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ABSTRACT 

In this paper, we investigate the design of few-mode fibers (FMFs) guiding 4 to 12 non-degenerate linearly 

polarized (LP) modes with low differential mode delay (DMD) over the C-band, suitable for long-haul 

transmission. The refractive index profile considered is composed by a graded-core with a cladding trench 

(GCCT). The optimization of the profile parameters aims the lowest possible DMD and macro-bend losses 

(MBL) lower than the ITU-T standard recommendation. The optimization results show that the optimum DMD 

and the MBL scale with the number of modes. Additionally, it is shown that the refractive-index relative 

difference at the core center is one of the most preponderant parameters, allowing to reduce the DMD at the 

expense of increasing MBL. Finally, the optimum DMD obtained for 12 LP modes is lower than 3 ps/km.  
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1. INTRODUCTION 

Mode-division multiplexing (MDM) over few-mode fibers (FMFs) is emerging as an attractive solution for the 

impending capacity crunch of single-mode fibers (SMFs) [1] with potential cost, space, and energy savings [2]. 

However, FMFs require the usage of multiple-input multiple-output (MIMO) equalization to compensate for the 

combined effect of differential mode delay (DMD) and modal crosstalk (XT), which originates a channel 

impulse response (CIR) spread over time [3]. Consequently, the additional processing complexity partially 

erodes the benefit of deploying FMFs. It has been shown in [4] that, considering similar levels of complexity for 

nonlinearity mitigation in a standard SMF (SSMF), only FMF systems with 4 or more LP modes offer an actual 

capacity increase. Therefore, in this paper we investigate techniques to design FMFs with low DMD over the C-

band from 4 to 12 LP modes. 

In the literature, two different schemes have been proposed to limit the accumulation of DMD in FMFs with x 

modes (xM): the usage of inherently low DMD FMFs (ILD-FMFs) [5], and the usage of DMD compensated 

FMFs (DC-FMFs) (FMFs with positive DMD followed by FMFs with negative DMD) [6]. The main target in 

this paper is a DMD lower than 12 ps/km over the C-band, since this is the DMD required for 2000 km of MDM 

transmission at 100 Gb/s using an overhead of up to 10% [3]. The design of DC-FMFs with more than 2M 

requires the concatenation of a large number of FMFs with different DMDs, thereby imposing difficulties in the 

field deployment, compared to ILD-FMFs [7]. Therefore, in this paper we investigate only ILD-FMFs. The xM-

ILD-FMFs reported in the literature showing lower DMD over the C-band have been designed using a refractive 

index profile composed by graded-core with cladding trench (GCCT), for example: a 2M-ILD-FMF with 

6 ps/km along 10 km [5], and a 4M-ILD-FMF with 135 ps/km along 7 km [6]. In [9] we optimized a GCCT 

profile for 4M and 6M, obtaining DMD values of 5 and 10 ps/km, respectively, over the C-band. Therefore, 

further improvement in the design of ILD-FMFs is required, in order to achieve cost-effective long-haul 

transmission systems.  

In this work, the optimization of a GCCT profile is performed for 4M to 12M, with the objective of obtaining a 

DMD lower than the 12 ps/km over the C-band requirement. The optimization of the GCCT profile presented in 

this paper reviews and extends the work that we presented in [8]-[10]. As the optimized DMD grows 

significantly with xM [9], in [10] we proposed to optimize the refractive index relative difference at the core 

center, nco, which was fixed in [8] and [9]. However, as nco has a direct impact on the macro-bend losses 

(MBL) [11], we take into account such impact on the optimization function. The paper is organized as follows. 

Section 2 describes the profile considered and provides a theoretically explanation of the impact of nco on 

DMD and MBL. Section 3 presents the optimization function algorithm. Section 4 presents the optimization 

results. Section 5 summarizes the main conclusions of this paper. 

2. Refractive-index Profile Description and Analysis 

In this paper, we follow the mathematical description of the GCCT profile presented in [8]. The core is 

characterized by the ∆nco, the power-law exponent α, and the core radius w1. The trench dimensioning is 

characterized by the radial distance to the end of the core, w2, the trench width w3, and the relative refractive 

index difference at the trench ∆ntr. During the optimization, the guided modes (LP) and their characteristics 

are calculated solving the Maxwell equations numerically using the method described in [12]. The LP mode 
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characteristics calculated are the effective index n̄LP, the effective group index n̄g
LP, the DMD and the MBL. 

The DMD of the LP mode is measured relatively to the LP01 mode and is given by 

DMDLP() = [n̄g
LP() - n̄g

LP01()] / c, where  is the wavelength and c is the light velocity in vacuum. The 

MBL are calculated according to [11]. The dispersion properties of the doped silica have been modeled using the 

Sellmeier coefficients used in [8].  

When designing a graded core fiber with a given number of modes, one must first choose the normalized 

frequency (V) value. V is given by V = 2πw1/∙[nco
2 - ncl

2]1/2 where nco is the refractive-index value at the core 

center and ncl is the refractive-index value at the cladding. For each xM fiber, we choose the highest possible V 

value that guarantees the guidance of the first x-modes while cutting off the next higher-order modes [10], 

considering a GCCT profile with  = 2.3 and ntr = 0. As a result, for 4M, 6M, 9M and 12M, the V values are 

chosen to be 7.25, 9.00, 11.15 and 12.95, respectively. As a consequence, the x-modes have the highest possible 

n̄LP values and are thus more strongly guided. Given V and nco, the w1 value is obtained considering the 

lowest  of the C-band (1530 nm). Along this paper, references to a nco change imply a w1 change such that V 

remains constant.  

In the following, the impact of nco value on the DMD of a GCCT profile is explained theoretically. The nco 

value limits the maximum difference possible between the effective indexes n̄LP, since ncl < n̄LP < nco. 

Consequently, the nco value also limits the maximum difference possible between effective group indexes 

n̄g
LP, since n̄g

LP = n̄LP + dn̄LPd. Noting that DMDLP() = [n̄g
LP() - n̄g

LP01()] / c, it can be 

concluded that the reduction of nco has the potential to further reduce the DMD values obtained in [9]. The 

drawback of the utilization of a low nco is related to MBL. According to [11], the power loss at bends increases 

with decreasing nco for a certain curvature radius and, as a consequence, low DMD and low MBL are opposite 

requirements. The trade-off between DMD and MBL on the optimization of nco is analyzed in Section 4. 

3. Optimization Function and Algorithm 

The optimization parameters can be gathered in a parameter vector (pv): pv = [, nco, w2, w3, ntr]. The 

optimization function takes into account two figures: one related to DMD and another related to MBL. The DMD 

related figure is the maximum DMD among the guided modes and over the defined wavelength range 

(maxDMD), given by: 

 

   ,max LPmaxDMD pv DMD pvmax 
 


 

  
 

 

(1) 

 

The MBL related figure is the curvature radius (Rc) for 100 turns and MBL = 0.1 dB at 1625 nm. For a given xM 

fiber, the Rc of each mode is calculated and the highest value is considered. According to the ITU-T 

recommendation in [13], Rc must be lower than or equal to 30 mm. The optimization function (OF) is given by 

(2) and the respective constraints are given by (3)-(8). 
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(2) 

   3 31 10 5 10co co con n n             (3) 

   1.5 2.5        (4) 

   35 10 0tr tr trn n n            (5) 

   2 2 2 10 2w w w w      (6) 

   3 3 3 10w w w w      (7) 

   1530 nm 1565 nm        (8) 

 

In (2), the  factor can be 0 or 1 in order to consider or ignore the Rc ≤ 30 mm requirement. The ∙(Rc - 30)/30 

factor in (2) introduces a penalizing factor for solutions with Rc > 30 mm, since  is equal to 0 for Rc ≤ 30 mm 

and equal to 1 for Rc >  30 mm. Note that, for each different pv tested, if the number of modes is not the desired 

one the OF value is set to infinity. Regarding the constraints, nco
- in (3) takes into account the difficulties of 

manufacturing fiber with nco lower than 1∙10-3, whereas nco
+ is used as upper bound of nco taking into 

account that maxDMD increases with nco. (4)-(7) were defined in [8]. (8) binds  to the C-band. 

The optimization algorithm is designed taking into account that maxDMD is a convex function of (, ntr) 

[10]. Therefore, the search for the pair (, ntr) that minimizes maxDMD for a given (nco, w2, w3) point is done 

one dimension at a time using a golden section search (GSS). In order to find the full optimum pv set, an 

exhaustive search (ES) is performed over (nco, w2, w3). The GSS optimizes  and ntr with a termination 



tolerance on maxDMD of 0.001 ps/km. The ES optimizes the nco, w2 and w3 with tolerances of 5∙10-4, 0.25 m 

and 0.5 m, respectively. Further reducing these tolerances by a factor of 2 changed maxDMD negligibly.  

4. Optimization Results 

The optimization results are shown in this section. The maxDMD and Rc are required to be equal or lower than 

12 ps/km and 30 mm, respectively. Fig. 1 (a) and (b) show maxDMD and Rc optimum values, respectively, as a 

function of the number of modes, obtained using OF with  = 0 and  = 1. Fig. 1 (a) and (b) show, respectively, 

that maxDMD and Rc scale with the number of modes for a given nco value and  = 0. Furthermore, Fig. 1 (a) 

and (b) show, respectively, that maxDMD decreases and Rc increases with nco decreasing for a given number of 

modes and  = 0, in line with the explanation provided in Section 2. In particular, with  = 0, Fig. 1 (a) shows 

that the maxDMD requirement is not satisfied for xM > 6 with nco = 5∙10-3, and Fig. 1 (b) shows that the Rc 

requirement is not satisfied for any number of modes with nco ≤ 3∙10-3. Comparing the results shown in Fig. 1 

obtained using  = 0 and  = 1, it can be concluded that the Rc requirement can be satisfied from 4M to 12M with 

small maxDMD degradation (lower than 0.5 ps/km for nco = 1∙10-3). Therefore, Fig. 1 shows that the maxDMD 

and Rc requirements are satisfied simultaneously for 1∙10-3 ≤ nco ≤ 4∙10-3 from 4M to 12M. Moreover, it can be 

concluded that maxDMD cannot be reduced to negligible levels (maxDMD < 0.1 ps/km), as for 2M [8]. This 

limitation is explained noting that the field confinement effect of the trench affects each higher-order mode 

(LP02, LP21, LP12, LP31, …) with different strength, since all have a considerable power concentration near the 

core boundary but different distributions [8]. Therefore, each mode has a different optimum trench dimensioning 

(w2, w3, ntr) and it is not possible to reduce the DMD of all modes to negligible values at the same time over the 

C-band. Fig. 2 shows the optimum trench dimensioning (w2, w3, ntr) as a function of the number of modes for 

nco∙103 = {1, 2, 3}. From Fig. 2 it can be seen that, for a given nco, when increasing the number of modes the 
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Figure 1. (a) maxDMD [ps/km] and (b) Rc [mm] optimum values as a function of the number of modes for 

different nco values.  
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Figure 2. Optimum trench dimensioning (w2, w3, ntr) as a function of number of modes for nco∙103 = {1, 2, 3}. 

(a) w2, (b) w3, and (c) ntr. 



optimum trench gets farther away from the core (w2 increases), narrower (w3 decreases) and deeper (ntr 

decreases). This means that the guidance of higher-order modes with different spatial distributions alters 

significantly all the optimum trench dimensioning parameters (w2, w3, ntr), as explained above. Additionally, 

Fig. 2 shows that, for a given number of modes, when increasing nco the optimum trench gets closer to the core 

(w2 decreases), wider (w3 increases) and shallower (ntr increases).  

The remaining properties of the optimized FMFs for nco = 1∙10-3 and  = 1 have been computed for 1550 nm: 

the chromatic dispersion (D), the chromatic dispersion slope (S) and the nonlinear coefficient (γ). The D value is 

around 22 ps/km/nm (from LP01 to the higher-order mode) for all the numbers of modes considered, only 

moderately higher than the dispersion of ~17 ps/(nm⋅km) characteristic of SSMF. The S value is around 0.06 

ps/(nm2∙km) (from LP01 to the higher-order mode) for all the number of modes considered, lower than the value 

of ~0.08 ps/(nm2∙km) typical of SSMF. The γ value for the LP01 mode (the most restrictive one) goes from 0.22 

for 2M to 0.09 for 12M, significantly lower than the SSMF typical value of 1.3 W-1/km, as expected due to the 

higher core radius.  

As a main conclusion, the results presented in this section allow stating that optimizing nco allowed to satisfy 

the requirements of maxDMD ≤ 12 ps/km and Rc ≤30 mm, which were not achievable in [9]. 

5. CONCLUSIONS 

In this work, the design of FMFs with low DMD over the C-band was investigated considering a GCCT profile. 

The profile parameters were optimized obtaining the lowest maxDMD achievable for 4M to 12M, with Rc ≤ 30 

mm. The optimization results have shown that maxDMD and Rc scale with the number of modes. nco was 

shown to be the most preponderant parameter of the GCCT profile, allowing reducing maxDMD at the expense 

of increasing Rc. The optimization results obtained for the lowest maxDMD (ignoring the Rc value) have shown 

that, for nco ≤ 3∙10-3, the Rc requirement is not satisfied for any number of modes. On the other hand, optimizing 

simultaneously for low maxDMD and low Rc, it was possible to satisfy the maxDMD and Rc requirements 

simultaneously for 1∙10-3 ≤ nco ≤ 4∙10-3 from 4M to 12M, with a maxDMD penalty lower than 0.5 ps/km. For 

12M and nco = 1∙10-3, a maxDMD lower than 3 ps/km was obtained.  
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