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Abstract: Structural control and element doping are two popular strategies to produce 

semiconductors with surface enhanced Raman spectroscopy (SERS) properties. For 

TiO2 based SERS substrates, maintaining a good crystallinity is critical to achieve 

excellent Raman scattering. At elevated temperatures ( > 600 °C), the phase transition 

from anatase to rutile TiO2, could result in a poor SERS performance. In this work, 

we report the successful synthesis of TiO2 nanowhiskers with excellent SERS 

properties. The enhancement factor, an index of SERS performance, is 4.96×10
6
 for 

methylene blue molecule detecting, with a detection sensitivity around 10
-7

 M. 

Characterizations, such as XRD, Raman, TEM, UV-vis and Zeta potential 

measurement, have been performed to decrypt structural and chemical characteristics 

of the newly synthesized TiO2 nanowhiskers. The photo absorption onset of MB 

adsorbed TiO2 nanowhiskers was similar to that of bare TiO2 nanowhiskers. In 

addition, no new band was observed from the UV-vis of MB modified TiO2 

nanowhiskers. Both results suggest that the high enhancement factor cannot be 

explained by the charge-transfer mechanism. With the support of ab initio density 

functional theory calculations, we reveal that interfacial potassium is critical to 

maintain thermal stability of the anatase phase up to 900 °C. In addition, the 

deposition of potassium results in a negatively charged TiO2 nanowhisker surface, 

which favours specific adsorption of methylene blue molecules and significantly 
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improves SERS performance via the electrostatic adsorption effect. 

Keywords: TiO2 nanowhisker; SERS; potassium induced 

 

1. Introduction 

Surface-enhanced Raman spectroscopy (SERS) is one of the most sensitive 

spectroscopic techniques to detect molecules that have a strong Raman response at a 

single-molecule resolution [1]. In recent years, TiO2 semiconductor-based SERS has 

attracted much attention due to the advantages of low cost, good stability and 

excellent reproducibility [2-4]. TiO2 SERS performance is mainly tuned via the 

preparation protocol where element doping (hydrogen and oxygen), morphology 

manipulation and band structure engineering are beneficial. Compared with traditional 

coinage metal substrates such as gold, silver and copper, TiO2 photocatalytic 

properties enable an environment-friendly removal of adsorbed molecules and a reuse 

of the SERS substrate [5]. 

Despite the promise, semiconductor-based SERS substrates are generally limited 

by the inferior enhancement factor (EF), an index of how sensitive the detection is. 

The theoretical maximum EF for semiconductor-based SERS [4], based on charge-

transfer (CT) mechanism, has been estimated to be around 10
6
. However, reported 

experimental EF values for TiO2 substrates are only in the range of 10~10
3
. Generally, 

there are two options to improve the SERS performance. The first one is to change the 

semiconductor morphology and thus enhance the interactions between the laser and 

the substrate. Under this guideline, Alessandri synthesized TiO2 shell-based spherical 

resonators and reported a remarkable Raman scattering enhancement [6]. The 

improvement is ascribed to the synergistic effects of high refractive index of TiO2 

shell layer and multiple light scattering through spherical geometries. Similarly, 

Zhang and co-workers used a sol-gel method and prepared TiO2 inverse opal photonic 

microarrays [7]. They reported that the morphology change results in the photonic 

band gap change, which in return promotes multiple light scattering and the resulted 

EF is about 10
4
. Recently, we adopted a two-step anodic oxidation process and 

prepared TiO2 nanofoam–nanotube array [8], which shows a remarkable Raman 

scattering enhancement for methylene blue (EF = 2.3 × 10
5
). The second option is to 
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manipulate interactions between the substrate and adsorbed molecules. For example, 

Cong and co-workers engineered oxygen vacancy at tungsten oxide nanowire surfaces 

[9]. It was observed that the new interfacial oxygen vacancies can enrich tungsten 

oxide surface states, strengthen adsorbent-adsorbate interactions, and eventually 

produce an improved EF value of 3.4×10
5
. Inspired by Cong’s work, hydrogen or 

oxygen doping has been adopted to treat other semiconductors [5]. It is generally 

accepted that quasi-amorphous interfacial thin layers and hydrogen or oxygen doping 

effectively facilitate charge transfer, enhance vibrational scattering of adsorbed 

molecules and improve the SERS performance. 

It is worth pointing out that defect engineering is a double-edged sword. A 

poorly designed defective interface can severely degrade SERS performance. For 

example, it was reported that the excess amorphous structure at interface can decrease 

the refractive index, which could weaken the interactions between the SERS substrate 

and the laser [4]. Also, interfacial defects can induce the transformation and re-

combination of electron/hole pairs, which will degrade SERS performance [10]. For 

instance, Zhao and co-workers investigated the crystallinity effect of anatase TiO2 

nanoparticles on SERS performance [11]. They concluded that both high degree of 

crystallinity and high concentration of surface defects are critical for a superior SERS 

performance. However, the challenge is that the two factors do not come together 

very easily for TiO2 materials: using a high-temperature treatment (normally above 

600 °C) to improve anatase TiO2 crystallinity, one can easily witness the intrinsic 

phase transformation from anatase to rutile TiO2. The as-synthesized TiO2 substrate 

has an inferior SERS performance. 

In this work, we report a new semiconductor SERS substrate-TiO2 nanowhisker 

with high crystallinity and high thermal stability. The single anatase crystal phase 

remains intact up to 900 °C, which is mainly due to the interfacial potassium. In 

addition, potassium binds strongly with TiO2 substrate, producing a negatively 

charged interface for Raman scattering, as well as altering the band gap of anatase 

TiO2. All three factors, namely, the single-phase crystallinity, the negatively charged 

interface and the reduced band gap, synergistically enable the synthesized anatase 

TiO2 nanowhisker to be a supreme SERS substrate, with a maximum EF 4.96×10
6
. 

The significance of this work is two-fold: the report of a new SERS performance 

record from TiO2 semiconductor, and the exploration of interfacial potassium doping 
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effect. We anticipate other alkali elements can also assist engineering TiO2 materials 

to achieve high crystallinity, high thermo stability and high interaction selectivity. 

2. Experimental 

2.1 Materials 

Metatitanic acid (TiO2·nH2O) was from Nanjing oil chemicals Co., Ltd., China. 

Potassium carbonate (K2CO3) was from Shanghai chemical reagent factory. 

Methylene blue (MB) was purchased from Tianjin Chemical Reagent Research 

Institute Co., Ltd. All chemicals were of analytical grade and used as received. 

Deionized water was used in all experiments. 

 

2.2 TiO2 nanowhisker synthesis  

TiO2 nanowhisker was synthesized by a two-step calcination and ion exchange 

process, as illustrated in Fig. 1 [12]. Briefly, metatitanic acid (TiO2·nH2O) and 

potassium carbonate were mixed with a 1.9 molar ratio. The mixture was then 

calcined in the muffle furnace at 820 °C for 6 hrs. After that, the as-obtained 

potassium dititanate was washed with 0.1 M HCl and deionized water, repeating for 

three times. Finally, the TiO2 nanowhiskers were obtained by calcinating the powders 

at different temperatures for 2 hrs. According to the temperature used in the final 

calcination step, obtained TiO2 samples were named as Z700, Z800, Z900 and Z1000, 

respectively.  

 

Fig. 1. Schematic diagram of TiO2 nanowhisker preparation. 

 

2.3 Characterizations 
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The crystal structures of those samples were characterized by X-ray diffraction 

(XRD, Bruker, Model D8 with Cu Kα excitation). In addition, the element 

composition and chemical states of studied samples were analysed by X-ray 

photoelectron spectrometer (XPS, Physical Electronics 5600). The UV-vis diffuse 

reflectance spectra (UV-vis DRS) was obtained by a UV-vis spectrometer (Perkin-

Elmer Lambda 950) over a wavelength range of 300~800 nm. Surface morphologies 

were studied by using field-emission scanning electron microscope (FESEM, Hitachi 

S-4800) at 5 kV, 10 μA. Surface charge of the samples were detected on the Zeta 

potential analyser (Malvern, ZS90). TEM images were obtained employing JEM-

2010 UHR at 200 kV. 

 

2.4 SERS measurement 

The Raman signal of MB molecules adsorbed on TiO2 nanowhiskers were 

obtained using the 514.5 nm laser excitation. Specifically, we obtain the 10
-5

 M MB 

ethanol solution by successively diluting a 10
-3

 M MB solution. Then 20 μL of the 10
-

5
 M MB ethanol solution was added to TiO2 substrate, keeping the sample in the dark 

for 4 hrs to reach the adsorption equilibrium. Subsequently, the Raman spectra were 

collected via the high-resolution confocal Raman spectrometer (LabRAM HR-800) 

using a 50 × LWD objective lens for 10 s and 0.3 mW powers in all acquisitions. 

Each sample was collected at least 5 times from different locations of the sample. 

 

3. Results and discussion 

3.1 The characterization of TiO2 nanowhisker 

As shown in Fig. 2a, scanning electron microscopy (SEM) images demonstrate 

that the four samples possess one-dimensional morphology. For the Z700 sample, the 

diameter is about 300 nm and the length is a few microns. When the temperature 

increases from 700 °C to 1000 °C, all studied samples shrink a little bit and their 

diameters increase slightly. This indicates that TiO2 nanowhisker could melt partially 

at high temperatures. According to XRD characterizations in Fig. 2b, Z700 and Z800 

are pure anatase crystalline phase, while Z900 and Z1000 have a small portion of 

rutile crystalline phase. The content of rutile phase was estimated to be 2 mol % and 
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10 mol % for Z900 and Z1000, respectively [13]. TEM images of those nanowhiskers 

are available in Fig. S2, where a crystal phase of nanowhiskers was measured, 

consistent with XRD results.  

 

Fig. 2. Morphology, crystal structure and SERS properties of four TiO2 nanowhisker samples. (a) SEM 

images of Z700, Z800, Z900 and Z1000. (b) XRD pattern of four TiO2 nanowhiskers. (c) Raman 

spectra of the 10
-5 

M MB ethanol solution on four TiO2 nanowhiskers and bare glass (inset: the 1630 

cm
-1

 intensity of four nanowhiskers). (d) Raman EFs obtained for MB on the Z900 sample, as a 

function of MB concentrations at the 1630 cm
-1

 peak. (e) The detection limitation test of MB on the 

Z900 sample. 

 

3.2 SERS properties of TiO2 nanowhisker samples 

Methylene blue (MB) was used as the probe molecule to examine the SERS 

performance of TiO2 nanowhiskers. As shown in Fig. 2c, the SERS enhancement 

factor (EF) is calculated at the characteristic peak of 1630 cm
-1

, which is the aromatic 

C-C stretching vibration mode [9]: 

EF = (ISERS /NSERS
)/(Ibulk/Nbulk)                                  (1) 

where ISERS  and Ibulk  refer to peak intensities of the SERS and non-SERS spectra, 
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respectively. NSERS  and Nbulk  correspond to the number of probe molecules in the 

laser area for the SERS and non-SERS measurements. Calculation details are 

available in the Section S2 of Supporting Information. 

Significant SERS enhancements are observed for all four samples but there is 

almost no enhancement from the bare glass substrate. The Z900 sample shows the 

best SERS performance compared with other samples. It is probably because Z900 

has a high crystallinity. It is worth pointing out that when the calcination temperature 

increases to 1000 °C, a significant phase transformation will occur, from the anatase 

to rutile phase, which will result in a decrease of Raman detecting signal of MB 

molecules. The trend of anatase phase has a better SERS performance than the rutile 

phase is also reported by Zhao et al. [14]. As illustrated in Fig. 2d, the calculated EF 

from the Z900 sample is 4.96×10
6
 at the 10

-6
 M MB concentration, which is the best 

performance reported so far for TiO2-based SERS substrates (Table S1). In addition, 

the Z900 sample has an applicable detection of MB molecules even at a very dilute 

concentration of 10
-7

 M, see Fig. 2e. Such detecting sensitivity is better than most 

reported results from semiconductor SERS substrates. 

 

3.3 TiO2 morphology and SERS performance 

TiO2 SERS substrates are traditionally polycrystalline materials, with the 

morphology of nanoparticles or mesoporous membranes. The TiO2 nanowhisker 

synthesized in this work is a one-dimensional single crystal. A high crystallinity could 

improve the SERS performance. For example, Sun and co-workers reported that one-

dimensional semiconductor materials with single crystal structures (such as nanowire 

and nanobelt), are excellent plasmonic waveguides to transfer Raman signals and 

realize remote SERS properties [15]. Such signal transfer and remote Raman 

scattering are promising for Raman scattering enhancement. For the Z700 sample, as 

shown in Fig. 3d and 3e, remote Raman scattering was also observed. In order to 

further validate the dominating contribution of the single crystal morphology, a new 

set of three samples has been prepared: Z700 nanowhisker with the one-dimensional 

morphology (Fig. 3a); ZB700, a sample from ball-milling Z700, where the single 

crystallinity was destroyed (Fig. 3b); T700, a mesoporous TiO2 nanowhisker sample 

prepared with additional water vapor treatment during the Z700 sample preparation 
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(Fig. 3c). The detailed preparation conditions are provided in the supporting 

information and see also Fig. S1. The key differences between three samples: ZB700 

sample is composed of TiO2 nanoparticles with irregular morphologies; T700 has the 

one-dimensional morphology, similar to that of Z700. But T700 has a significant 

number of cavities at the surface. SERS performances of the three samples are 

compared in Fig. 3f. First of all, the Raman scattering at low wavenumbers (200~800 

cm
-1

) supports that all three samples are generally composed of TiO2 anatase phase. 

However, the SERS performance from the three samples is obviously different: at the 

characteristic 1630 cm
-1

 peak, the EF has the order of T700 < ZB700 < Z700 (Table 

S2). It is important to point out that despite the one-dimensional morphology, the 

cavities of T700 significantly degrade the SERS performance. In summary, both the 

single crystallinity and the one-dimensional morphology are important for excellent 

SERS performance.  

 

 

Fig. 3. Morphology, Remote SERS and SERS performance of TiO2 samples. SEM images of Z700 (a), 

ZB700 (b) and T700(c). The propagation of light along TiO2 nanowhisker (Z700) under visible light (d) 

and laser (e). (f) Raman spectra of MB (10
-5

 M) adsorbed on T700, ZB 700 and Z700 samples. 

 

3.4 Interfacial potassium and significant SERS improvement 

Despite the performance degradation with respect to Z700 and ZB700, the T700 
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sample still has an EF of 4.13×10
5
, higher than other reported TiO2 semiconductors. 

Since T700 possesses no single crystallinity nor perfect interfacial morphology, the 

excellent SERS performance is attributed by other factors. In literature, Zhao et al. 

reported that the photo absorption threshold to the 4-Mercaptobenzoic acid (4-MBA) 

adsorbed TiO2 shows a blue-shift, compared with that of unmodified TiO2. It is 

interpreted due to the interaction between adsorbed molecules and TiO2 substrate [16]. 

Similarly, Cong et al. reported their X-ray photoelectron spectroscopy (XPS) results 

that hydrogen treated W18O49 sample has an increased percentage of W
5+

, from 30.4 

mol % (untreated, pristine W18O49) to 47.5 mol % [9]. Obviously, there are more 

surface oxygen vacancies of the modified sample. Moreover, they determined UV-vis 

diffuse reflectance spectroscopy (DRS) spectra of R6G molecules deposited on 

W18O49 and reported a new band from the hybrid sample, an evidence of the charge 

transfer between R6G and W18O49.  

Inspired by those studies, UV-vis DRS and XPS were performed in this work to 

further explore the enhancement mechanism of Raman scattering. As shown in Fig. 4a, 

the photo absorption spectra for Z700, Z800 and Z900 samples are very similar to 

each other, with a same onset around 400 nm. Such result is in accordance with the 

photo absorption onset of TiO2 anatase phase. A red shift of the absorption edge for 

Z1000 was observed, which is mainly due to the phase transformation and the resulted 

rutile phase. Ti2p and O1s peak positions of XPS spectra in Fig. 4c and 4d further 

confirmed that Z700 and Z800 are in the anatase phase, while Z900 and Z1000 have 

co-existing anatase and rutile phases [17]. Moreover, as shown in Fig. 4b, we 

compared UV-vis DRS spectra of MB molecule adsorbed on Z900 with that of 

pristine MB and Z900. No new band was observed from the spectra of MB modified 

Z900. In addition, the absorption edge of MB modified Z900 was same as that of the 

pristine Z900 sample. Those results suggested that the excellent SERS performance of 

TiO2 nanowhisker is not from defect states near TiO2 conduction band.  

Journal Pre-proof



Jo
ur

na
l P

re
-p

ro
of  

Fig. 4. UV–vis DRS spectra of (a) TiO2 nanowhiskers and (b) Z900 compared with pristine Z900 and 

MB. XPS spectra and binding energies of (c) titanium, (d) oxygen and (e) potassium. (f) Zeta potential 

as a function of pH: the comparison between four studied TiO2 nanowhiskers and the commercial P25 

sample. 

 

Generally, oxygen vacancy defects of TiO2 nanoparticles can form surface state 

energy levels. Zhao et al. observed that defect states favour charge transfer between 

molecules and TiO2 substrates. Also, the SERS signal is affected by temperature, 

which is ascribed to the improved crystallinity and the reduced concentration of 

surface defects [16]. In this work, the enhanced SERS performance is not dominated 

by oxygen vacancy defects. Firstly, the SERS signal of MB on Z800 is stronger than 

that of Z700, despite the fact that Z800 has a lower concentration of oxygen vacancy 

defects. Secondly, when calcination temperature increases, the XPS spectra peaks of 

Ti2p (Ti
4+

, ~458.6 eV and 464.2 eV) and O1s (~529.9 eV) are expected to shift 

towards higher binding energies. However, the results in Fig. 4c and 4d show the 

opposite. It is worth noting, as suggested by Fig. 4e, that potassium remains at the 

interface and binds strongly with oxygen sites of studied samples. Although the trace 

of potassium is negligible to TiO2 structural characterization, such as XRD results in 

Fig. 2b, the surface chemistry could have a drastic change due to the trace potassium 

at interface. The potassium bonded Ti sites could have higher electron densities, 

which subsequently promote charge transfer between MB and the TiO2 substrate. For 

the Z800 sample, the amount of potassium was estimated to be around 0.5 wt % via 
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XPS and X-ray fluorescence (XRF) experiments. 

The Zeta potential measurement in Fig. 4f reveals that the point of zero charge 

(PZC) for studied TiO2 nanowhiskers is in the range of pH 3.0 to 3.5, which is 

remarkably lower than that of the commercial P25 TiO2 nanoparticles (~pH 6). Such 

PZC change indicates that the surface of TiO2 nanowhisker is negatively charged, 

consequently interacting strongly with MB molecules through positive charged sites 

(see Fig. S4). The enhancement of electrostatic interactions is beneficial for SERS 

performance. We note that similar phenomenon has been reported on a Cu2O SERS 

substrate [18]. In order to validate the effect of electrostatic interactions, two 

molecules with opposite charges, namely, crystal violet (CV) (+) and methyl orange 

(MO) (-), were used to study their SERS performances on Z700 sample. As shown in 

Fig. 5, the positively charged CV molecule shows a better SERS performance than the 

negatively charged MO molecule. See Table S3 of the Supporting Information for the 

calculated EFs. In conclusion, we contributed Raman scattering enhancement 

observed in this work to synergistic effects: the interfacial potassium induced charge 

transfer effect and the electrostatic adsorption effect due to surface negative charges 

of TiO2 nanowhiskers. 

 

 

Fig. 5. Comparing Raman spectra of bulk dye and SERS spectra of 10
-5 

M dye solution adsorbed on 

Z700. (a Crystal violet, insert: CV structure; b Methyl orange, insert: MO structure.) 
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Fig. 6. Potassium treated TiO2 particles and their SERS performance. (a) Raman spectra of commercial 

TiO2 particles doped with different content of potassium (0.14, 0.26, 0.50 and 2.45 wt %) and (b) 

SERS spectra of MB (10
-5

 M) on TiO2 particles. 

 

To further verify the effect of interfacial potassium, we design a third set of 

experiments: use commercially available TiO2 anatase particles (TP) with high purity 

(99.9%) and mix it with K2CO3 (purity 99%). The mixture was heated at 800
o
C for 2 

hrs to dope different concentrations of potassium. For the studied samples, “TP-0.14” 

denotes the TP sample with a content of 0.14 wt % potassium. As shown in Fig. 6, the 

TP-0.50 sample has the SERS performance of MB molecules. When the potassium 

content was increased to 2.45 wt %, new Raman peaks appear at 231, 285, 460 and 

859 cm
-1 

of the TP-2.45 sample, see Fig. 6a. Interestingly, If there is a phase 

transformation from anatase to rutile, characteristic peaks of rutile[13] (235, 445 and 

612 cm
-1

) shall appear. Judging from the results in Fig. 6a, we conclude there is no 

rutile phase in the studied four samples. Therefore, the new Raman peaks at 231, 285, 

460 and 859 cm
-1

 are attributed to the possible formation of a new potassium titanate 

compound. Such hypothesis is supported by the literature where similar peaks have 

been identified from K2Ti2O5 and K2Ti6O13 [19]. The DFT calculations in Figure 7 

also support the formation of a potassium titanate structure. We also note that while a 

trace of potassium oxide was applied to TiO2 samples, it took a longer time (~ 10 s) to 

detect new Raman peaks. Meanwhile, the prolonged collecting time resulted in very 

strong intensities of characteristic anatase Raman peaks at 141, 393, 514, 635 cm
-1

, as 

shown in Figure 6a. Those peak intensities were beyond the detecting limit of the 

equipment, therefore were interpreted as plateaus. On the other hand, Figure S6 in the 

Supporting Information was reported to show the four characteristic anatase peaks, 
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collected at a typical time window of 1s. We note that it is challenging to distinguish 

details of possible new crystal phases. This is because there are many potassium 

titanates and each has complex Raman spectra. Also, results in Fig. 6b reveal that the 

Raman signal (1630 cm
-1

) of MB molecules decreases when the content of potassium 

increases. It suggests that a higher content of potassium significantly downgrades the 

Raman scattering performance. 

The content and existence of interfacial trace potassium have been studied in 

other systems. Xie et al. reported that at high temperatures trace salts could disperse 

on oxide surfaces, spontaneously forming a monolayer [20, 21]. In this work, it is 

hypothesized that trace potassium (0.5 wt %) disperses and stays at the surface of 

TiO2 samples. By a simple sphere model, see Table S5 of the Supporting Information, 

we estimated the coverage of 0.5 wt % potassium on TiO2 particles with different 

diameters. The analysis shows that when the diameter of TiO2 particle is around 100 

nm, which is similar to the size of TiO2 nanowhiskers in this work, the atomic ratio of 

potassium/titanium at TiO2 surface is around 1. Such analysis suggests that the 0.5 wt % 

of potassium might form a thin layer at the surface of TiO2 samples and show the best 

SERS performance.  

In order to further understand the interaction between potassium and TiO2 

surface, as well as the potassium/TiO2 structural information at elevated temperatures, 

a series of ab initio density functional theory (DFT) calculations and ab initio 

molecular dynamics (AIMD) simulations have been performed via Vienna Ab initio 

Simulation Package (VASP) of the MedeA computational platform [22]. The ion-

electron interactions were described through the projector-augmented wave (PAW) 

method [23], with the electrons from Ti-pv (3p
6
3d

2
4s

2
), O (2s

2
2p

4
) and K-pv (3p

6
4s

1
). 

The electron exchange and correlation interactions were represented by generalized 

gradient approximation (GGA) of Perdew-Burke-Ernzerhof (PBE) functionals [24]. 

Van der Waals interactions were described through Grimme’s DFT-D3 semi-

empirical method [25]. A cutoff energy of 450 eV was adopted for the planewave 

basis set and all calculations were performed using a Gaussian smearing with a width 

of 0.2 eV. The ionic relaxation is considered converged when the atomic force is 

smaller than 0.02 eV Å
−1

. Self-consistent field (SCF) cycles would stop when 

successive energy difference is less than 10
-5

 eV. 
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Fig. 7. The K-coated TiO2 model via K2O dissociative adsorption at the anatase (001) surface. (a) side 

and top views of the initial configuration, where a 2 × 2 K2O (001) supercell is placed on top of a 4-

layer anatase (001) surface; (b) side and top views of the equilibrium K-coated TiO2 model at 300 K; (c) 

side and top views of the equilibrium K-coated TiO2 model at 1000 K. The model has a good thermo 

stability, due to the stable K/O structure formed at the interface. Color code: purple, potassium; red, 

oxygen; gray, titanium. 

 

As shown in Fig. 7a, we generated a K-coated TiO2 model via K2O dissociative 

adsorption at the anatase (001) surface. The initial configuration was constructed by 

placing a 2 × 2 K2O (001) supercell on top of a 4-layer anatase (001) surface. The 

anatase (001) surface model had the size of a = b = 11.45 Å, c = 9.50 Å, and a 

vacuum of 15 Å was added to avoid the interactions between periodic images. During 

the calculations, the bottom 2 layers were fixed to mimic the bulk behaviour, and all 

other parts were allowed to relax. It is worth noting that the size of the 2 × 2 K2O (001) 

supercell was chosen based on the experimental K/Ti ratio of about 1.0. With our 

K2O/TiO2 model, the interfacial K/Ti is 8/9. Fig. 7b shows the equilibrium structure at 

300 K, where eight potassium distribute nicely at the interface and each form two 

bonds with neighbouring oxygen sites. For the interfacial oxygens, 4 were from the 

K2O supercell and a few Ti-O bonds would break during the structural optimization to 

form interfacial K-O bonds. Other than that, there is a negligible TiO2 structural 
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change due to K2O adsorption, which confirms the XRD results shown in Fig. 2b. 

Thermal stability of the K-coated TiO2 model has been also tested, as illustrated in 

Fig. 7c, the structure remains stable even at 1000 K. No structural transition was 

observed for the anatase (001) surface, which is likely due to the stable K/O structure 

formed at the interface. The excellent thermo stability also explains why the 

synthesized TiO2 nanowhisker has a good crystallinity under elevated temperatures up 

to 900 °C. 

  

 

Fig. 8. Bader charge analysis for the interfacial potassium and oxygen sites: potassium carries a 

positive while the oxygen sites have negative charges. For charity, only the interfacial charge 

information is displayed. The bottom TiO2 structures is shown by a line model and the charge 

information is not shown. Color code: purple, potassium; red, oxygen. 

 

The surface charge information was also studied via the Bader charge analysis 

method [26]. As illustrated in Fig. 8, the interfacial K and O sites were labelled with 

respective atomic charges. Our calculation agrees with previous DFT results that 

interfacial potassium would transfer about one electron to neighbouring oxygen sites, 

therefore carries a positive charge [27]. The summation of all interfacial K and O sites 

produces an overall negative charge of ~1.3046 e. The Bader charge analysis explains 

the Zeta potential measurements in Fig. 4f, and also supports the experimental 

hypothesis that the K-coated TiO2 nanowhisker has a negative surface charge, 
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therefore favors specific adsorptions of MB and CV molecules via their positively 

charged groups. 

 

4. Conclusions 

In summary, TiO2 nanowhiskers have been synthesized with excellent surface 

enhanced Raman spectroscopy properties towards molecules with positive charge 

groups such as methylene blue and crystal violet. By a combination of experimental 

characterizations and computational studies, we reveal that the single-layer coated 

potassium at the TiO2 nanowhisker helps to achieve a high thermo stability, which in 

return enables a high crystallinity at elevated temperatures up to 900 °C. In addition, 

Zeta potential measurements and theoretical Bader charge analysis show that the K-

coated nanowhisker carries negative surface charges, which favors specific 

adsorptions of methylene blue molecules, and promotes the SERS enhancement factor, 

an index of SERS performance, to be about 4.96×10
6
 and a detection limit around 10

-7
 

M.  
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