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Abstract: The electric vehicle routing problem with time window (EVRPTW) is an extension of the traditional 

vehicle routing problem with time window (VRPTWs), where new features of electric vehicles are considered, such 

as limited battery capacities, lack of infrastructures, and long charging time. In this study, new technical formulations 

were presented for vehicle route selection and charging station visit, which reduces the formulation complexity 

without using duplicated dummy nodes or arcs. Besides, a new linearization method was developed that employs a 

set of secant lines to surrogate the concave nonlinear charging function with linear constraints. This method defines 

the charging time as a continuous variable and uses fewer variables than existing formulation in literature. A mixed-

integer linear programming (MILP) model was developed for the EVRPTW and computational experiments on 

Solomon’s VRPTW instances were conducted to verify the proposed model. The experimental results were compared 

with the results using traditional routing models, which showed that the proposed model can result in better EVs 

logistics schedules with higher charging time utilizations. One benchmark problem was updated with new best 

solution. 

Keywords: Electric vehicle routing problem; mixed-integer linear programming; nonlinear charging function; 

continuous optimization 

1. Introduction 

The fast depletion of the fossil fuel resources has essentially caused the excessive emission of greenhouse gas 

(GHS) along with the pollution issues (Bahramara and Golpîra, 2018; Golpîra and Khan, 2019). Due to their 

environmental benefits, electric vehicles (EVs) have steadily gained a greater market share with a rapid growth rate, 

e.g., more than 50% annually in China in recent years. The new registration numbers of EVs (battery electric vehicle 

and plug-in hybrid electric vehicle) in China from 2010 to 2017 were 1.43, 5.07, 9.90, 15.34, 73.17, 207.38, 336.00 

and 579.00 (in thousands) units, respectively (IEA, 2018). China's EV ownership was ranked first in the world in 

2018 (Ma et al., 2019). The environmentally friendly characteristics of EVs, such as no greenhouse gas emissions, 

lower noise pollution, and high energy efficiency, can also help logistics companies to attain a green image, which is 

regarded as an important competitive factor by an increasing number of socially and environmentally aware 

customers (Desaulniers et al., 2016; Soleimani et al., 2018; Wang et al., 2018). Recent sustainability analysis and 

estimation methods of life cycle carbon emission by EVs can be found in Casals et al., (2016) , Fernandez (2018), and 

Wu et al. (2018), and recent study of energy minimizing in scheduling problems (Fu et al., 2019). 
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In addition to the environmental benefits, EVs are also cost effective in comparison with conventional vehicles 

powered by fossil fuel. The cost of electricity consumed by an EV is approximately one-tenth to one-seventh of the 

cost of fules consumed by a conventional vehicle when travelling the same distance (Xiao et al., 2019)1. Furthermore, 

if an EV is charged during the low electricity usage period (i.e., at midnight when the unit electricity price is only 

one-third of its normal price in some provinces of China), the cost can be further reduced by a considerable margin. 

This is an attractive characteristic in current situations that fuel costs account for a major part of the expenditure of 

logistics providers, e.g., approximately 40–60% of the transportation costs in general (Sahin et al., 2009). Thus, the 

EVs are strongly promoted in the logistics industry by Chinese government in order to reduce transportation costs, 

as well as to promote the Supply-Side Reform in China (Zhang et al., 2017). Currently, a large number of EVs are 

employed the fleets of logistics companies in China and they have become an important part of the road logistics 

system.  

Although EVs have substantial economic and environmental benefits compared with fossil-fuel powered vehicles, 

a number of obstacles still hamper the large-scale adoption of EVs in logistics (Sweda et al., 2016). A major issue is 

the so-called “range anxiety” that describes the concern of drivers that the EV may run out of energy before reaching 

its destination or the next charging station (CS). This is because a logistics EV typically requires visits to a CS once 

or multiple times during its daily service because of the limited travel range. This issue is more important in the early 

stage of using EVs when the CS infrastructures are far less common than fossil fuel stations (Yu et al., 2011), and 

therefore leads to the using EVs in logistics is not an easy task and the routes needs to be deliberatively optimized.  

Another problem is that charging an EV takes much longer than refilling a traditional gasoline vehicle (Strehler et 

al., 2017), because a drained EV battery will typically requires a couple of hours to get fully recharged. While the 

delivery time is extremely important for a logistics company, and such long recharging in the middle of a trip may 

considerably affect the delivery efficiency. Furthermore, the charging function of an EV battery is always nonlinear, 

which means that the charging current may drop rapidly as the state of charging (SOC) increases from a lower level 

to high. This nonlinear characteristic means it requires a varying charging time if starting from different levels of 

SOC despite charging for the same amount of electrical energy. Thus, when to visit a CS, where to find a CS, and 

how long a charging time should be arranged for an EV, are important practical factors of the nonlinear electric 

vehicle routing problem (EVRP ) confronting modern logistic companies. 

In order to address the new challenges associated with efficient delivery using EVs, such as arranging efficient 

visits to CSs along the travel route and determining the appropriate duration of charging, better planning and 

scheduling are required for EVs logistics. However, the existing EVRP models in literature for EVs logistics planning 

and scheduling do not consider many of those practically important factors, such as the nonlinear SOC-time charging 

function, the charging options of multiple visits of CSs with flexible charging time, and ensuring the battery SOC is 

above a safe level. To take into consideration of all these practical factors and bring forward truly optimized solutions 

for EVRP, a new comprehensive model was developed for the electric vehicle routing problem with time windows 

(EVRPTW) considering concave nonlinear charging function (CNCF) (EVRPTW-CNCF for short) in this study. New 

advantages of the proposed EVRPTW-CNCF model are on four folds as follows: 

                                                        
1 The amount of electricity (or gasoline) consumed by an EV (or a conventional car) for travelling 100 km at 60km/h is approximately 10-20 kWh (or 

10-20 liter), costing 5-10 (or 60-120) RMB according to the average electricity (or gasoline) price in China.  
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(1) The charging time (when visiting a CS) is continuously optimized based on a given CNCF according to the 

overall requirements of the delivery tasks.  

(2) EVs may be recharged by any amount of electricity from any level of battery SOC, while the charging time is 

used as a continuous variable.  

(3) The CNCF is surrogate with a set of linear constraints with controllable accuracy, to bound the nonlinear 

relations between the charged electricity, charging time, and SOC level. 

(4) An enhanced method is used to model the routing of EVs with unlimited visits to CSs and without using 

dummy CS copies 

The above EVRPTW-CNCF was formulated as a mixed-integer linear programming (MILP) model and was 

verified of its efficiency and effectiveness through computational experiments. Some managerial insights and 

suggestions were provided to help logistics managers in improving the efficient utilization of their EVs. 

The remainder of this paper is organized as follows. In Section 2, related literature review is provided. In Section 

3, problem description is given for an overview of the EVRPTW-CNCF. In Section 4, the CNCF is modeled with an 

efficient linearization method. In Section 5, a new route formulation is provided with unlimited number of visiting 

times to CS and without using dummy CS copies. In Section 6, an MILP model of the EVRPTW-CNCF is developed 

with some propositions. In Section 7, computational experiments conducted are conducted based on Solomon’s 

benchmark instances, and the solution results obtained under different parameter settings are compared and explained. 

Finally, the conclusion is given in Section 8.  

2. Related literature review 

2.1. Vehicle Routing Problem 

The vehicle routing problem (VRP) is a well-known combinatorial optimization problem that involves arranging 

a set of optimal customer routes for a fleet of vehicles with the shortest total travel distance and lowest cost, and it 

was first introduced by Dantzig and Ramser (1959). Subsequently, the VRP and many of its variants have been 

extensively studied in the past 50 years by considering various practical factors, such as capacitated-VRP (CVRP), 

VRP with pickup and delivery, VRP with time windows (VRPTW), and time-dependent VRP (Laporte et al., 2000; 

Toth and Vigo, 2002; Golden et al., 2008; Lin et al., 2014; Madankumar and Rajendran, 2019; Letchford and Salazar-

González, 2019). A recent review on VRP can be found in Gayialis et al. (2019). In previous decades, numerous new 

VRP models that consider the balance between monetary costs and environmental problems have attracted 

considerable interest from operations research professionals. These models include the energy-minimizing VRP 

proposed by Kara et al. (2007), emission-based time-dependent VRP by Figliozzi (2010) and Jabali et al. (2012), 

pollution routing problem by Bektas and Laporte (2011) and Demir et al. (2012), rechargeable VRP (RVRP) by 

Conrad and Figliozzi (2011), green VRP (GVRP) by Erdogan and Miller-Hooks (2012), fuel consumption rate 

considered CVRP by Xiao et al. (2012), low carbon routing problem by Zhang et al. (2015), green vehicle routing 

and scheduling by Xiao and Konak (2015, 2016, 2017), and green home health care routing problem by Fathollahi-

Fard et al. (2018a, 2018b, 2019) and Erdem M., Koç (2019). 

2.2. Electric Vehicle Routing Problem 

The electric vehicle routing problem (EVRP) is among the latest extensions of VRPs, where it considers the use 
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of EVs in the logistics distribution field. To the best of the authors’ knowledge, Conrad and Figliozzi (2011) were the 

first to extend the traditional VRP to EVRP and they proposed the RVRP model, which assumes that the EVs in a 

fleet are allowed to recharge at certain customer locations. Erdoğan and Miller-Hooks (2012) proposed another 

version of EVRP called the GVRP, which involves using “alternative energy vehicles” (all types of environmentally 

friendly vehicles, including EVs) that need to visit energy-recharging stations during a trip. Schneider et al. (2014) 

proposed an EVRP model with time windows constraints and CSs, where they assumed that the battery has a constant 

consumption rate (a linear function of the distance travelled) and a constant battery recharging rate (the amount of 

charged electrical energy is proportional to the charging time). Felipe et al. (2014) modeled the EVRP with the 

possible selection of multiple charging technologies at CSs. In the charging mode, the charging time comprises two 

parts: a fixed charging time related to the technology selected and a variable charging time that is linearly dependent 

on the amount of energy to be recharged. Bruglieri et al. (2015) introduced the partial recharge policy into the 

EVRPTW so batteries must not always be fully recharged in order to guarantee higher flexibility along the route plan. 

Hiermann et al. (2016) modeled the EVRP with mixed types of EVs with different capacities, costs, and recharging 

rates (i.e., constants). Keskin and Çatay (2016) developed an adaptive large neighborhood search algorithm for the 

EVRPTW problem and used partial recharge strategies similar to those described by Bruglieri et al. (2015) and 

Hiermann et al. (2016). Schiffer and Walther (2017) modeled the electric location routing problem with time window 

considering partial recharging policy. To get fast refilled, battery-swapping based EVRP models were also developed 

in many applications (Yang and Sun, 2015; Hof et al., 2017, Jie et al., 2018). Xiao et al. (2019) modeled the EVRPTW 

considering the energy/electricity consumption rate. 

2.3. Modeling and solution approaches 

In a number of EVRP models, the EVs have swappable batteries and they are allowed to visit battery-exchange 

stations to swap their batteries within a very short battery-swapping time in order to avoid long charging times. Zheng 

et al. (2014) presented a framework for the optimal design of battery charging/swap stations in a distribution system. 

Adler and Mirchandani (2014) investigated an online routing system for EVs with multiple origin–destination pairs 

by considering battery swapping and reservation. Yang and Sun (2015) proposed a version of EVRP that 

simultaneously optimizes the routing plan and the selection of battery-exchange stations. Liao et al. (2016) studied 

the electric vehicle touring problem (EVTP) with battery swapping operations and developed a graph-theoretic 

algorithm for EVTP with fixed tours. Schiffer and Walther (2017) extended the EVRP model of Yang and Sun (2015) 

to include CS visits, time windows constraints, and partial recharging options. Zuo et al. (2017) neglected the 

influence of time on the EVRP model and assumed that an EV will receive a fully charged battery upon arriving at 

the CS.  

In contrast to the RVRP model of Conrad and Figliozzi (2011) where the CSs are assumed to be located at customer 

sites, Erdoğan and Miller-Hooks (2012) first treated the CSs as a set of special customer nodes that EVs can either 

choose to visit (for charging) or not. They used multiple copies of CSs as dummy nodes to ensure that each CS can 

be visited multiple times by different EVs. However, Koç and Karaoglan (2016) emphasized that the duplicated 

dummy nodes in the Erdoğan-Miller-Hooks (2012) version of the GVRP increase the complexity of the problem. 

Thus, instead of using dummy CS copies, they introduced a new binary variable, xijk, to indicate whether an EV has 

visited the kth CS in the arc from customers i to j (by xijk = 1) or not (by xijk = 0). This approach was also adopted by 
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Leggieri and Haouari (2017). However, the introduction of the variable xijk yields an optimization model with a high 

number of extra binary decision variable instances when the number of CSs is large. In this study, a more efficient 

way was presented to formulate the CS visit, with the same level of this formulation complexity as traditional VRPs 

(see Section 5.1). 

Another challenge when modeling EVRP is determining the optimal charging time for an EV when visiting a CS, 

which requires treating the charging time as a continuous decision variable and allowing a partial charging policy. 

Thus, an EV charges only with the energy required to finish the deliveries. Schneider et al. (2014) extended the 

Erdoğan–Miller-Hooks version of the EVRP and introduced a linear charging function where the charged energy is 

assumed to be proportional to the charging time. Several other studies also used partial recharge strategies to model 

the EVRP. However, most of them assumed a linear charging function, including GVRP by Felipe et al. (2014), 

EVRPTW by Bruglieri et al. (2015), EVRPTW with nonlinear energy consumption rate mixed fleet by Goeke and 

Schneider (2015), pick-delivery EVRPTW by Lin et al. (2016), EVRPTW with partial recharge strategies by Keskin 

and Çatay (2016), and the electric location routing problem with time windows and partial recharging by Schiffer 

and Walther (2017). In all of the models mentioned above, the charging time is calculated with a constant charging 

rate, which does not conform to real situations. This is because most EVs have a CNCF and the charging time may 

increase sharply as more electrical energy is charged. Furthermore, even when charging with the same amount of 

electrical energy, the charging times can differ considerably when starting from different SOC levels. In this study, a 

new EVRPTW model is proposed to consider the CNCF based on a new and efficient linearization approach (see 

Section 4). 

To the best of the authors’ knowledge, Montoya et al. (2017) conducted the first investigation to formulate an 

EVRP model that considers a CNCF. However, four important aspects that need to be improved for practical reasons 

are not considered in this model. First, there is no consideration of time windows constraints, which are important 

from a practical viewpoint but they are difficult to model with a CNCF. Second, the cost function does not cover 

some important terms, such as the waiting time, electricity consumption cost, and driver's variable wage. Third, their 

model continues to duplicate CSs as dummy customer nodes, which increases the problem complexity and reduces 

the computational efficiency. Fourth, the linearization of the CNCF is considerably complex because four additional 

decision variables are introduced. In this study, a new method is proposed which uses only one additional decision 

variable. 

Froger et al. (2017a, 2017b) modeled the EVRP considering nonlinear charging function with a multiple choice 

model that was firstly proposed by Croxton et al. (2003) and a reduced model that separated the total charging energy 

into multiple parts and projecting them onto the piecewise linear secant lines. Villegas et al .(2018) developed a 

technician routing and scheduling problem with conventional and electric vehicles (TRSP-CEV) considering 

technicians with different skills that are necessary to take a lunch break during traveling on its own planning horizon. 

The TRSP-CEV problem modeled the SOC as a nonlinear function of the charging time by using a discrete nonlinear 

approximation that captured the nonlinear behavior of the charging. Heuristic algorithms were often used as solution 

approaches for EVRPs (or Green VRPs), such as variable neighborhood search combining tabu search (Schneider et 

al., 2014), adaptive large neighborhood search (Keskin and Çatay, 2016; Hiermann et al., 2016; Hof et al., 2017), 

Simulated Annealing (Xiao et al., 2015), graph-theoretic algorithm (Liao et al., 2016), Hybrid Genetic Algorithm 
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(Xiao et al., 2017), and Keshtel Algorithm (Fathollahi-Fard and Hajiaghaei-Keshteli, 2018). 

In the above reviewed works, most of the EVRP models take multiple copies of CSs as dummy nodes to transform 

the CS visits as the same as traditional customer visits, which have obvious drawbacks such as limited visit times and 

increased node number. While the improved formulation introduced by Koç and Karaoglan (2016) and Leggieri and 

Haouari (2017) has increased the formulation complexity by expanding the solution space by k times (where k is the 

CS number). Moreover, the nonlinear property of the charging function was not considered the in most existing EVRP 

models. The recent linearization approximation introduced in Montoya et al. (2017) is complex and difficult to follow 

as it introduced four additional variables, and their EVRP model is still using the dummy node setting. This study 

presents a new EVRP model that overcomes these drawbacks by not using the dummy nodes, without increasing the 

complexity, and efficient linearization of the nonlinear charging function. Detailed deductions of the formulation are 

addressed in Sections 4 and 5, and the new EVRP model is given in Section 6.  

3. Problem description of the EVRPTW-CNCF 

The EVRPTW-CNCF model is described on a directed graph ( , )G N C A B   , where N = {0, 1, 2, ..., n} is 

the set of nodes representing the customers and depot (denoted by 0), C = {n+1, n+2, ..., n+m} is the set of nodes 

representing the CSs, {( , ) | , ; }A i j i j N i j    is the set of customer/depot arcs, which are combination of the node 

pairs in N, and {( , ) | \ {0}, }iB i c i N c C    is the set of arcs linking customers to CSs. Each arc in A, e.g., (i, j)

A , is associated with an average travel speed, vij, a travel time, tij, for traversing the arc, and an amount of electrical 

energy, dij, required for traversing the arc (measured by a standard distance unit (SDU)2). The parameters vij, tij, and 

dij are assumed to be constants over each arc. A fleet of homogenous EVs can be dispatched to serve customers in N, 

which start from and return to the depot. Each customer, i, must be served once and it is associated with a demand ai, 

a service duration time zi, a time window [hi, ei] in which the service must start, and a set Ci, iC C , of nearby CSs 

that an EV can visit to recharge its battery after leaving the customer i. Each CS is assumed to have an unlimited 

capacity and it can serve multiple EVs at the same time. All of the EVs at these stations are assumed to have an 

identical SOC-time curve which is assumed to be a CNCF. The EVs that leave the depot are fully charged, i.e., 

charged to the maximum battery capacity L, measured in SDUs. A safety threshold denoted by λ is the energy level 

above which the energy in each EV should be maintained. An EV can detour to visit a CS c in Ci for recharging after 

a customer, i, on its route is visited and it then returns to serve the next customer after recharging.  

Thus, all EVs must: (1) determine the travel routes (by binary variable xij) to accomplish the required customer 

services, (2) incorporate proper detours of CS visits into the routes (by binary variable yi) to allow the EVs being 

recharged, and (3) determine the optimal recharging time at a CS (by non-negative continuous variable t"i) to maintain 

the battery SOC above a safe level through all routes. The objective of the EVRPTW-CNCF is to minimize a 

comprehensive cost function comprising the major expenditure of a logistics company from a practical perspective, 

including the related fixed costs per EV per driver such as the rental or hire rate, driver's daily rate, and vehicle 

depreciation or maintenance, as well as variable costs such as the electrical energy cost and driver’s rate per hour/mile. 

                                                        
2 A metric representing the EV’s battery capacity displayed on an odometer, which indicates the distance that the EV can travel under standard 

conditions, e.g., the NEDC.  
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In the above EVRPTW-CNCF model, the road network/graph is assumed to be in a constant transportation 

environment, with known distance, statistics-based traffic flow, and pre-calculated travel time and electricity/energy 

consumption over each arc. This assumption is in line with many practical situations where traffic speed over different 

area regions/arcs may have different but constant patterns. While logistic companies may also regulate their drivers 

to drive at specified and fixed speeds according to road types. For an environment with time-varying traffic conditions, 

The EVRPTW-CNCF model can be combined with existing techniques to formulate the travel speed/time of EV over 

an arc as piece-wisely time-dependent patterns (Xiao et al., 2017) and continuously optimized speed variable (Xiao 

et al., 2019).  

4. Modeling the CNCF 

Montoya et al. (2017) first provided a version of formulation for the nonlinear charging function of EV, where 

they introduced four additional variables to represent a piecewise linear approximation with quite complicated 

formulations. In this section, a new linearization method is introduced for the CNCF. The proposed method involves 

using a set of secant lines to approximate the CNCF curve with linear constraints and with only one additional binary 

variable being introduced and without increasing the formulation complexity level.  

4.1. Bounding the charging time from a zero SOC 

The SOC of a battery is a concave function, f(t), of the charging time, t, and it can be surrogated by a set (denoted 

as R and indexed by r) of consecutive secant lines, as shown in Fig. 1, starting from SOC = 0% and ending at SOC 

= 100%. Each secant line, r R , is represented by a pair comprising a slope, Kr, and intercept, Br, formulated as 

r rSOC K t B   . For a given SOC, Si, the following linear constraints in Eq. (1) can be used to bound the minimum 

required charging time, ti, for charging the battery from SOC = 0% to SOC = Si at charging station i. 

i r i rS K t B r R                (1) 

 

Fig. 1 Piecewise linearization of the SOC-time function (Source: TeslaFan(2015)). 

Thus, Eq. (1) can be applied to an EVRP model where the objective is to minimize the charging time. It should 

be noted that Eq. (1) guarantees that the resulting charging time, ti', is always at the bottom-right side of the CNCF 

curve, so it will be greater than or equal to the accurate value ti (see Fig. 1). Thus, the final solution of the EVRP is 

guaranteed to be practically feasible from the perspective of time. It should be noted that the linearized approximation 
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becomes more accurate as more secant lines are used.  

4.2. Bounding the charging time from a non-zero SOC 

However, the charging time needed to charge a given amount of electrical energy into the battery may vary 

considerably when starting from different levels of SOC. As shown in Fig. 2, to charge the battery with an amount, 

e.g., ΔS, of electricity, different charging times, e.g., Δt1 and Δt2, are needed if starting from different SOCs, e.g., 

points A and C. In the following, linear constraints are introduced to bound the minimum charging time (denoted by 

Δt) for charging the required amount of energy (denoted by ΔS) into the battery starting from a non-zero SOC 

(denoted by S').  

 

Fig. 2 Different charging time needed when starting from different SOCs. 

Let (t1, s1), (t2, s2), …, (tk, sk), and (tk+1, sk+1) be the breakpoints of the secant lines of the SOC curve, where k 

represents the number of lines. Let R represent the set of secant lines. Let S' be the current SOC of the battery, and t' 

be the charging time needed to charge the battery from SOC = 0 to SOC = S'. Let ΔS be the amount of electrical 

energy required to be charged into the battery, and Δt be the charging time for charging a certain amount of electricity 

(i.e. ΔS) from SOC = S' to SOC = S'+ΔS. Therefore, according to the charging curve in Fig.1, to charge the empty 

battery to SOC = S' +ΔS, the corresponding total charging time is then t' +Δt. Thus, Eq. (1) can be transformed into 

Eq. (2) as follows.  

( )r rtS S K t B r R                   (2) 

It should be noted that Eq. (2) does not bound tightly the variable Δt to ΔS because of the existences of variables 

t' and S'. Next, a new binary variable, r, representing whether S' satisfies 1r rs S s 
   (by r = 1) or not (by r = 

0), is introduced to pick one secant line, r R  , to surrogate the nonlinear relation between t' and S'. Thus, the 

following Constraints (3) and (4) bound tightly variable r to S'. 

1

( 1)

(1 )

r r

r r

S s
r R

S s





   
 

   
           (3) 
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r R




                   (4) 

Constraint (3) ensures that if S' is between sr and sr+1, then r = 1 must hold, whereas Constraint (4) ensures that 

S' belongs to only one of the value intervals [s1, s2], [s2, s3], …, and [sk, sk+1]. On the contrary, if r = 0, Then the first 

constraint of Eq. (3) will transfer into 1rS s    which is always valid, because S' is a percentage denoting the 

battery level between 0% and 100%. So, the right side of the inequality is always less than 0. For the second constraint 

of Eq. (3), if r = 0, it will transfer into 1rS s    which is always valid, because the right side of the inequality 

must be greater than or equal to 1. Thus, Eq. (3) will be make no restriction to S' if rS s  or 1rS s 
  . Thus, by 

using constraints (3) and (4), a particular secant line, say r, where r R , is selected to represent the relation of 

variables t' and S'. And then, the relation between t' and S' can be tightly bounded by the constraints in Eq. (5), as 

follows.  

(1 )

(1 )

r r r

r r r

S K t B M
r R

S K t B M





    
 

    
        (5) 

It should be noted that S' is a percentage between 0 and 1, so the big-M parameter M can be set to 1. Thus, by 

together using of Constraints (2)–(5), the minimum charging time (denoted by Δt) necessary to charge with the 

required amount of energy (denoted by ΔS) in the battery starting from a non-zero SOC (denoted by S') is linearly 

bounded. Note that in the linear formulations given above, only one additional binary variable, i.e., r, is added. 

5. Modeling the route with unlimited CS visits 

Erdogan and Miller-Hooks (2012) first modeled visits to alternative fueling stations (AFS) by copying the stations 

as multiple dummy nodes, where each is restricted to at most one visit by an EV. Thus, these AFSs can be visited as 

many times as the number of copied dummy nodes. This “copying” technique is in accordance with the traditional 

VRP frameworks and it has been included in many extended EVRP models (Felipe et al., 2014; Yang and Sun, 2015; 

Goeke and Schneider, 2015; Hiermann et al., 2016; Schiffer and Walther, 2017; Montoya et al., 2017). However, Koç 

and Karaoglan (2016) emphasized that the use of dummy nodes has disadvantages. First, it can increase the 

complexity of the problem to an extremely large size when the number of CSs is large. Second, the maximum number 

of dummy nodes for each CS cannot be known in advance, and thus it must be set as high as possible to avoid losing 

the potential benefit of multiple visits. However, this large number further increases the size of the set of dummy 

nodes and the problem’s complexity.  

Koç and Karaoglan (2016) abandoned the use of dummy nodes and introduced a new decision variable, xijc, to 

indicate whether a vehicle will visit CS c as it traverses the arc from customer i to customer j (by xijc = 1) or not (by 

xijc = 0). Leggieri and Haouari (2017) improved the formulation of Koç and Karaoglan (2016) by considering the 

duration limit and they proposed a compact linearized formulation. However, the use of the variable xijc also leads to 

a large number of decision variable instances for xijc and the formulation has a complexity level of O(|N|2×|C|), where 

N is the set of customers and C is the set of CSs. The situation is worsened when the number of CSs is large. For 

example, there can be thousands of public CSs in some urban area.  
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In the following, an efficient formulation of the EV visits to CSs is proposed, which maintains the number of 

decision variable instances at the same level of O(|N|2) as the traditional VRP models. 

5.1. Efficient formulation for unlimited CS visits 

Let N' represent the set of customer nodes and {0}N N  , where 0 denotes a unique depot. A set of nearby 

CSs is first predefined (denoted by Ci and iC C ) for each customer, i N  , which includes only a limited number 

of CSs that are close to the customer of interest. A binary variable, yic, is then introduced to indicate whether a CS c 

( ic C ) will be visited after leaving customer i (by yic = 1) or not (by yic = 0). Evidently, 1
i

ic

c C

y


 . Assume that 

the maximum number of CSs near a customer is a constant, e.g., z. Consequently, the newly introduced variable, yic, 

leads to only n × z additional binary variable instances, where n = card(N'). According to the proposed formulations, 

it is clear that the variable yic is the only new independent decision variable introduced into the problem formulation. 

Therefore, the formulations for EVRPTW-CNCF have the same level of complexity as traditional VRPs, i.e., at a 

number of O(|N|2) decision variable instances. It should be noted that the formulation complexity merely refers to the 

number of decision variables used, and not on the actual run time, which is still non-polynomial like all VRPs. The 

notation O(·) is used to indicate that the number of decision variables keeps in line with the same level of “.” when 

the problem size increases. The linearization of the CNCF introduced in Section 4 has also an impact on the 

formulation complexity. However, it adds only a constant number, |R|, of additional binary variables to the 

formulation and does not increase the formulation complexity. The level of variable number of different problem size 

is still determined by the major term |N|2. 

It is assumed that the electrical energy consumption when traversing a node arc (i, j) is a constant, dij (measured 

by SDU), where nodes i and j represent customers, depot, and CSs. A dependent variable denoted by Dij is used to 

represent the actual consumed energy (ACE) between nodes i and j if node j is the next to be visited by an EV after 

node i. Thus, if an EV detours to visit a CS node, represented by c, after leaving customer i and returns to serve 

customer j, then Dij is calculated by Dij = dic + dcj, where dic and dcj represent the energy consumptions from customer 

i to CS c and from CS c to customer j, respectively; otherwise, Dij = dij. An example is shown in Fig. 3 where two 

EVs are arranged to serve five customers. The EV with red lines and dash-dotted lines (represents detours to CSs) 

has visited two CSs with customer arcs (0, 5), (5, 4), (4, 3), and (3, 0), and its ACEs over the traversed arcs can be 

calculated by D05 = d05, D54 = d5B+dB4, D43 = d4A+dA3, and D30 = d30, respectively. The EV with the green line does 

not visit any CS, and thus the ACEs are equal to the constant energy consumed over the arcs.  
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Fig. 3 Example comparing dij and Dij. 

The binary variable, xij, is used to indicate whether customer j is visited immediately after customer i (by xij = 1) 

or not (by xij = 0), whereas the binary variable, iy , i.e., 
i

i ic

c C

y y


  , is used to indicate whether a CS is visited 

immediately after customer i (by iy  = 1) or not (by iy  = 0). It is noteworthy that the variable xij is not affected by 

whether a detour occurs to visit a CS from customer i, which is different from the settings used by Koç and Karaoglan 

(2016) and Leggieri and Haouari (2017). Thus, if an EV visits customer i first, before detouring to visit CS c and then 

visits customer j from c, then xij = 1, yic = 1, and 1iy  . However, if EV visit customer i and then customer j without 

visiting any CS in between, then xij = 1 and 0iy  . 

Based on the definitions given above, Eq. (6) can be employed to tightly bound Dij with respect to the variables xij, 

yic, and iy , as follows. 

0

,
( ) 1

i

ij ij i

ij
ij ic cj ic i

c C

x d if y

D i N j N
x d d y if y



 


     

       (6) 

The expressions in Eq. (6) are nonlinear but they can be expressed with linear constraints using the big-M method. 

The linear constraints in Eqs. (16-1)–(16-5) are given in Section 6.  

Next, assume that the travel time when traversing an arc (i, j) is a constant tij. Let vij = dij/tij, which represents the 

standard travel speed. Thus, another dependent variable, Tij, is defined to represent the actual traverse time (ATT) for 

customer arc (i, j). Let the variable Tij be calculated by /ij ij ijT D v , such that Tij = tij holds for the case where Dij = 

dij and Tij = tic + tcj holds for the case where Dij = dic + dcj. 

Thus, the newly introduced variables Dij and Tij, instead of the parameters dij and tij, can be employed to model 

EVRP with unlimited CS visiting. It should be noted that the variables Dij, Tij, and iy  are completely dependent on 

variables xij and icy  . Hence, they do not increase the combinational complexity of the solution space and the 

complexity of the formulation remains at the same level as the traditional VRPs.  
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5.2. Formulating energy recharging and consumption 

For each customer in i N , the variables 
ip , 

ip , and 
ip  represent the amount of remaining energy when 

arriving at customer i, the amount of remaining energy when arriving at a CS immediately after leaving customer i, 

and the amount of recharged energy at the CS immediately after leaving customer i, respectively. It should be noted 

that variable pi is meaningful only for customer nodes (excluding the depot and CSs), and the variables 
ip  and 

ip  

are meaningful only for those customer nodes after which a CS is directly visited, i.e., by 1iy  . It is assumed that 

the battery capacity of an EV is measured in SDUs. Thus, the values of variables ip , ip , and ip  all represent 

distances that the EV can travel under standard conditions. First, the variables ip  and ip  have the relationship 

shown in Eq. (7). 

i

i i ic ic

c C

p p y d i N


              (7)  

Let it  be the charging time for the battery from zero to ip . Then, it  and ip  can be tightly bound to each 

other using the inequalities in Eq. (5), as illustrated in Section 4. Thus, according to Eq. (2), the charging time, it  , 

which is the charging time required to charge the battery from a lower SOC, i.e., 
ip /L, to a higher SOC, i.e., (

ip +

ip )/L, can be restricted from the lower bound side by the inequality in Eq. (8), as follows: 

( ) / ( ) ,i i r i i rp p L K t t B i N r R           ,        (8)  

where the parameter L is the maximum battery capacity representing the maximum standard distance length a fully 

charged EV can travel. In order to guarantee that battery charging occurs only at customers where a CS will be visited 

immediately after and to consider the maximum battery capacity, the inequalities in Eq. (9) must be applied as follows. 

i i

i i

p Ly
i N

p p L

 
 

  
         (9) 

Next, the energy consumption flow along the route is formulated. As mentioned above, it is assumed that the EVs 

are fully charged when leaving the depot, and thus they do not need to visit a CS. This assumption is reasonable from 

a practical viewpoint. Thus, Eq. (10) can be used to calculate the energy consumption flow along the route.  

 

0 0

0 0

0 0

1
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1

i i i

i ij j ij i i i

j N

i i i i

p L D if x

p x p D p if x x i j N

p D p if x



   



       

    

     (10) 

The three equations in Eq. (10) can be used to calculate the amounts of remaining energy for the EVs that arrive 

at the first customer, the last customer, and customers excluding the first and last, respectively. The parameter λ 

represents the safe threshold of the remaining energy when returning to the depot. To guarantee that the remaining 

energy remains at the same safety threshold when arriving at a CS, the inequality i ip y   must be satisfied. It 

should be noted that Eq. (10) can be expressed in a linear manner using the big-M method (see the linear constraints 

in Eqs. (20-1)–(20-8) in Section 6). 
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6. A mixed-integer linear programming model 

Based on the methods proposed in Sections 5 and 6, the EVRPTW-CNCF is formulated as A MILP model and a 

number of theoretical propositions are provided regarding the solution obtained from the proposed model. The 

parameter notations and decision variables used to describe the EVRPTW problem are summarized as follows. 

Parameter notations: 

N  set of customers (positive numbers) and depot (0) 

N'  set of customers excluding the depot, N' = N \{0}. 

i, j  index of customers and depot, ,i j N  

C  set of charging stations (CSs) 

Ci  subset of CSs that are close to customer/depot i, iC C , i N  

A  set of customer arcs that EVs can select to traverse, , ;i j N i j   

B  set of arcs linking a customer/depot to a CS, {( , ) | , }iB i c i N c C    

q  number of homogeneous EVs available in the fleet 

gv  fixed cost rate per EV used 

Ce  maximum battery capacity of EV (kWh) 

ge  cost of electrical energy per unit (kWh), including the electricity price and charging/parking fee 

gd  cost of vehicle/driver per SDU of traveling distance 

gt  cost of vehicle/driver per unit of delivery time 

O  maximum load capacity of an EV 

L  maximum travel range of an EV when fully charged (in SDUs) 

dij/dic/dcj amount of electrical energy consumed over a node arc (i, j)/(i, c)/(c, j) measured in SDUs, where 

i and j represent customers/depot and c represent a CS 

tij  travel time required to traverse the arc (i, j) 

vij  average speed over the arc (i, j), vij = dij/tij 

R  set of consecutive secant lines that cut the nonlinear charging curve, k = card(R) 

(sr, τr)  the rth break-point in R, where r = 1, 2, …, k, k+1, sr is the SOC (%), and τr is the charging time 

Kr, Br  slope and intercept of the rth secant line, respectively 

ai  demand of customer i 

[hi, ei]  time window to start serving customer i 

zi  service time duration required to serve customer i 

M  a large number 

λ safety threshold for the remaining energy of an EV measured in SDUs when arriving at a CS or the 

depot 

Binary decision variables: 

xij  binary variable indicating whether arc (i, j) is traversed, ( , )i j A  

yic  binary variable indicating whether arc (i, c) is traversed, ( , )i c B  

y'i  binary variable indicating whether a CS is visited immediately after customer i, i N  
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ir  binary variable indicating whether the SOC of an EV arriving at a CS immediately after customer i is 

between sr and sr+1 (ir = 1) or not (ir  = 0); i N   and r R  

Non-negative continuous decision variables: 

ui  service start time for customer i, i N   

pi  remaining energy (in SDU) for an EV when arriving at customer i, i N   

p'i  remaining energy (in SDU) for an EV when arriving at a CS immediately after customer i, i N   

p"i  recharged energy (in SDU) at a CS immediately after customer i, i N   

t'i t'*i time required to charge the battery capacity from 0 to p'i 

t"i t"*
i time required to charge the battery capacity from p'i to p'i+p"i  

li  load of an EV when arriving at customer i, i N   

wi  waiting time at customer i before starting the service, i N   

w'i  waiting time at customer i after completing the service, i N   

Dij  ACE over arc (i, j), ( , )i j A  

Tij  ATT over arc (i, j); ( , )i j A  and Tij = Dij/vij 

Problem EVRPTW-CNCF: 

Min.  

  Total Cost = 0

(0, ) ( , ) ( , ) ( , )

( / ) ( )v j e e ij d ij t ij i i i i

j A i j A i j A i j A i N

g x g C L D g D g T w z w t
    

 
        

 
       (11) 

Subject to: 

( , )

1ji

j i A

x i N


          (12) 

( , )

1ij

i j A

x i N


          (13) 

0i

i N

x q


                  (14) 

( , )

0 0

i ic

i c B

y y i N

y



   


  


        (15)  
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/ ( , )ij ij ijT D v i j A           (17) 
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       (22)  

The formulae above are explained in the following. The linear objective function in Eq. (11) includes four 

components: (1) the fixed cost for vehicles, and drivers used and employed; (2) the variable cost of consumed 

electricity; (3) the variable cost related to the total travel distance; and (4) the variable cost related to the total delivery 

time. Constraints (12) and (13) ensure that each customer is visited and left only once. Constraint (14) restricts the 

number of EVs used in a solution so it does not exceed the available number. Constraint (15) indicates whether an 

EV selects a CS to visit after customer i (y'i = 1) or not (y'i = 0). In particular, y'0 is set to be zero indicating that all 
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EVs are all fully charged before leaving the depot so they are not allowed to visit a CS right after. Constraints (16-

1)–(16-4) are set of constraints for Eq. (6) to determine the ACEs over the arcs (see the illustration in Section 5.1). 

Constraint (17) determines the ATTs over the arcs. Constraints (18-1)–(18-5) restrict the time flow along the route 

and they ensure that each customer is served within their required time windows. Constraints (19-1)–(19-4) restrict 

the load flow along the route and they guarantee that the maximum load capacity of an EV is not exceeded. 

Constraints (20-1)–(20-8) restrict the battery energy flow along the route, based on which the remaining energy of 

an EV is calculated when arriving at the first customer (by Constraints (20-1) and (20-2)), when arriving at the last 

customer (by Constraints (20-5)), when arriving at the rest of the customers excluding the first and last (by Constraints 

(20-3) and (20-4)), and when arriving at a CS (by Constraints (20-6) and (20-7)). The constraints also ensure that the 

EVs have sufficient remaining energy above the safety threshold, λ, when returning to the depot (by Constraint (20-

5)) and when arriving at a CS (By Constraint (20-8)). Constraints (21-1)–(20-6) use the linear approach introduced 

in Section 4 to bound the concave nonlinear relationship between the charging time and recharged energy. Constraints 

(21-1) and (21-2) determine one secant line, r (by ir = 1), for each customer, i, which satisfies 1/r i rs p L s 
  . 

Constraints (21-3) and (21-4) compute the required charging time, t , according to the remaining energy, ip , using 

the secant line determined by Constraints (21-1)–(21-2). Constraint (21-5) bounds the charging time from the lower 

level side with respect to the amount of charged energy. Constraint (21-6) ensures that the total energy of the battery 

(the remaining charge plus the added charge) does not exceed the maximum battery capacity. Constraint (22) defines 

the value domains of all the decision variables. 

The following points should be noted. Constraints (16-2) and (16-3) apply only for xij = 1 and iy = 0; Constraints 

(16-4) and (16-5) apply only for xij = 1 and iy  = 1. Constraints (18-1), (18-2), (20-1), and (20-2) apply only for x0i 

= 1. Constraints (18-3), (18-4), (19-2), (19-3), (20-3), and (20-4) apply only for xij = 1. Constraint (20-5) applies only 

for xi0 = 1. Constraints (20-6), (20-7), (20-8), (21-5), and (21-6) apply only for iy  = 1. Constraints (21-1), (21-3), 

and (21-4) apply only for ir  = 1. The MILP model proposed above for the EVRPTW-CNCF formulated in Eqs. 

(11)–(22) can be solved optimally with MIP software, such as LINGO, LINDO, and CPLEX. Several propositions 

of the model were provided in Section Appendix. 

7. Computational experiments 

All of the computational experiments were performed using a Linux PC server with two 2.30 GHz Intel Xeon (R) 

CPUs and 128-GB RAM. The mathematic programming language involved in the computational experiments is 

AMPL (A mathematical programming language, AMPL) that can describe optimization data, variables, objectives 

and constraints. The MIP solver CPLEX (version 12.6.0.1) was called by the AMPL language to directly solve all of 

the test instances.  

7.1. Test instances for EVRPTW 

Three sets of benchmark EVRPTW instances based on Solomon’s VRPTW instances were generated, which are 

available at http://w.cba.neu.edu/~msolomon/problems.htm. These instances comprised R1-type, C1-type, and RC1-

type containing 101 nodes with specific coordinates, demands, time windows, and service times for each customer. 

The geographical data were randomly generated in problem sets R1, clustered in problem sets C1, and mixed with 

http://w.cba.neu.edu/~msolomon/problems.htm
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random and clustered structures in problem sets RC1. It was assumed that the energy consumed over an arc was equal 

to the arc distance (in SDUs) and the travel time was also equal to the arc distance number measured in minutes. The 

first 10 customers with a depot were chosen to form 10-customer instances for testing, i.e., |N|=11, as described in 

Sections 7.2, 7.3, and 7.4, and the Solomon instances with full customers, i.e., 100 customers with a depot (|N|=101), 

were tested in Section 7.5. For each tested instance, four CSs scattered in four corners of the space were available to 

each customer. Examples of the locations of CSs for 20 customers are shown in Fig. 4. The x-coordinates of the CSs 

were calculated as min{ } 0.25max{| |}i i jx x x   and min{ } 0.75max{| |}i i jx x x  , and the y-coordinates were 

calculated as min{ } 0.25max{| |}i i jy y y    and min{ } 0.75max{| |}i i jy y y   , where i and j represent 

customers. The coordinates of the CSs were all rounded to integers.  

 

Fig. 4 Example of CS locations for 20 customers. 

Assumed that the EVs had the CNCF provided by Teo TeslaFan available at Forums.tesla.2015 

(https://forums.tesla.com/forum/forums/model-s-supercharging-times-compared-s60-s70d-s85-p85d-s85d). The 

CNFC indicates that the battery can be fully charged in 110 minutes. In the experiments, the numbers of secant lines 

used for linearizing the CNCF were set to k = 2, 4, 6, and 8, as shown in Fig. 5. The state of charge for an EV was 

measured as the percentage charge, where the SOC of a fully charged battery was equal to 100%. Moreover, in order 

to compare the obtained results with those solved for Solomon's instances as traditional VRPTW problems, the 

coefficients gv, ge, and gt of the objective function were set to be zero and gd = 1, so the obtained objective value 

would be the exact total distance traveled by the EVs.  
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                     (A) k = 2                                         (B) k = 4 

   
                     (C) k = 6                                         (D) k = 8 

Fig. 5 Piecewise linearization of the CNCF using k = 2, 4, 6, and 8 secant lines. 

7.2. Effect of the travel range limit of EVs 

Solomon’s instances were structured for fossil fuel-powered vehicles without travel range limits. However, EVs 

have limited battery capacities and they may need to visit a CS once or multiple times to complete the delivery. In 

the following experiments, the maximum range of an EV, denoted as L, were set to decrease from 150 to 20 km, and 

three sets of Solomon’s instances (i.e., R-type, C-type, and RC-type) were solved with the proposed MILP model by 

using the CPLEX solver. The other parameters were set to k = 2, O = 50, m = 10, and λ = 5. The states of the resulting 

solutions shown in Fig. 6 indicate whether a feasible solution was found. Moreover, the figure shows whether the 

EVs visited CSs under different values of the parameter L. 

 

Fig. 6 States of solution with different values for the parameter L. 

20406080100120140160
Parameter L

T
y
p

e
o

f
S

o
lu

ti
o

n

b

a

a

a

c

b

c

b

c

Infeasible
EVRP-RC

EVRP-C

EVRP-R Solved with charging

Solved without charging
a

b

c



19 of 28 

Figure 6 shows that the states of the solutions varied as the parameter L decreased. Initially, all of the problem 

types had optimal solutions even without visiting a CS when the parameter L was 150 km. However, as L decreased, 

the EVs began to visit CSs in order to complete their deliveries, although a feasible route could not be found when L 

decreased to extremely low values, e.g., L = 50 km for R-type and L = 20 km for C-type. Thus, the EVs had to visit 

CSs on their routes if L was between 80 and 60 km for RC-type, between 40 and 30 km for C-type, or between 100 

and 60 km for R-type. 

The average objective values are plotted against the parameter L for the test problems in Fig. 7. The dotted lines 

in Fig. 7 denote the average optimal objective value obtained by the conventional VRPTW without considering the 

travel range limit. The objective values tended to approach the objective value with VRPTW as the parameter L 

increased, thereby indicating that an EV had to visit a CS when the parameter L was sufficiently large.  

 
           (A) EVRP_R-Type           (B) EVRP_C-Type       (C) EVRP_RC-Type  

Fig. 7. State of solutions with respect to different values of the parameter L. 

7.3. Efficiency of the CNCF linearization 

Next, the performance of the MILP model was tested with different numbers of secant lines denoted as k in the 

linearization of the CNCF. In general, the accuracy of the CNCF linearization was higher when more secant lines 

were used. However, a larger number of secant lines also consumed more CPU time. In these experiments, the 

Solomon's instances of C-type, R-type, and RC-type were solved with k = 2, 4, 6, and 8. The parameter L was set to 

30, 60, and 60 for C-type, R-type, and RC-type, respectively. The results are summarized in Table 1. 

Table 1 Experimental results obtained with different k values based on 10-customer instances (T-CT: total charging time, |N|=11) 

Problem k = 2  k = 4   k = 6  k = 8 

No. Obj. T-CT Time  Obj. T-CT Time  Obj. T-CT Time  Obj. T-CT Time 

C101 125.25 189.52 2  125.25 194.32 3  125.25 192.61 3  125.25 193.37 3 

C102 124.20 219.29 395  124.20 214.85 256  124.20 213.60 283  124.20 211.70 489 

C103 124.20 219.29 250  124.20 214.85 268  124.20 213.60 267  124.20 211.70 336 

C104 124.20 219.29 1380  124.20 209.83 1515  124.20 213.60 1591  124.20 211.70 1663 

C105 124.20 222.42 1  124.20 209.83 3  124.20 214.55 3  124.20 211.70 4 

C106 124.20 252.42 3  124.20 214.85 2  124.20 213.60 1  124.20 214.27 2 

C107 124.20 219.29 2  124.20 209.84 3  124.20 213.60 3  124.20 211.70 3 

C108 124.20 219.29 7  124.20 209.84 10  124.20 213.60 12  124.20 211.70 11 

C109 124.20 219.29 26  124.20 209.84 37  124.20 213.60 40  124.20 211.70 44 

AVG 124.32 220.01 229.6  124.32 209.78 233  124.32 211.78 244.8  124.32 209.94 283.9 
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R101 325.32 42.77 <1  325.32 64.37 1  325.32 64.5 1  325.32 64.13 1 

R102 275.69 77.08 109  271.59 88.51 114  271.59 86.69 218  271.59 87.06 154 

R103 275.69 77.08 107  271.59 88.51 94  271.59 86.69 115  271.59 87.06 142 

R104 252.22 180.65 531  252.17 100.66 503  252.17 97.88 469  252.17 97.7 422 

R105 321.57 86.94 3  321.6 98.46 3  321.57 85.26 6  321.57 85.97 5 

R106 263.57 84.36 208  263.57 81.57 282  263.57 78.57 281  263.57 79.25 298 

R107 263.57 84.36 150  263.57 81.57 228  263.57 78.57 234  263.57 79.25 282 

R108 252.17 111.5 464  252.17 100.66 631  252.17 85.06 697  252.17 97.7 796 

R109 263.87 63.83 15  263.87 54.86 16  263.87 51.98 22  263.87 53.04 14 

R110 255.75 54.75 40  255.75 52.01 72  255.75 51.34 57  255.75 51.29 97 

R111 255.63 69.11 198  255.63 73.07 180  255.63 92.77 232  255.63 87.07 277 

R112 253.89 42.4 466  253.89 33.62 678  253.89 32.04 663  253.89 32.81 668 

AVG 271.58 81.24 190.9  270.89 76.49 233.5  270.89 74.28 249.6  270.89 75.19 263.0 

RC101 396.11 135.46 <1  396.11 115.1 1  396.11 115.85 1  396.11 116.05 1 

RC102 388.15 126.55 9  388.15 108.04 11  388.15 109.35 11  388.15 109.8 12 

RC103 388.15 126.55 8  388.15 108.04 14  388.15 109.35 10  388.15 109.8 15 

RC104 388.15 126.55 12  388.15 108.04 15  388.15 109.35 28  388.15 109.8 17 

RC105 388.15 126.55 7  388.15 108.04 8  388.15 109.35 8  388.15 109.8 11 

RC106 389.86 128.47 5  389.86 109.56 8  389.86 110.75 6  389.86 111.14 7 

RC107 388.97 127.47 11  388.97 108.77 11  388.97 110.02 10  388.97 110.44 15 

RC108 387.25 125.55 14  387.25 107.25 14  387.25 108.62 17  387.25 109.1 16 

AVG 389.35 127.89 8.25  389.35 109.11 10.25  389.35 110.33 11.38  389.35 110.74 11.75 

Table 1 shows the total charging time and CPU time for each 10-customer instance, as well as the average total 

charging time and CPU time for each type of instance under different values of k. In addition, the differences in the 

average CPU time and total charging time obtained with k = 2 are plotted against those obtained with other values of 

k for all of the instance types in Fig. 8. The difference in the computational time increased as k changed from 2 to 4, 

whereas the growth rate was relatively flat from k = 4 to k = 8. As shown in Fig. 8(B), the charging time obtained 

with k = 2 was considerably greater than those obtained with k = 4, 6, and 8 for all of the test problems, thereby 

indicating that using less secant lines could cause greater deviations from the actual values. These results indicate 

that eight secant lines was the best setting for use in the experiments because it approximated the CNCF curve and 

did not significantly increase the computational time. 
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(A) CPU time                   (B) Total charging time 

Fig. 8 Trends in the CPU time and total charging time versus the parameter k. 

In these experiments, except for EVRP_R102 and EVRP_R103, all of the test instances yielded the same objective 

values under different values of k. The objective values obtained with k = 2 for EVRP_R102 and EVRP_R103 were 

greater than those obtained with k = 4, 6, and 8. The detailed solutions for the R102 instance solved with k = 2 and k 

= 4 are summarized in Tables 2 and 3, respectively, and the routing schemes are plotted in Fig. 9. The scheduled 

routes obtained with k = 2 and k = 4 were different, i.e., five EVs were used for k = 2 but four for k = 4. This difference 

occurred because the piecewise linearization with k = 4 was more accurate than that with k = 2. For example, the 

route comprising 0→7→8→10→0 was feasible in the solution with k = 4 but infeasible in the solution with k = 2. 

As summarized in Table 4, the arrival times for customers 8 and 10 violated their time windows when only two secant 

lines were used to linearize CNCF at CS2 (i.e., k = 2). This comparison confirmed that using more secant lines yielded 

better approximations in the CNCF linearization. 

Table 2. Detailed solution for instance R102 (with L = 60 km, k = 2, Obj, = 275.70, |N|=11) 

arc(i, j)  Dij aj fj pj p''i t'i t''i hj uj ej zj wj w'j 

(0, 1)  15.23 10 40 44.77 -- -- -- 0 15.23 204 10 0 15.72 

(1, CS4)  3.00 - 40 41.76 16.15 43.8 37.5 -- 43.95 -- -- 0 0 

(CS4, 9)  15.56 16 24 42.36 -- -- -- 97 97.1 107 10 0 0 

(9, 3)  15.00 13 11 27.36 -- -- -- 0 122.1 197 10 0 0 

(3, 0)  22.36 0 11 5 -- -- -- 0 144.46 230 0 0 0 

(0, 2)  18.00 7 43 42 -- -- -- 0 18 202 10 0 100.78 

(2, 4)  20.22 19 24 21.78 -- -- -- 149 149 159 10 0 0 

(4, CS3)  13.60 - 24 8.18 8.23 7.25 7.30 -- 162.60 -- -- 0 0 

(CS3, 0)  11.40 0 24 5 -- -- -- 0 174 230 0 0 0 

(0, 5)  20.62 26 24 39.38 -- -- -- 0 20.62 199 10 0 0 

(5, 8)  13.93 9 15 25.46 -- -- -- 95 95 105 10 50.46 0 

(8, 7)  12.21 5 10 13.25 -- -- -- 0 117.21 198 10 0 0 

(7, CS2)  1.41 - 10 11.84 12.96 13.24 14.50 -- 118.62 -- -- 0 0 

(CS2, 0)  19.80 0 10 5 -- -- -- 0 138.42 230 0 0 0 

(0, 6)  11.18 3 47 48.82 -- -- -- 99 99 109 10 87.82 0 

(6, 0)  11.18 0 47 37.64 -- -- -- 0 120.18 230 0 0 0 
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(0, 10)  25.50 16 34 34.50 -- -- -- 124 124 134 10 98.50 0 

(10, 0)  25.50 0 34 9 - - - 0 159.50 230 0 0 0 

Table 3 Detailed solution for instance R102 (with L = 60 km, k = 4, Obj. = 271.58, |N|=11) 

arc(i, j)  Dij aj fj pj p''i t'i t''i hj uj ej zj wj w'j 

(0.1)  15.23 10 40 44.77 - - - 0 15.23 204 10 0 15.72 

(1.CS4)  3 - 40 41.76 16.15 43.8 37.5 - 43.95 - - 0 0 

(CS4.9)  15.56 16 24 42.36 - - - 97 97.1 107 10 0 0 

(9.3)  15 13 11 27.36 - - - 0 122.1 197 10 0 0 

(3.0)  22.36 0 11 5 - - - 0 144.46 230 0 0 0 

(0.2)  18 7 43 42 - - - 0 18 202 10 0 100.78 

(2.4)  20.22 19 24 21.78 - - - 149 149 159 10 0 0 

(4.CS3)  13.60 - 24 8.18 8.23 7.25 7.30 - 162.60 - - 0 0 

(CS3.0)  11.40 0 24 5 - - - 0 174 230 0 0 0 

(0.5)  20.62 26 24 39.38 - - - 0 20.62 199 10 0 0 

(5.6)  10 3 21 29.38 - - - 99 99 109 10 58.38 0 

(6.0)  11.18 0 21 18.20 - - - 0 120.18 230 0 0 0 

(0.7)  21.21 5 45 38.79 - - - 0 21.21 198 10 0 0 

(7.CS2)  1.41 - 45 37.38 21.19 37.14 49.84 - 32.62 - - 0 0 

(CS2.8)  12.53 9 36 46.04 - - - 0 95 95 10 0 0 

(8.10)  26.25 16 20 19.79 - - - 124 131.25 134 10 0 0 

(10.CS2)  14.21 - 20 5.58 19.22 4.95 17.05 - 155.46 - - 0 0 

(CS2.0)  19.80 0 20 5 - - - 0 175.26 230 0 0 0 

 

   
Cost = 275.69                          Cost = 271.59 

               (A) Routing obtained with k = 2             (B) Routing obtained with k = 4 

Fig. 9 Routing schemes obtained for the EVRP_R102 instance. 

Table 4 Detailed routes obtained for customers 7, 8, and 10 for instance R102 (with k = 2) 

arc(i,j)  Dij aj fj Pj P''i t'i t''i hj uj ej zj wj w'j 

(0.7)  21.21 5 45 38.79 - - - 0 21.21 198 10 0 0 

(7.CS2)  1.41 - 45 37.38 20.61 41.81 58.66 - 32.62 - - 0 0 

(CS2.8)  12.53 9 36 45.46 - - - 0 103.81 95 10 0 0 
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(8.10)  26.25 16 20 19.21 - - - 124 140.06 134 10 0 0 

(10.CS2)  14.21 - 20 5 19.80 5.59 22.15 - 164.27 - - 0 0 

(CS2.0)  19.80 0 20 5 - - - 0 206.22 230 0 0 0 

To test the effect of the piecewise linearization applied on the charging function, a more convex shape of CNFC 

function (Type II as shown in Fig.10) was used to solve the eight RC-type instances with respect to k = 2, 4, and 8, 

respectively, and the obtained results were compared to those obtained under the Tesla’s CNFC function (Type I). 

The type II CNFC was generated by applying the square root on the type I CNFC. All tested instances were solved 

to optimality by these two types of charging curves. The results are shown in Table 5, where column T.-CE indicates 

the total charged energy/electricity of all EVs (when visiting CSs) of the obtained solutions, column T.-CE* gives the 

exact value of total charged energy calculated by using the CNFC function with the same charging time, and column 

D.% is the deviation of the linearized T.CE from the accurate T.CE*. It is observed that for both types I and II, using 

more secant lines to approximate the charging curve will result in lower deviation on total charged energy. The 

linearization accuracy of type I is around 1.2% on average for k=8, which is generally tolerable in practical 

applications. However, the solutions by type II curve have quite larger deviations than those by type I with respect to 

the same k. This is because type II has a larger curvature and hints that more secant lines (i.e., a large k) should be 

used in the linearization for a more convex CNFC function. Otherwise, it may cause a poor approximate performance.  

 

Fig. 10 Charging curves for two charging functions with different curvature. 

Table 5 Experiments on the CNCF Linearization accuracy (with k = 2, 4, 8; |N|=11) 

Problem Type I  Type II 

No.  k=2    k=4    k=8    k=2    k=4    k=8  

 T-CE T-CE* D.%  T-CE T-CE* D.%  T-CE T-CE* D.%  T-CE T-CE* D.%  T-CE T-CE* D.%  T-CE T-CE* D.% 

RC101 121.1 137.8 13.8  121.1 122.2 0.9  121.1 122.4 1.1  121.1 170.8 41.1  121.1 137.4 13.4  121.1 128.1 5.7 

RC102 113.1 127.8 13.0  113.1 114.9 1.6  113.1 114.4 1.1  113.1 159.0 40.5  113.1 127.2 12.4  113.1 121.5 7.4 

RC103 113.1 127.8 13.0  113.1 114.9 1.6  113.1 114.4 1.1  113.1 159.0 40.5  113.1 127.2 12.4  113.1 121.5 7.4 

RC104 113.1 127.8 13.0  113.1 114.9 1.6  113.1 114.4 1.1  113.1 159.0 40.5  113.1 127.2 12.4  113.1 121.5 7.4 

RC105 113.1 127.8 13.0  113.1 114.9 1.6  113.1 114.4 1.1  113.1 159.0 40.5  113.1 127.2 12.4  113.1 121.5 7.4 

RC106 114.9 130.1 13.2  114.9 116.8 1.7  114.9 116.2 1.2  114.9 161.5 40.6  114.9 129.6 12.8  114.9 122.7 6.9 

RC107 114.0 129.0 13.2  114.0 115.8 1.6  114.0 115.5 1.3  114.0 160.3 40.6  114.0 129.3 13.5  114.0 121.8 6.9 

RC108 112.3 126.8 13.0  112.3 114.0 1.6  112.3 113.7 1.3  112.3 157.7 40.5  112.3 126.9 13.1  112.3 120.5 7.4 
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AVG 114.3 129.4 13.2  114.3 116.1 1.5  114.3 115.7 1.2  114.3 160.8 40.6  114.3 129.0 12.8  114.3 122.4 7.1 

7.4. EVRPTW-CNCF model with a fixed charging time 

In this experiment, a scenario comprising EVRPTW-NFC with a fixed charging time policy were considered, where 

EVs were only allowed to recharge at a CS for a given time duration, e.g., 30 min. The solutions were compared with 

those obtained under a flexible charging time policy where EVs could be recharged as long time as necessary. This 

assumption is reasonable because it agrees with the facts found in a number of busy areas, where EVs may not be 

allowed (or be penalized) to occupy a CS for a long time. 

A new parameter, denoted aswas defined to indicate the fixed duration of charging time, and an additional 

constraint was added to the MILP model to restrict the charging time to being exactly equal to, as follows.  

, 0i it y i N                    (25)  

The constraint given above was only applied for y  = 1 and >0, thereby ensuring that when a CS was selected 

to be visited after customer i, then the charging time, it  , was equal to . All of the test instances were solved, where 

 increased from 10 to 110 (stepped by 10), and the model was solved with the parameter k = 8. The maximal travel 

range, L, was defined as equal to 30, 60, and 80 for C-type, R-type, and RC-type, respectively. The solutions obtained 

with  = 20, 30, 40, and 50 are summarized in Table 6, and compared with the solutions under the flexible charging 

time policy, which is indicated as “Cost by Fle.-C.T.” The column “Dev.%” represents the difference in an objective 

value compared with that obtained using the flexible charging time policy. For R-type, the average deviation increased 

from 0.75 to 2.11% as the parameter  increased from 20 to 50. However, the trends appeared to comprise a steady 

decline and steady flow for C-type and RC-type, respectively.  

Table 6 Comparison of the results obtained for EVRP_RC-type with a flexible charging time policy (with k = 8, |N|=11) 

 

Problem 

No. 

 

Cost with 

Fle.-C.T. 

Cost with fixed charging time policy  

 = 20   = 30   = 40   = 50  

Cost Dev.%  Cost Dev.%  Cost Dev.%  Cost Dev.%  

EVRP_R101 325.32 325.32 0  331.95 2.04  331.95 2.04  331.95 2.04  

EVRP_R102 271.59 275.69 1.51  275.69 1.51  275.69 1.51  271.59 0  

EVRP_R103 271.59 275.69 1.51  275.69 1.51  275.69 1.51  271.59 0  

EVRP_R104 252.17 253.89 0.68  253.89 0.68  253.89 0.68  253.89 0.68  

EVRP_R105 321.57 323.05 0.46  321.6 0.01  321.57 0.00  331.95 3.23  

EVRP_R106 263.57 264.52 0.36  271.78 3.11  271.78 3.11  271.59 3.04  

EVRP_R107 263.57 264.52 0.36  271.78 3.11  271.78 3.11  271.59 3.04  

EVRP_R108 252.17 253.89 0.68  253.89 0.68  252.17 0.00  253.89 0.68  

EVRP_R109 263.87 264.27 0.15  269.95 2.30  273.28 3.57  277.93 5.33  

EVRP_R110 255.75 257.49 0.68  258.86 1.22  255.75 0  267.85 4.73  

EVRP_R111 255.63 262.16 2.55  255.63 0  255.63 0  262.16 2.55  

EVRP_R112 253.89 253.89 0  253.89 0  253.89 0  253.89 0  

AVG 270.89 272.87 0.75  274.55 1.35  274.42 1.2  276.66 2.11  

EVRP_C101 125.25 131.63 5.09  126.54 1.03  125.78 0.42  125.78 0.42  

EVRP_C102 124.20 125.70 1.21  124.94 0.60  124.94 0.60  124.20 0  
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EVRP_C103 124.20 125.70 1.21  124.94 0.60  124.94 0.60  124.20 0  

EVRP_C104 124.20 125.70 1.21  124.94 0.60  124.94 0.60  124.20 0  

EVRP_C105 124.20 131.06 5.52  125.98 1.43  125.78 1.27  125.25 0.85  

EVRP_C106 124.20 131.63 5.98  126.54 1.88  125.78 1.27  125.25 0.85  

EVRP_C107 124.20 131.06 5.52  125.98 1.43  125.78 1.27  125.25 0.85  

EVRP_C108 124.20 131.06 5.52  125.98 1.43  125.78 1.27  125.25 0.85  

EVRP_C109 124.20 130.87 5.37  125.98 1.43  125.78 1.27  125.25 0.85  

AVG 124.32 129.38 4.07  125.75 1.16  125.50 0.95  124.96 0.52  

EVRP_RC101 371.37 372.23 0.23  371.37 0  371.37 0  371.37 0  

EVRP_RC102 368.57 368.57 0  368.57 0  368.57 0  368.57 0  

EVRP_RC103 368.57 368.57 0  368.57 0  368.57 0  368.57 0  

EVRP_RC104 368.57 368.57 0  368.57 0  368.57 0  368.57 0  

EVRP_RC105 368.57 368.57 0  368.57 0  368.57 0  368.57 0  

EVRP_RC106 371.37 371.37 0  371.37 0  371.37 0  371.37 0  

EVRP_RC107 371.37 371.37 0  371.37 0  371.37 0  371.37 0  

EVRP_RC108 368.57 368.57 0  368.57 0  368.57 0  368.57 0  

AVG 369.62 369.73 0.03  369.62 0  369.62 0  369.62 0  

 

 

Fig. 11 Trends in the differences in the solutions with respect to different  values. 

Figure 11 shows the trends in the average deviations with respect to different values of the parameter and 

different problem types. Clearly, the trends determined for R-type and C-type decreased initially, before increasing 

as the parameter ρ increased from 10 to 110. However, RC-type exhibited a stable trend until ρ reached 100. Moreover, 

the maximum average deviation was reached when  increased to 100. These results demonstrate that the appropriate 

values for ρ were 20, 70, and 10 for EVRP_R, EVRP_C, and EVRP_RC, respectively. This comparative experiment 

may help logistics managers to use a fixed charging time policy to simplify logistics operations while also maintaining 

the high utilization of EVs. 

7.5. Efficiency of the EVRPTW-CNCF model 
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Next, full-sized Solomon VRPTW instances (with 100 customers) were used to test the efficiency of the proposed 

EVRPTW-CNCF model in computational experiments. The maximum range limit for a fully charged EV was set to 

a large number, e.g., L = 2000, so the EVs did not need to visit a CS and the total distance traveled for the solution 

was comparable to the solutions obtained with traditional heuristics for VRPTW models. The MIP solver CPLEX 

was applied to solve all 29 instances with a two hour time limit. After that, the maximum range limit parameter L 

was set to a regular range, e.g., L = 150, such that the EVs might need to visit CSs in order to complete their tours. 

Table 7 summarizes the computational results, including the deviation from the best solution obtained by the 

heuristics, the CPU time used, and relative mixed-integer optimality gap (Gap%). The best known solutions solved 

by different authors identified by previous heuristics (available at http://w.cba.neu.edu/~msolomon/heuristi.htm) are 

also listed for comparison. According to Table 7, the EVRPTW-CNCF model could obtain feasible solutions for 25 

and 19 (out of 29) of the tested instances for parameter L = 2000 and L = 150, respectively. For L = 2000, the obtained 

solutions for instances of C type were all identical to the previous best solutions by heuristics, although the values 

for Gap% were still large. While the obtained solutions of R and RC types were worse than the previous best solutions, 

and feasible solutions were even not found for the R110, R112, RC107, and RC108 instances. The solutions obtained 

by L = 150 might contain detours to CS so they were not comparable to existing heuristic solutions. The experiments 

also indicated that it looked more difficult to solve the instances under L = 150, as fewer feasible solutions were 

found in the time limit. This is because a smaller L had tightened the searching space, and the solver needed more 

CPU time to initiate a feasible solution before starting the Branch & Bound search process. However, a new best 

solution, i.e., 1642.88, surprisingly was found for R101 in the experiment. The detailed routes of the new best solution 

were provided in Fig.A1 in Appendix. The above experiments showed that the EVRPTW-CNCF model was 

applicable to solve large-sized instances. Moreover, it should be notable that instead of using full optimization at one 

time, some fix-and-optimize heuristics such as introduced in Xiao et al., (2017, 2019) could be employed to improve 

the computational efficiency by using the MILP-based partial optimizations. 

Table 7 Comparisons with the best known solutions obtained by heuristics for a 100-customer instance (|N|=101) 

Problem Prev. best by heuristics  EVRPTW-CNCF (L=2000)  EVRPTW-CNCF (L=150) 

No. Dis. Veh. Author  Dis. Veh. Dev.% Gap%  Dis. Veh. Gap% 

C101 828.94 10 RT  828.94 10 0.0 29.5  -- -- -- 

C102 828.94 10 RT  828.94 10 0.0 71.3  -- -- -- 

C103 828.94 10 RT  828.94 10 0.0 86.7  -- -- -- 

C104 828.94 10 RT  828.94 10 0.0 94.8  -- -- -- 

C105 828.94 10 RT  828.94 10 0.0 68.0  1196.30 13 81.4 

C106 828.94 10 RT  828.94 10 0.0 81.0  1129.08 13 86.1 

C107 828.94 10 RT  828.94 10 0.0 93.9  -- -- -- 

C108 828.94 10 RT  828.94 10 0.0 100.0  1097.36 12 100.0 

C109 828.94 10 RT  828.94 10 0.0 100.0  1097.36 12 100.0 

R101 1645.79 19 H  1656.51 20 0.65 25.6  1642.88 20 25.8 

R102 1486.12 17 RT  1649.26 20 11.0 82.7  1595.96 19 79.1 

R103 1292.68 13 LLH  1649.26 20 27.6 96.3  1586.95 18 95.7 

R104 1007.24 9 M  1649.26 20 63.7 98.7  1566.73 18 98.0 

R105 1377.11 14 RT  1624.14 19 17.9 71.1  1423.55 16 58.8 

http://w.cba.neu.edu/~msolomon/heuristi.htm
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R106 1251.98 12 M  1624.14 19 29.7 99.1  1420.74 16 98.0 

R107 1104.66 10 S97  1624.14 19 47.0 99.6  1362.22 14 99.7 

R108 960.88 9 BBB  1624.14 19 69.0 99.5  1362.22 14 99.5 

R109 1194.73 11 HG  1612.25 17 34.9 100.0  -- -- -- 

R110 1118.59 10 M  - - - -  2976.20 29 100.0 

R111 1096.72 10 RGP  3200.92 25 191.8 99.6  3498.90 29 99.7 

R112 982.14 9 GTA  - - - -  3498.90 29 -- 

RC101 1496.94 14 TBGGP  1758.69 17 17.5 47.6  1690.80 17 43.7 

RC102 1554.75 12 TBGGP  1758.69 17 13.1 98.9  1687.69 17 96.5 

RC103 1261.67 11 S98  1758.69 17 39.4 99.6  1674.88 16 99.3 

RC104 1135.48 10 CLM  1758.69 17 54.9 100.0  1640.24 15 100.0 

RC105 1629.44 13 BBB  2589.51 23 58.9 89.3  -- -- -- 

RC106 1424.73 11 BBB  3336.57 28 134.2 99.5  -- -- -- 

RC107 1230.48 11 S97  - - - -  -- -- -- 

RC108 1139.82 10 TBGGP  - - - -  -- -- -- 

 

8. Conclusion 

In this study, the EVRPTW is modeled using an efficient linearization approach on the convex nonlinear charging 

function (CNFC) and a novel approach on routing formulation with unlimited CS visits of EVs and without using 

dummy CS copies. In comparison to traditional VRPs, the CNFC linearization can be as accurate as needed by adding 

only one additional variable, and the routing formulation reduces the formulation complexity of the EVRP to the 

same level as the traditional VRPs, i.e., O (|N|2). The proposed MILP model can be solved efficiently with 

considerations of various practical factors in using EVs, such as CNCF, continuous charging time, safety threshold 

for the SOC, and comprehensive cost function of using EVs.  

Some managerial insights for the practical use of the MILP model were hinted by the computational experiments 

on Solomon's benchmark instances, as concluded below. 

(1) The approximation accuracy of the CNFC linearization was showed to be 1.2% on average (k=8, type I) in the 

computational experiments. This slight deviation could be deemed as tolerable in practical applications. 

Further, the setting for a safety SOC threshold also guaranteed the practical safety of the CNFC linearization.  

(2) If the same available time is available to charge an EV in some cases, it will be more efficient to charge EV 

when its SOC is lower. This rule is efficiently applied in the proposed EVRPTW-CNFC model to take the best 

utilization of the available charging time.  

(3) The model can help the logistics managers to adapt better to the fixed charging time policy for EVs in some 

resource-intensive scenarios where EVs may not be allowed to occupy a CS by a long time. The optimized CS 

visits and charging time are driven toward the best utilization of such policy. 

The proposed MILP model helps to reduce logistic time with experiments representing the real logistics 

stituations/scenarios. However, traditional drawbacks of VRPs remain to the VRPTW-CNCF model, such as still NP-

hard and very difficult to solve for large-sized problems. Future research may focus on developing more efficient 

heuristic algorithm to solve large-sized problems, and considering the travel speeds time-dependent to make the 



28 of 28 

model applicable to time-varying traffic environments. 
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Appendix 

Proposition 1. For a solution, , of the MILP model formulated by Eqs. (11)–(22), if the charging time it   in  is 

not zero, then it may have a value that is greater than the actual charging time needed to charge the battery from ip  

to i ip p  . 

Proof. Let ( )t f p  be the concave nonlinear charge function for an EV and 
1( )p f t  is the reverse function, 

where t is the charging time needed to charge the battery energy from 0 to p.  satisfies Constraint (21-5), so the 

variables it  and it   in  satisfy 
1( )i i i if p p t t        (see Fig. 1 for the explanation). Thus, the value of ( )i it t   

is allowed to be larger than actually required (to charge the amount of energy i ip p   in the battery). The value of 

it   is already tightly bounded with respect to ip   by Constraints (21-3) and (21-4), so only it   is free and it is 

possibly larger than that required to chare the battery with energy ip . Furthermore, the charging time, it  , makes 

an equally weighted contribution (to the objective function) to the waiting time (i.e., iw  and iw ), so it   is allowed 

to include part of the waiting time without affecting the objective value. Therefore, it is possible for the charging 

time, it  , to be greater than the actual charging time needed to charge the battery from ip  to i ip p  . 

To obtain an accurate value for the charging time, it  , the MILP model can be resolved to minimize the total 

charging time while the total cost of the solution, , denoted as TC(), remains unchanged, as follows.  

Minimize: Total charging time = i

i N

t


               (23)  

Subject to Constraints (12)–(22) and Constraint (24) as follows: 

0

(0, ) ( , ) ( , ) ( , )

( / ) ( ) ( )v j e e ij d ij t ij i i i i

j A i j A i j A i j A i N

g x g C L D g D g T w z w t TC 
    

 
         

 
       (24) 

Proposition 2. A feasible solution, *, of the MILP model formulated by the objective function in Eq. (23) subject to 

Constraints (12)–(22) and (24) is also a feasible solution of the MILP model formulated by Eqs. (12)–(22). 

Proof. This is straightforward because * satisfies Constraints (12)–(22).  

It should be noted that when solving the MILP model with Eq. (23) and Constraints (12)–(22) and (24), the binary 

decision variables, including xij, yic, y'i, and ir, can be fixed as input parameters to efficiently obtain *. 

However, even if the charging time, it  , is tightly bounded by Constraint (21-5), an approximation error remains 

between the secant lines and nonlinear curve of the charging function. If the maximum SOC deviation caused by the 

piecewise linearization is ε, then the following proposition can be applied for judging the actual feasibility of a 
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solution. 

Proposition 3. The solution obtained by the MILP model formulated by Eq. (23) and Constraints (12)–(22) and (24) 

is an actual feasible solution of the problem EVRPTW-CNCF if the setting of the SOC safety threshold when arriving 

at a CS or depot, i.e., λ, is greater than or equal to ε.  

Proof. Even if the electrical energy charged at a CS is smaller than the expected amount with a maximum deviation 

of ε, then this difference can be addressed by the setting the SOC safety threshold such that EV is guaranteed to arrive 

at the next CS or depot. Thus, the solution is actually feasible for the EVRPTW-CNCF problem. 

Proposition 4. For a feasible solution, π*, of the proposed MILP model formulated by Eq. (23) and Constraints (12)–

(22) and (24), the remaining energy of an EV that has visited a CS is equal to λ when returning to the depot.  

Proof. This proof is straightforward. The total charging time has been minimized, so the EVs will consistently attempt 

to spend less time at CSs. Thus, the remaining electrical power will be equal to λ when returning to the depot. 

 

Fig. A1. New best-known solution for R101 (obj.= 1642.88) 

(0,2,21,73,41,56,4,0,5,83,61,85,37,93,0,12,76,79,3,54,24,80,0,14,44,38,43,13,0,27,69,30,51,20,32,70,0,28,29,78,34,35,77,0,31,88,7,0,

33,81,50,68,0,36,47,19,8,46,17,0,39,23,67,55,25,0,40,53,26,0,45,82,18,84,60,89,0,52,6,0,59,99,94,96,0,62,11,90,10,0,63,64,49,48,0,6

5,71,9,66,1,0,72,75,22,74,58,0,92,42,15,87,57,97,0,95,98,16,86,91,100,0) 
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