertiary amine is 

attributed to its fractionally stronger basicity.[42-45] The maximum TOF of 140 h-1 for the 

DEPA-MT-RHS catalyst compares favorably with recent reports for other solid bases including 

nano-MgO (84 h-1),[46] MgO-ZrO2 (100 h-1), [47],[48] and a Mg3Al hydrotalcite (60 h-1),[49] but 

is less than observed for macroporous Mg-Al hydrotalcites  (376 h-1) for which mass transport is 

extremely efficient.[50] Recycle tests for DEPA-MT-RHS evidenced modest catalyst stability, 

with only a 10 % decrease in conversion following the first re-use (Figure S6), albeit dropping 

by 50 % after five re-uses. 

  

Table 2: Reaction data for the amine functionalized RHS and MT-RHS for tributyrin 

transesterification.d 

Catalyst Specific 

activitya 

/ mmolh-1g-1 

TB  

Conversionb  

/ % 

MB 

Yieldb      

/ mmol 

MB 

selectivityb 

/ % 

TOFa,c      

/ h-1 

RHS - 11 - - - 

APTS-RHS 20 96 19 67 37 

DEPA-RHS 41 98 22 75 89 

MT-RHS - 5 - - - 

APTS-MT-RHS 42 97 23 80 54 

DEPA-MT-RHS 125 99 24 81 147 
a1 h reaction; b24 h reaction; cNormalised to amine loading from TGA. dConditions: 10 mmol tributyrin, 1 mmol 

dihexylether (internal standard), 300 mmol of methanol and 50 mg of catalyst, temperature 60 ° C. 
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Figure 6: Turnover frequencies for tributyrin transesterification with methanol over amine 

functionalized RHS and MT-RHS. Inset shows corresponding tributyrin reaction profiles. 

Conditions: 10 mmol tributyrin, 1 mmol dihexylether (internal standard), 300 mmol of methanol 

and 50 mg of catalyst, temperature 60° C. 

 

The versatility of DEPA-MT-RHS was further examined in the transesterification of C8 and C12 

TAGs (Figure 7). Conversion and activity decreased with TAG chain length from C4 > C8 > C12, 

attributed to slower diffusion and poorer active site accessibility of the bulkier oils, as previously 

observed for a macroporous Mg-Al hydrotalcite and Cs-doped MgO.[50, 51] The measured 

TOFs are superior to those obtained using nanoparticulate MgO, but lower than for Cs-doped 

MgO [51] or a macroporous Mg-Al hydrotalcite [50] which are stronger bases. FAME 

selectivities of 93 % and 71 % were obtained for methyl caproate and methyl laurate respectively 

after 24 h. 
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Figure 2: Turnover frequencies for C4, C8, and C12 transesterification with methanol over 

DEPA-MT-RHS. Inset shows corresponding reaction profiles. Conditions: 10 mmol of TAG, 1 

mmol dihexylether (internal standard), 45 ml of methanol and 37 wt% of butanol (to solubilize 

longer chain TAGs) and 50 mg of catalyst, 90 °C in a 100 ml ACE pressure flask.  

 

 Rice-husk silica is a promising precursor for the synthesis of mesoporous solid base catalysts 

using castor oil (likely ricinoleic acid) as a renewable structure directing agent. Tertiary amine 

functionalised risk husk silicas exhibit excellent activity and modest stability for triglyceride 

transesterification, and future studies will explore the broader application of these materials in 

continuous flow processing of bio-oils. 

 

Conclusions 

Mesoporous micelle templated rice husk silica (MT-RHS) with well-defined 4 nm pores were 

successfully synthesized using sodium silicate obtained from rice husk ash and castor oil as a 

surfactant template. MT-RHS possessed a high surface area than its non-templated counterpart, 

indicating that castor oil acts as pore directing agent. Templated mesoporous silica comprised 

agglomerates of spherical microstructures, but lacked long range mesopore order. Amine 
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functionalization with primary (APTS) or tertiary (DEPA) amines afforded solid base catalysts 

active for the low temperature transesterification of C4-C12 triglycerides to their corresponding 

fatty acid methyl ester. Catalyst activity decreased from DEPA-MT-RHS>DEPA-RHS>APTS-

MT-RHS>APTS-RHS, with DEPA-MT-RHS exhibiting a 65 % enhancement in activity relative 

to the RHS counterpart. DEPA-MT-RHS was recyclable, with only a 10 % loss in C4 TAG 

conversion after the first re-use, and proved effective for the transesterification of longer chain 

C8 and C12 triglycerides to their corresponding FAMEs. 
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Highlights 

 

• Mesoporous silica synthesized from rice husk ash and a castor oil template.  
• Templating increases surface area and introduces well-defined 4nm pores. 
• Successful functionalisation with primary and tertiary amine demonstrated. 
• Tertiary amine functionalised silicas most active in transesterification. 
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