
Tuning metaheuristics by sequential optimisation of
regression models.I

Áthila R. Trindadea,b, Felipe Campeloc,d,∗

aGraduate Program in Electrical Engineering, Universidade Federal de Minas Gerais
Av. Antônio Carlos 6627, Belo Horizonte 31270-010, Brazil

bDepartment of Computing, Universidade Federal dos Vales do Jequitinhonha e Mucuri
Rua da Glória 187, Diamantina 39100-000, Brazil

cDepartment of Electrical Engineering, Universidade Federal de Minas Gerais
Av. Antônio Carlos 6627, Belo Horizonte 31270-010, Brazil

dSchool of Engineering and Applied Sciences, Aston University, Birmingham B4 7ET, UK

Abstract

Tuning parameters is an important step for the application of metaheuristics

to specific problem classes. In this work we present a tuning framework based

on the sequential optimisation of perturbed regression models. Besides pro-

viding algorithm configurations with good expected performance, the proposed

methodology can also provide insights on the relevance of each parameter and

their interactions, as well as models of expected algorithm performance for a

given problem class, conditional on the parameter values. A number of test cases

are presented, including the use of a simulation model in which the true optimal

parameters of a hypothetical algorithm are known, as well as usual tuning sce-

narios for different problem classes. Comparative analyses are presented against

Iterated Racing, SMAC, and ParamILS. The results suggest that the proposed

approach returns high quality solutions in terms of mean performance of the

algorithms equipped with the resulting configurations, with the advantage of

providing additional information on the relevance and effect of each parameter

on the expected performance.

IThis work has been partially funded by Brazilian research agencies CNPq (grant:
404988/2016-4), CAPES, and Fapemig (grant: APQ-01099-16).
∗Corresponding author

Email addresses: rochaathila@gmail.com (Áthila R. Trindade),
f.campelo@aston.ac.uk (Felipe Campelo)

Preprint submitted to Elsevier October 3, 2019



Keywords: Parameter Tuning, Metaheuristics, Regression modelling

1. Introduction

Metaheuristics such as evolutionary algorithms [1, 2] represent a class of

computational problem solvers subject to stochastic behaviour, determined in

part by the values of user-defined parameters. These parameters are respon-

sible for determining the global-local exploration profile, solution quality, and5

efficiency of the algorithm when searching for solutions in the objective space.

Poor choices of parameter values can result in low performance of the method,

even if the implementation is done properly, while well-chosen values can lead

the algorithm to consistently return high-quality solutions. Moreover, good pa-

rameter configurations are often problem-dependent [3], which limits the utility10

of looking for one-size-fits-all configurations and requires the development of

efficient strategies for tuning parameters based on a limited sample of represen-

tative instances of the problem class of interest.

Assuming that parameters can assume several (sometimes infinitely many)

values, a possibly very large number of combinations of parameter values – called15

here candidate configurations, or simply configurations – can be considered for

an algorithm when solving a given problem. There are two sources of random

variation in the expected performance of an algorithm (equipped with a given

configuration) when solving instances of a given problem class: the uncertainty

due to the instance being solved, which gives rise to an across-instances vari-20

ance; and the uncertainty due to the stochastic behaviour of the metaheuristic

itself, which results in a within-instance variance [3]. Due to these random in-

fluences on the observed performance of a given algorithm configuration, several

researchers have proposed strategies for recommending candidate configurations

based on statistical concepts, in a process commonly referred to as parameter25

tuning [4, 5].

This work is focused on the application of statistical modelling to the devel-

opment of tuning approaches. More specifically, we present a modular frame-

2



work for implementing parameter tuning methods, which is based on concepts

drawn from Sequential Model Based Optimisation (SMBO) strategies [6, 7].30

The proposed framework is aimed not only at returning algorithm configura-

tions that are well-adjusted for particular problem classes, but also to provide

statistical models capable of supporting further investigations on the relative

relevance of algorithm parameters and interaction effects, as well as estimations

of expected algorithm performance given new sets of parameter values.35

The remainder of this paper is organised as follows. We start by formally

stating the Parameter Tuning Problem that we are attempting to solve (Section

2), and briefly reviewing the most widely used parameter tuning methods (Sec-

tion 3). The proposed tuning framework is introduced in Section 4. To illustrate

its use, we consider three tuning experiments, and contrast the results obtained40

by the proposed method against those returned by Iterated Racing (Irace) [8],

SMAC [9] and ParamILS [10]. Finally, some conclusions and possibilities of

future works are explored in Section 6.

2. The Parameter Tuning Problem

In this work we are interested in tuning algorithm parameters for a given45

problem class of interest, i.e., finding the combination of parameter values that

results in the best expected performance of a given algorithm on instances be-

longing to a given family of problems. Here we present a formalisation of this

problem, based on a description originally presented by Birattari [11, 3].

Assume that we have an algorithm containing k free parameters to be set50

by the user, and let θi denote a list of length k containing specific parameter

values for that algorithm. We refer to θi as a candidate configuration for the

algorithm under study, with Θ = {θ1, θ2, . . . } representing the set of all possible

parameter configurations for that algorithm.1 Similarly, let γj denote a given

problem instance belonging to a problem class of interest, denoted by Γ =55

1For the sake of simplicity, in the remainder of this work we refer to the algorithm equipped

with a given set of parameter values as simply a configuration.

3



{γ1, γ2, . . . }. Also, let Xij be a random variable representing the performance2

of a candidate configuration θi ∈ Θ on a given instance γj ∈ Γ, with ϕij denoting

a statistical parameter of Xij that can be used to quantify the general quality

of configuration θi as a solver of instance γj , e.g., the mean or median of Xij .

Let Φi:Γ = {ϕij : γj ∈ Γ} denote the set of quality values of a candidate

configuration θi for all instances belonging to problem class Γ; and µi:Γ denote

a statistical parameter of Φi:Γ which is of interest when comparing different

configurations, e.g., the mean or the median performance across all instances

belonging to Γ. Under these definitions, the parameter tuning problem tackled

in this work can be defined as:

Find θ∗ = arg max
θ∈Θ

µi:Γ, (1)

that is, the problem of finding the configuration that maximises the performance60

of a given algorithm for a given class of instances. Automated approaches for

addressing this problem generally try to obtain θ∗ using information from a

finite subset of problem instances.

An important point to be aware of is that the instances used for tuning are

usually not the ones that are relevant in practice: an underlying assumption of65

methods that attempt to solve the problem defined above is that the instances

used for tuning can be regarded as a representative sample of the problem class

of interest, and can therefore be used for modelling and inference of the expected

behaviour of the algorithm for that problem class.

It must also be highlighted that, under this definition of the parameter tuning70

problem, the independent observations to be used in any statistical modelling

or inferential procedure refer to individual estimates of performance of a given

configuration on a given instance, i.e., to individual values of ϕij . Repeated

runs of a given configuration on the same instance are useful for improving

the accuracy of estimates of these performance values, but cannot count as75

2Measured according to a given indicator of choice. In the remainder of this work, we

assume the use of indicators for which larger values represent better performance.

4



independent degrees-of-freedom for the statistical procedures. Failure to account

for this particular fact would result in pseudoreplication [12, 13], a violation of

the assumption of independence underlying the statistical approaches used in

most tuning procedures that leads to inflated type-I errors in inferential tests,

and to artificially reduced standard errors in descriptive models.80

In the next section we review some of the most common approaches used to

tackle the parameter tuning problem. While in most cases the problem is not

explicitly stated as above, the workings of these methods indicate that in most

cases this is the problem (or at least one of the problems) they attempt to solve.

After briefly discussing the existing approaches, we will present our proposed85

tuning framework in Section 4.

3. Overview of Parameter Tuning Methods

A variety of different tuning methods have been proposed over the years to

determine the best configurations of algorithms when solving a given problem.

Based on their working mechanisms and design principles, it is possible to group90

these methods in three major categories: racing methods, SMBO methods, and

hyper-heuristics. In this section we review the most widely used methods from

each category.

3.1. Racing Methods

The basic concepts of racing methods were initially proposed in the machine95

learning literature for solving the model selection problem [3]. The basic idea

of these methods [14, 15] is that the search for the best model structure can be

sped up by discarding inferior candidate models as soon as sufficient statistical

evidence is gathered against them. A similar concept is used by racing methods

for parameter tuning: discard candidate configurations as soon as they are100

detected as inferior according to some statistical criteria.

The most relevant methods in this class are all based on concepts originally

introduced in the form of the F-Race [16]. The main concept behind F-Race is to

5



iteratively evaluate a given set of candidate configurations on a finite number of

instances, gradually building statistical evidence until it is possible to conclude,105

at a predefined level of confidence, that one or more candidate configurations

are significantly worse than the others. Once this is determined, those inferior

configurations are eliminated and the process continues with the remaining ones.

F-Race stops when a given termination criterion is observed, e.g., the maximum

computational budget is used or the number of remaining configurations falls110

below a given threshold. At each iteration this method employs Friedman tests

[17] as their main inferential procedure, followed (if statistically significant dif-

ferences are detected) by post-hoc nonparametric pairwise comparisons between

the estimated best configuration and all others. Configurations whose median

performance is detected as significantly worse than that of the best one are115

discarded from the race. The F-Race method then proceeds by evaluating the

remaining configurations on more instances, iteratively increasing the statistical

power of the tests and enabling the detection of smaller differences in median

performance. The method stops when only a single configuration remains, a

given number of instances have been sampled, or a predefined computational120

budget has been exhausted.

Improvements to F-Race were proposed in the form of the Iterated F-Race

(I/F-Race) method [18], later generalised as Iterated Racing (Irace) [8]. I/F-

Race works by iteratively applying F-Race, generating new candidate configu-

rations at each iteration by sampling from a multivariate random distribution125

of parameter values that is biased by the best configurations returned in the

previous iterations [19]. This biased sampling drives the search process towards

obtaining candidate configurations that are similar to the best ones observed up

to a given iteration. Iterated Racing allows the use of different statistical tests

in place of the Friedman test, prevents premature convergence of the tuning130

method by means of soft restart rules, and include elitist options to force the

preservation of high-quality candidate configurations.

6



3.2. SMBO Methods

Tuning methods based on the sequential model-based optimisation (SMBO)

approach are motivated by results from the literature on statistical modelling135

and black-box optimisation methods. From an initial set of observations of

performance over the space of configurations, SMBO methods fit one or more

response surfaces, which are then used to determine which new configurations

should be sampled. These new results are then added to the existing sample, and

used to update the response surfaces. As iterations progress, SMBO methods140

tend to generate models that are increasingly biased towards those regions of the

parameter space which contain configurations with good performance. The three

most widely known tuning methods based on SMBO are Sequential Parameter

Optimisation (SPO) [20], BONESA [4], and Sequential Model-Based Algorithm

Configuration (SMAC) [9], which are briefly discussed below.145

Sequential Parameter Optimisation was proposed in 2005 [20, 6], and is

based on a strategy of iteratively improving a prediction model to reveal the

relationship between parameter values and algorithm performance. This model

is then used to select the most promising values for the parameters. In the first

iteration of SPO a few candidate configurations are generated using Latin Hy-150

percube Sampling (LHS) [21, 22] over the space of algorithm parameters. These

candidate configurations are evaluated on a problem instance, and this infor-

mation is used to fit a statistical prediction model. The standard initial model

used by SPO is a second-order linear regression model, but regression trees and

Kriging have also been employed [6]. Based on the candidate configuration with155

the best observed performance and on the response surface, new candidate con-

figurations are generated so as to maximise the probability, conditional on the

available information, that they will present good performance values. These

new points are evaluated and an updated model is fit, in a process that iterates

until a predefined termination criterion is reached. At each cycle, the number160

of evaluations of each candidate configuration on the problem instance is in-

creased, obtaining more accurate estimations of average performance. Besides

searching for the best configuration, SPO also allows the user to analyse the

7



variation of algorithm behaviour with its parameter values using the statisti-

cal models generated, thereby enabling deeper experimental investigations and165

experiment-driven algorithm development.

BONESA [4] is a tuning method based on learning and searching loops.

These two modules continuously exchange information as iterations progress:

the learning loop uses a prediction model to compare candidate configurations,

while the searching loop is responsible for sampling new candidate configurations170

based on the results of the learning module. The distinguishing feature of this

method is its multi-objective approach: to select the best parameter values for a

given problem class, BONESA uses a Pareto strength approach [4] and attempts

to simultaneously maximise the performance of the algorithm for all problem

instances used in the tuning effort.175

In the first iteration, BONESA randomly samples a number of candidate

configurations, evaluating them once for each available tuning instance. The

learning loop uses this information to predict the utility values for new candi-

date configurations, using an approach based on the weighted average of the

utilities of the nearest Neighbors of the proposed configurations. These pre-180

dicted utilities are then used for comparing the candidate configurations using

a criterion based on Pareto dominance and an adaptation of Welch’s t test [23].

The results of the tests are then aggregated and used to calculate the Pareto

strength of each candidate configuration [4] and to generate new configurations

(based on the best ones), for which the Pareto strength is also calculated. Then,185

those with the highest Pareto strength values are selected to compose the new

set of configurations to be evaluated on the tuning instances. The method

iterates until a given stop criterion is reached.

Finally, the Sequential Model-Based Algorithm Configuration (SMAC) method

[9, 24] was, similarly to the SPO, initially designed for tuning algorithm param-190

eters on a single problem instance.3 The method generates an initial set of can-

didate configurations and evaluates their performance on the instance. Based on

3Both methods can, however, be adapted for tuning algorithms for problem classes.

8



this information, it fits a predictive model of performance over the space of pa-

rameter values, and then performs a multi-start search for finding the candidate

configuration that maximises an expected positive improvement function. This195

new candidate configuration is then evaluated and added to the pool of can-

didate configurations, and the process is repeated. SMAC has been used with

different types of prediction model, including Gaussian Processes and Random

Forests; and different search strategies, including DIRECT and CMA-ES.

3.3. Hyperheuristics200

The term hyperheuristics [25, 26, 27, 28] is used here to classify those tuning

methods which consist in the application of metaheuristics for obtaining the best

parameter values of algorithms, trying to solve the parameter tuning problem by

directly tackling its optimisation formulation, discussed in Section 2. While in

principle any optimisation approach could be used to solve the parameter tuning205

problem, knowledge about the characteristics of this problem have motivated

the development of specific strategies. Three of the most common ones are

REVAC [29, 30], ParamILS [10] and CRS-Tuning [31], as presented below.

Nannen and Eiben proposed a parameter tuning method for Evolutionary

Algorithms called Relevance Estimation and Value Calibration (REVAC) [29,210

30], which aims to answer questions related to two aspects of algorithm design

and configuration: (i) which of the free parameters of a given method are in

fact relevant, i.e., effectively influence the performance of the algorithm; (ii)

for those parameters that are in fact relevant, which values lead to the best

performance of the algorithm.215

REVAC is itself configured as an evolutionary strategy. The method begins

with a population of randomly generated candidate configurations, which are

evaluated according to a performance function, and new candidate configura-

tions are obtained using usual recombination and mutation operators [30]. At

each iteration the marginal probability density functions for each parameter of220

the algorithm are estimated from the population of candidate configurations.

The Shannon entropy of these distributions is used to estimate the relevance of

9



each parameter. Parameters for which entropy decreases quickly as iterations

progress need little information to be tuned, and are therefore considered more

relevant to the performance of the EA. Conversely, those for which entropy225

does not decrease are considered less relevant, and may be discarded or receive

arbitrary values. The method iterates until predefined stop criteria are reached.

ParamILS [10] is a framework of tuning methods, which is based on Iterated

Local Search (ILS). Starting from a given initial candidate configuration, at

each iteration the incumbent configuration is perturbed and undergoes a first230

improvement local search, to generate a new candidate configuration that re-

places the incumbent one if it presents better performance. The neighbourhood

of a given configuration is the set of all configurations that differ from it in a

single parameter, and the determination of whether a candidate configuration is

better than the incumbent one is performed using statistical tests, with problem235

instances as a blocking factor [10, 23]. Variants of this basic algorithm include

[10] FocusedILS, which adaptively selects the number of training instances; and

Adaptive Capping of Algorithm Runs, which controls the cutoff time for each

run of the candidate configurations.

CRS-Tuning [31] is a tuning method for numerical and categorical parame-240

ters, which is composed of an evolutionary strategy combined with an approach

called Chess Rating System (CRS) by its authors, which is used to rank the con-

figurations. In this method initial configurations are randomly generated, and

for each tuning instance each configuration is ran n times. Candidate configu-

rations are compared pairwise, and the results of these comparisons (in terms of245

wins, losses and draws) are used to calculate a rating R for each configuration,

which describes their relative qualities. Configurations that are considered as

significantly worse than the best one are eliminated, and finally crossover and

mutation operators are applied to the surviving configurations to create new

ones, and the procedure iterates. The procedure is run until the maximum250

number of executions has been reached.

10



4. Proposed Tuning Framework

In this section we propose a modular structure for tackling the parameter

tuning problem presented in Section 2. The proposed framework, which we will

refer to as MetaTuner, can be used to instantiate distinct tuning approaches255

through the adoption of specific methods for each of its components, depending

on the nature of the tuning process at hand. This modular approach results

not only in a greater flexibility for the framework, but is also useful for faster

development and testing of proposed improvements.

The proposed approach is based on a common assumption in the design of260

computer experiments [32], that if the number of instances and of candidate

configurations is sufficient, enough information will be gathered so that the

resulting response surfaces are somehow representative of the expected perfor-

mance landscape of the algorithm for the problem class of interest. Under this

assumption, optimising these surfaces will tend to drive the method towards265

regions of the parameter space containing good candidate configurations, al-

lowing the method to iteratively concentrate its efforts on those regions of the

parameter space with the highest average performance.

The general aspects of the proposed framework can be easily explained from

the structure presented in Algorithm 1.4. The method starts by sampling a270

few configurations, which are evaluated on a randomly sampled initial set of

tuning instances. The performance results obtained are then used for fitting a

regression model of the expected performance of configurations on the problem

class of interest. The regression model is then subject to perturbations (e.g., by

perturbing the fitted parameters), resulting in a number of additional response275

surfaces. For each surface (including the unperturbed one) an optimisation pro-

cess is executed, returning a new candidate configuration which maximises the

value of the estimated average performance value for that model. These new

4An open-source implementation is available in the form of R package MetaTuner

(https://github.com/fcampelo/MetaTuner). Details about the structure of the tool, as well

as a full usage example, are available in the package documentation.

11



Algorithm 1 Proposed tuning framework

Require: Search space (Ω); Tuning instances (ΓS); number of initial configs. (m0);

number of new configs/iter. (m?); number of initial instances (N0); number of

addit. instances/iter. (N?); size of archive (nE).

1: t← 0

2: A(t) ← GenerateInitialSample (Ω,m0) . Sample initial configurations

3: Γ
(t)
A ← SampleWithoutReplacement (ΓS , N0 −N?) . Sample initial instances

4: P(t)
A ← EvaluateConfigurations

(
A(t),Γ

(t)
A

)
. Evaluate configs on instances

5: E(t) ← A(t) . Initialise elite archive

6: while Stop criteria not met do

7: t← t+ 1

8: if New instances available then

9: Γ′ ← SampleWithoutReplacement
(

ΓS\Γ(t−1)
A , N?

)
. Sample new instances

10: P ′ ← EvaluateConfigurations
(
E(t),Γ′

)
. Eval. elite configs on new instances

11: Γ
(t)
A ← Γ

(t−1)
A

⋃
Γ′ . Update archive of instances visited

12: P(t)
A ← Update

(
P(t−1)
A ,P ′

)
. Update archive of config. performances

13: else

14: Γ
(t)
A ← Γ

(t−1)
A

15: P(t)
A ← P

(t−1)
A

16: end if

17: S(t)
1 ← FitModel

(
A(t−1),P(t)

A

)
. Fit regression model

18: θ
′(t)
1 ← Optimise

(
S

(t)
1

)
. Find configuration that optimises S(t)

1

19: for j ∈ {2, . . . ,m?} do

20: S(t)
j ← PerturbModel

(
S

(t)
1

)
. Generate perturbed model

21: θ
′(t)
j ← Optimise

(
S

(t)
j

)
. Find configuration that optimises S(t)

j

22: end for

23: C(t) ←
{
θ
′(t)
j : j = 1, . . . ,m?

}
24: P(t)

C ← EvaluateConfigurations
(
C(t),Γ(t)

A

)
. Evaluate candidate configs

25: A(t) ← A(t−1)⋃ C(t) . Add candidate configs to archive

26: P(t)
A ← Update

(
P(t)
A ,P(t)

C

)
. Update archive of config performances

27: E(t) ← SelectKBest
(
A(t),P(t)

A ,K = nE
)

. Update elite archive

28: end while

29: P(t)
E ← RetrieveElitePerformances

(
E(t), P (t)

A

)
30: return Elite configurations (E(t)) and their estimated performance (P(t)

E ).

12



candidate configurations are then evaluated on all instances sampled so far, and

added to an archive. Finally, the archive is truncated to a given size, maintain-280

ing only the candidate configurations with the best expected performance value

for the problem class. The whole process then iterates by sampling a few more

instances (if available), and proceeds until a predefined stopping condition is

reached. If no new instances are available, the process simply continues gener-

ating new candidate configurations at each iteration, which are then evaluated285

on all instances. This process proceeds until a predefined stopping condition is

reached.

In the remainder of this section we detail the implementation of an initial

instantiation of the proposed framework. Although in this work we focus mainly

on numeric parameters, notice that categorical / symbolic parameters can also290

be considered by (i) dummy encoding of categorical variables, or (ii) use of

different regression models such as those used, e.g., for analysis of covariance

[23, 33], which can be easily incorporated into the modular structure of the

proposed framework.

4.1. Generation of Initial Candidate Configurations295

Considering the importance of gathering enough information for generating

a reasonable first set of regression models, a point of particular importance is

to ensure that the sampling of initial candidates (line 2 of Algorithm 1) be well-

distributed in the parameter space, so that the method will have the chance to

investigate different regions of the space of parameters.300

There are a few strategies that guarantee a well-spread initial sampling in

continuous spaces. Some of the most widely known include Latin Hypercube

Sampling (LHS) [21, 34], low-discrepancy sequences of points (LDSP) [35], and

uniform designs (UD) [36]. Since LHS is possibly the one most widely used

in computational experiments [37], the version of MetaTuner described here305

uses this particular sampling scheme for generating its initial set of candidate

configurations.

13



Before proceeding, it is important to understand that performance degrada-

tion can occur if the parameters being tuned can assume values on possibly very

different scales – e.g., in the case of polynomial mutation [38], the rate parame-

ter exists in the [0, 1] interval, while η can in principle assume any non-negative

value. This is a well-known issue in the regression and machine learning liter-

ature [39], which can be avoided when tuning numerical parameters by simply

rescaling all parameters to a common scale, e.g., [0, 1]:

θ′i(l) =
θi(l) − θ(l,min)

θ(l,max) − θ(l,min)
, i = 1, . . . ,m; (2)

where θi(l) is the value of the l-th component of candidate configuration θi,

and θ(l,min) θ(l,max) denote the lower and upper allowed values for the l-th

parameter being tuned. Notice that this require all parameters to have upper310

and lower limits, which is generally not a problem – even for parameters that

are theoretically unbounded, it is generally possible to define reasonable bounds

based on theory or previous experience.

4.2. Evaluation of Candidate Configurations and Estimation of Quality Value

Given the possibly heterogeneous nature of the tuning instances and the315

expected variations of performance of different configurations, it is possible that

the distributions of Xij , i.e., of the performance of candidate configurations

on the instances, exist on very different scales. While some regression models,

particularly quantile regression [40], can deal with these differences of scale

relatively well, most have their performance heavily degraded in the presence320

of such large scale differences and heterogeneity of variances. To alleviate these

particular problems, the performance of candidate configurations on the tuning

instances (lines 4, 10 and 24 of the algorithm) is calculated by running the

configurations on the test instances and transforming the output (i.e., the value

of the quality indicator used) to a common scale.325

Let xij ∼ Xij denote a single observation of the performance of configuration

θi on instance γj . The observed performance in this case is calculated by linearly

14



scaling xij to the interval [0, 1]:

x′ij =
xij − xmin,j

xmax,j − xmin,j
, (3)

where xmin,j , xmax,j denote the smallest and largest values observed so far for

instance j, across all configurations already evaluated. Once these values are

calculated for all instances visited by a given configuration θi, the summary

performance estimator pθi is calculated as the sample average of the x′ij values

associated with that configuration. Notice that this average can be the simple330

mean, trimmed mean, median, or any other indicator of location. In the version

used here, the median is employed due to its robustness to outliers and distri-

butional asymmetries, an important characteristic when dealing with possibly

heterogeneous tuning instances.

Notice from Algorithm 1 that, at each iteration, configurations in the elite335

archive E(t) are evaluated on the N? new instances, while configurations that

were not selected are not, even though all are used for modelling the average

behaviour This is done to increase the accuracy of estimation of the average

performance on the most promising configurations, and can be used, for in-

stance, to attribute weights to each observation in the regression modelling. At340

each iteration, the new configurations generated by optimising the estimated

response surfaces, are also evaluated on all instances visited so far, since they

are expected to yield good average performances.

Finally, it must be highlighted that the values of pθi need to be recalculated

at each iteration for all configurations, since the normalising bounds can change345

across iterations.

4.3. Regression modelling

The role of regression modelling in the proposed tuning framework is to

enable predictions of the expected performance of a given configuration, condi-

tional on its parameter values. For this, modelling strategies need ideally to be350

i) reasonably accurate; ii) capable of working with relatively few data points;

iii) computationally inexpensive (at least relatively to the cost of evaluating the

15



configurations); and iv) parsimonious in terms of the number of coefficients in

the model. Another desirable trait is that the regression models scale reasonably

well up to a reasonable number of parameters, e.g., 10 (which is a reasonable355

upper limit for free parameters that are expected to be adjusted by the user).

For continuous parameters, usual models include linear regression with or-

dinary [23] or weighted [41] least square estimators; quantile regression [42];

and ridge or lasso regression [43], among others. Even that all these kinds of

regression modelling are used in this work, it is worth highlighting the shrinkage360

characteristics of Lasso and Ridge, which can contribute for providing regres-

sion models that prioritize the most important parameters. This characteristic

is briefly introduced below.

4.3.1. Ridge and Lasso Regression

There are two reasons why ordinary least squares (OLS) regression is often365

inadequate [43], namely prediction accuracy and interpretation. Poor predic-

tion accuracy can be caused by low bias and large variance of OLS regression.

Interpretation is also often challenging, given the large number of coefficients

commonly used when fitting models with several predictors.

As a remedy to both issues, some methods employ shrinkage techniques to

remove coefficients that do not contribute to the explanatory power of a given

model. Shrinking coefficients can be achieved, e.g., by including a penalty term

in the problem of minimising the least squared errors. Considering the predictor

of pθi as a linear function of the form p̂θi = β0 + θTi β : β0 ∈ R, β ∈ Rp, the

problem becomes [44]:

Find β∗ = arg min
β∈Rp

n∑
i=1

(pθi − β0 − θTi β)2 + λ ‖β‖2α (4)

where λ ∈ [0,∞] is a regularisation parameter, and α ∈ Z>0 regulates the order370

of the norm used for the penalisation term. Two special cases of this definition

are the lasso (α = 1) and ridge (α = 2) regressions. The minimisation of (4)

becomes more aggressive at shrinking coefficients towards zero (i.e., removing

their associated terms from the model) as larger values of λ are used. This

16



regression approach can be useful in the presence of complex models with many375

terms, particularly when there is a large difference in the relevance of each term,

as is often the case of algorithm parameters [29, 30]. In these cases, shrinkage

will reduce all coefficient values, leading those least relevant to zero and am-

plifying the differences between them, simplifying the model and facilitating

interpretation.380

4.4. Generating Perturbed Models

The generation of response surfaces to be optimised at each iteration is per-

formed in two steps: firstly, a regression model is fit using a modelling technique

of choice. Secondly, the model obtained is perturbed several times, generating

new response surfaces (line 20 of Algorithm 1). To generate the perturbed mod-385

els, all (non-zero) coefficients of the model are subject to uniform noise. The

range of this noise is defined by the standard errors of each coefficient, which

can be obtained either analytically (e.g., in the case of linear regression models

using OLS) or by resampling methods.

For ridge and lasso regression models, standard errors are obtained using390

a leave-one-out (LOO) strategy. After fitting a model using the approach de-

scribed in the previous section, all coefficients that were shrunk down to zero are

removed from the model. The resulting polynomial is then used as a basis for

fitting k new models, each of which is fitted on a dataset obtained by ignoring

the information regarding a single configuration. Based on the coefficients fit395

for each of these k leave-one-out models, the standard error of each coefficient

is estimated as the sample standard deviation of the values obtained for that

coefficient on all LOO models.

4.5. Model Optimisation

Considering that the response surfaces represent preliminary models of the400

average behaviour of the algorithm conditional on its parameter values, optimis-

ing them should yield a set of new candidate configurations with expected good

performance. As the iterations progress and more candidate configurations are

17



evaluated on more instances, it is expected that the resulting models become

increasingly accurate.405

The main concept of the proposed tuning framework is to iteratively fit

regression models of average behaviour as a function of parameter values, us-

ing increasing amounts of information, and optimising the resulting response

surfaces (and perturbed versions of them, obtained by incorporating estimation

uncertainties of the model coefficients - lines 18–22 of Algorithm 1) to search for410

more promising parameter values. The new candidate configurations returned

by optimising these models are evaluated on all instances already visited by the

method (line 24) and added to the archive (lines 25–26).

The optimisation approach to be used depends on the nature of the regres-

sion models, which may provide, e.g., analytical gradients or guarantees of uni-415

modality. For more general or complex models, fast heuristics can be employed.

In this work we opted for using Nelder-Mead Simplex [45, 46] to optimise the

response surfaces.

4.6. MetaTuner as an SMBO method

It should be clear by now that the proposed method is situated within the420

scope of SMBO methods for parameter tuning. We finish this section by high-

lighting the similarities and differences between our work and other similar

methods in the literature.

Three aspects in particular are considered here: the type of parameters that

can be tuned; the ability to provide a model capable of informing the user425

about the algorithm behaviour and relevance of parameters; and the ability to

tune algorithms for problem classes (i.e., using multiple instances) or for single

instances.

Considering the types of parameters that can be tuned, the currently imple-

mented version of MetaTuner can deal only with numeric parameters, although430

the proposed modular framework can be easily adapted to work with mixed

parameter spaces, by modifying the regression model (e.g., using generalised

linear models with mixed inputs [47]) and optimisation approaches (e.g., using

18



mixed-variables or bilevel optimisation methods). Currently, methods such as

Irace, ParamILS, SMAC and CRS-Tuning have the ability to deal with both435

numerical and categorical parameters.

Another very important aspect of tuning methods is the possibility of using

it not only to optimise the algorithm performance, but also to learn about the

algorithm behaviour This is generally a feature of SMBO methods: besides our

proposed method, SMAC, SPO and REVAC also return models of algorithm440

performance in terms of parameter values, which can be useful in assessing the

relevance of specific parameters, as well as the sensitivity of an algorithm to

their values.

In terms of the third aspect of interest, the tuning process can be focused on

finding out the best parameter values for a single instance or to a problem class.445

Considering the single-instance scenario, only SPO was designed specially for it,

whereas all other methods are multi-instances. BONESA is a somewhat hybrid

case: it considers multiple instances, but instead of returning a configuration

tuned for the problem class represented by those instances it provides a set of

Pareto-nondominated candidate configurations, with the performance for each450

individual instance being considered as one individual objective.

The tuning framework proposed in this paper is intended to be applied with

numeric or mixed parameters5, return a configuration tuned for a problem class

of interest, and provide a statistical model of parameters influence and rele-

vance. Analysing it as an SMBO method, these characteristics set it apart from455

SPO (single-instance) and BONESA (which does not provide a model of pa-

rameters relevance). In relation to SMAC, the current implementation has the

disadvantage of not yet dealing with categorical parameters. It does, however,

present certain advantages that justify its proposal. First, it can easily incor-

porate robust regression models such as quantile regression, which works well460

under heteroscedasticity and in the presence of outliers (which can arise, e.g.,

5Even though the particular instantiation presented in this paper deals only with numeric

parameters, the framework is designed to allow extensions to categorical ones as well.

19



from heavily heterogeneous problem classes). The use of models that incorpo-

rate implicit attribute selection, such as ridge and lasso regression, also allows

the method to focus on finding out the most important parameters, as well as

to return regression models even when the number of parameters is large. Also,465

the explicit consideration of modelling uncertainty - which motivates the use of

perturbed models in the search phase of the method - allows a more comprehen-

sive search, and can provide additional evidence at the end of the tuning process

of the quality of the models fit and, consequently, their expected explanatory

and predictive abilities for the performance of the tuned configurations when470

solving new instances from the same problem class.

Finally, even though the proposed framework does not necessarily employ

evolutionary algorithms in the optimisation phase, it bears some similarities to

other methods belonging to the wider class of Surrogate-Assisted Evolutionary

Algorithms (SAEAs) [48, 24, 7, 49], to which several SMBO methods also be-475

long. SAEAs are commonly employed in the solution of optimisation problems in

which the computational cost of evaluating the objective or constraint functions

is particularly high, which happens often in applied contexts [50, 24, 51, 52].

Actually, it is possible to express the parameter tuning problem as a noisy, ex-

pensive optimisation problem: the formulation presented in (1) already suggests480

tuning as an optimisation problem, where the objective is the maximisation of

the expected performance of the method to a problem class of interest. The “ex-

pensive” part comes from the fact that the performance evaluation of a given

candidate configuration requires the execution of not only one, but several runs

of the algorithm equipped with that configuration on different instances of the485

problem class of interest. The “noisy” part comes from the uncertainties in the

evaluation of the expected performance, which is estimated based on a finite

number of runs executed on a finite subset of problem instances. This view

of the tuning problem is used to motivate a simulation model employed in the

experiments described in Section 5.1, where we investigate the performance of490

the proposed tuning method.

20



5. Experimental Results

To illustrate the use of the proposed approach we performed three experi-

ments, in which we analyse the abilities and weakness of our framework, besides

comparing them with some well known parameter tuning methods in the meta-495

heuristics literature: Irace, ParamILS and SMAC.

In the first experiment, a simulation model was used to model a hypothetical

average performance surface, over which random noise was added to simulate

the across-instances and within-instance variance commonly experienced in real

tuning scenarios. The objective of this first experiment is to evaluate the be-500

haviour of the proposed tuning method under known, controllable conditions,

which allows an exploration of the abilities and limitations of MetaTuner.

The second and third experiments contrast the performance of the proposed

method against the three others already mentioned parameter tuning methods

from the literature, in real-valued parameter tuning problems. In the second505

experiment three parameters of a well-known single objective algorithm are

tuned, using two sets of challenging problems. Four different instantiations of

MetaTuner are tested, in order to investigate the strengths and weaknesses of

different variations of the proposed approach in relation to existing methods.

The third experiment is a comparison between four distinct variations of510

MetaTuner against four other tuning approaches: Irace, ParamILS and SMAC,

as well as a simple random sampling method, in a scenario with a very limited

number of available tuning instances. The analysis of relevance of the param-

eters returned by the regression models provided by the MetaTuner versions is

performed in all experiments.515

5.1. Simulation Model Experiment

In this experiment,6 the expected performance of a (hypothetical) algorithm

on a (also hypothetical) set of instances was represented by a simulation model

6This experiment was performed in a Intel Core 2 Quad Machine, with 4 2.83GHz cores,

3.7 Gib of memory running Ubuntu 18.04.

21



with the following structure:

pkθi;γj = pθi;Γ + τθi;γj + εkθi;γj (5)

where:

• pkθi;γj represents the performance value obtained by a configuration θi on

an instance γj at the k-th run;

• pθi;Γ is the expected value for the performance of the configuration θi on520

the whole instance class Γ, that is, the grand mean of the performance of

that particular configuration for the problem class of interest. This value

is defined using a function over the space of parameters Θ.

• τθi;γj is the deviation between the expected performance value of θi on γj

and the grand mean of θi on the instance class Γ. In this model the vari-525

ance of the τθi;γj values is used to simulate the across-instance variance;

• εkθi;γj is the deviation between the observed performance value of θi on γj

at the k-th run and the expected performance of θi on γj . The variance

of the εkθi;γj values is used in this model to simulate the within-instance

variance;530

Equation 5 models the performance pkθi;γj of a candidate configuration θi on

an instance γj at the k-th run as an additive effects model composed of the

grand mean pθi;Γ, the effect τθi;γjof instance γj on that grand mean, and the

variability between runs of the configuration on that particular instance, εkθi;γj .

For this experiment the effects τθi;γj and εkθi;γj were generated using shifted535

exponential distributions with zero mean and variances σ2
AI (for τθi;γj ) and σ2

WI

(for εkθi;γj ). The grand mean pθi;Γ was represented using analytic functions with

known optima, to allow the assessment of MetaTuner as a tuning approach using

a hypothetical algorithm dealing with known performance landscapes.

Two functions were used to model hypothetical performance landscapes:540

22



• Quadratic function:

f(θ) = 2 + 100θ2
1 + 5

n∑
i=2

θi ,with

θ1 ∈ [−10, 0]

θi ∈ [0, 1], i = 2, . . . , n
(6)

• Ackley function:

f(θ) = −a exp

−b
√√√√1

3

3∑
i=1

θi

− exp(1

3

3∑
i=1

cos(cθi)

)
+a+ exp(1) (7)

with θi ∈ [−32.8, 32.8], i = 1, . . . , n; a = 20; b = 0.2; c = 2π

The dimensions of the functions were varied between 2 and 8. The first

function represents a smooth, “well behaved” response landscape, and all pa-

rameter tuning methods were expected to converge to the vicinity of the global

optimum value (θ∗ = 0). Moreover, the first parameter (θ1) is much more influ-545

ential than the others, a fact that should be captured by the regression models

used in MetaTuner.

The second function is used to investigate the ability of the parameter tuning

methods to explore performance landscapes with multiple local optima. This

function is commonly used in simulated experiments with metaheuristics, and550

was chosen here to represent a much more challenging average performance

landscape. Actual average performance surfaces are probably located in between

the two extremes represented by these test models, which are used here to

investigate general performance trends.

For each function and each dimension, all parameter tuning methods were555

executed 30 times, under a budget of 300n configurations to be evaluated.7 The

variances in the model were arbitrarily chosen as σ2
AI = 4 and σ2WI = 1.

MetaTuner was set up with an initial sampling of m0 = 20 configurations gen-

erated by Latin Hypercube Sampling, n0 = 5 initial instances randomly drawn

from the tuning set, mi = 5 new configurations generated at each iteration, and560

ni = 1 new tuning instances added to the pool at each iteration. The median

7This budget was determined by exploratory tests with similar functions, using Irace

23



was used during the tuning process as the summary function for calculating

the expected performance of each configuration in all methods, except SMAC.

8 Other initial parameters of SMAC, Irace and ParamILS were set as their

standard configurations. Four versions of MetaTuner were used: using Linear,565

Quantile, Lasso or Ridge regression, all with a polynomial model of order 3 and

using Nelder-Mead for optimizing the regression models.

For ParamILS the numerical parameters must be informed as a sequence

of discrete values. For the Quadratic function, the possible values for θ1 were

{−10.0,−9.5, . . . ,−0.5, 0.0}, with initial value of −5.5; for all other parameters570

the possible values were {0.00, 0.05, . . . , 0.95, 1.00}, with initial value 0.50. In

the case of Ackley function, for all parameters the possible states were set as 21

equally-spaced values in the range ±32.80, with an initial value of 0.5.

To compare the output of MetaTuner versions and other parameter tuning

methods, the gap between the function values associated with the best candidate575

configurations achieved by each approach and the optimum value were analysed

Figure 1 illustrates the mean performances regarding the optimality gap.

Considering the quadratic function, Irace had clearly the worst performance

among all methods, while Metatuner using Linear and Quantile models pre-

sented the best results. This was expected for Metatuner, as this simulated580

performance landscape can be easily represented by the polynomial form of the

regression methods tested. The differences were statistically significant at the

95% confidence level (Friedman test, p = 9.7 × 10−7), with the Quantile ver-

sion of Metatuner being significantly better (in terms of across-dimensions mean

performance) to all other methods except Linear version.585

As for the Ackley landscape, ParamILS exhibited a better overall perfor-

mance, followed by Irace and SMAC. The Metatuner versions tested were not

capable of adequately learning this more complex landscape, as it cannot be

properly described by the regression models used. The differences were also

8The version of SMAC used in the experiments, available from https://www.cs.ubc.ca/

labs/beta/Projects/SMAC/v2.10.02/quickstart.html , does not use the median.

24



detected as statistically significant (p = 2.8×10−9), with ParamILS performing590

significantly better than all other methods.

Figure 1: Point estimates and 95% confidence intervals of the mean optimality gaps, for the

quadratic (top) and Ackley (bottom) simulated performance landscapes. MetaTuner versions

were labelled based on the model employed.

In terms of runtime, the methods that rely on explicit modelling of the per-

formance landscape (i.e., Metatuner and SMAC) resulted in runtimes that were

not only substantially higher than those which do not (i.e., Irace and ParamILS),

a problem that is amplified as the dimensions are increased, as illustrated in Fig-595

25



ure 2.9 This is an important point when tuning algorithms repeatedly, or for

computationally “cheap” problem classes, but it can be argued that it is not a

major obstacle against the use of model-based approaches for two main reasons:

first, tuning is most often a one-time task, so the time required for this ac-

tivity is generally not as important as the expected performance improvement600

it generates. Second, when tuning algorithm parameters for computationally

expensive problems, even the considerably higher computational burden due to

model-building can often be disregarded.

Figure 2: Average runtime of different tuning approaches for the Ackley performance land-

scape.

Finally, the use of simulated performance landscapes in this experiment al-

lows us to evaluate the ability of Metatuner to detect the parameters that are605

the main drivers of performance - which, since Metatuner works on normalised

parameter spaces, is simply a matter of examining which model components

present the largest magnitudes (surprisingly, the version of SMAC used does

not provide to the user a parameters model in its output). For the quadratic

case, all versions of Metatuner were able to detect θ1 as the most relevant pa-610

rameter with fairly high consistency, i.e., in near all runs (tables detailing these

results are provided in Appendix 1). It is worth highlighting that the main

objective in this issue is to identify which parameter is more relevant (in this

9The results for the quadratic performance landscape were similar.

26



case, θ1), and no necessarily its actual form of occurrence (in this case, θ2
1).

Unlike the quadratic scenarios, the models output by Metatuner for the615

Ackley problems were more heterogeneous in terms of which parameters had

the largest coefficients. This was expected, as the Ackley function does not

have any parameter that stands out in terms of its influence on the function

value - in a sense, the symmetry of this function means that all parameters have

essentially the same relevance.620

While preliminary, the results of this experiment using the simulation model

can yield some interesting insights: first, they suggest that MetaTuner may

be able to discover the underlying structure of the response surface in cases

where the structural form of the regression models used is adequate, despite the

presence of noise due to within-instances and between-instances variances – e.g.,625

in the case of the quadratic model, where the general shape of the performance

surface can be described by the polynomial form used in MetaTuner. In cases

where the performance surface is expected to exhibit strong multimodality or

sensitivity to parameter values, more flexible approximation models (e.g., neural

networks) can be used, albeit at an increased computational cost for the tuning630

effort.

5.2. Tuning DE Parameters

In this experiment, the parameter tuning methods were used for tuning pa-

rameters of a “standard” Differential Evolution, DE/rand/1/bin10. Three pa-

rameters were selected for tuning: the mutation factor F ∈ [0.1, 5], the crossover635

rate CR ∈ [0, 1], and the multiplier K ∈ [10, 20], used to calculate the popu-

lation size as Npop = K × dim, with dim the dimension of the problem being

solved. The stop criterion of the DE was the use of 10000 × dim objective

function evaluations.

The tuning process was analysed for two optimisation scenarios: a first one640

consisting of similar problem instances, and a second with more heterogeneous

10The implementation available in the R package ExpDE [53] was used

27



problems. In the homogeneous scenario the DE was used to solve 20 optimi-

sation problems sampled from functions 15 and 21 of the BBOB benchmark

set [54] with dimensions 2, 4, 6, . . . , 40. Four versions of MetaTuner used in the

prior experiment, as well as SMAC, Irace and ParamILS, were each run 30 times,645

and at each run a budget of 1500 algorithm runs was used.11. Each of the 30

best configurations returned by each method was then used to solve 19 valida-

tion instances, sampled from the same BBOB functions but with dimensions

3, 5, 7, . . . , 39. The mean performance of each configuration on this validation

set were recorded. The overall performance of each parameter tuning method650

was represented by the mean performance values on the validation set, of the

best configurations returned on the 30 replicates.

For the heterogeneous scenario the training set was formed by 30 functions

sampled from functions BBOB 1 to 24 with dimensions between 8 and 11. The

validation set was composed of 20 other functions sampled from the same set.655

The same budget of the former scenario was used for each tuning run. With the

exception of the tuning budget, all parameters of MetaTuner, SMAC, Irace and

ParamILS were set as in the prior experiment.12 Considering ParamILS, the

possible values of each parameter were the following: F ∈ [0.1, 0.35, 0.60, . . . , 5]

with initial value equal to 2.35; CR ∈ [0, 0.05, 0.10, . . . , 1] with initial value equal660

to 0.5; and F ∈ [10, 11, 12, . . . , 20] with initial value of 15.

Figure 3 presents the distribution of the overall mean performance of the 30

best candidates returned by all methods for the homogeneous scenario. This

figure suggests that Irace has the worst results, ParamILS and SMAC the best,

and the MetaTuner versions were between these bounds but the distribution of665

observations presents a substantial overlap. To objectively evaluate these dif-

ferences, an inferential approach was employed. Preliminary analyses suggested

11This budget was based on the work of Nannen and Eiben [30], which used a budget of

500 runs per parameter
12This experiment was run in a Intel Xeon Silver machine, with 2.10GHz x 32 cores, 62.9

Gib RAM, running Ubuntu 19.04.

28



Figure 3: Overall mean performance - Homogeneous scenario. MetaTuner versions are indi-

cated by the regression modelling.

that the normality assumption could not be assumed, so a Kruskal-Wallis test

[23] was performed to detect differences in this scenario, suggesting statistically

significant differences at the 95% confidence level (p < 3.65× 10−14). Pairwise670

Wilcoxon-Mann-Whitney tests were then performed to pinpoint the differences,

indicating SMAC and ParamILS tied in first place; Linear and Lasso similar to

each other in the second place; Quantile worse than Linear and similar to Lasso

and Ridge; and Ridge better than Irace (significantly the worst).

Figure 4 presents the results observed for the heterogeneous scenario. This675

figure suggests that several methods present somewhat similar performances,

with ParamILS presenting a somewhat less stable behaviour. The Kruskall-

Wallis test indicated that at least some of the differences observed were statisti-

cally significant (p = 1.53× 10−10), and subsequent Wilcoxon-Mann-Whithney

tests detected SMAC and Irace in the first place, followed by ParamILS and680

Ridge (similar to each other); Lasso (similar to ParamILS and worse than

Ridge). The versions Linear and Quantile of Metatuner presented the worst

performance, with large outliers.

In terms of runtime, Irace was marginally faster than the Metatuner versions

29



Figure 4: Overall mean performance - Heterogeneous scenario. Linear and Quantile versions

of MetaTuner were omitted due to the presence of extreme outliers, which suggest that these

versions can sometimes fail strongly, and may therefore not be interesting for general use.

(what can be observed from the table 1). This reinforces a point mentioned in685

the discussion of Experiment 1, namely that as the computational cost of eval-

uating the algorithm being tuned increases, the additional burden of building

regression models tends represent a smaller portion of the total computational

effort, and consequently the tuning times start becoming less dissimilar.

ParamILS and SMAC had considerably worse median runtimes for this ex-690

periment, but as with all time considerations this is much more an effect of im-

plementation details than of specific computational efficiency: unlike MetaTuner

and Irace (which are both native to R language), the implementations of these

two methods had to, at every evaluation, call an external R script to load

and run the optimiser (DE algorithm), which added considerable computational695

overhead.

Besides analysing the average performance and runtime of parameter tuning

methods, another interesting aspect to investigate is the general distribution of

30



Table 1: Median runtimes for the DE tuning experiment.

Method
Median runtime (seconds)

Homogeneous Heterogeneous

Irace 728 255

Ridge 767 688

Lasso 767 340

Linear 729 264

Quantile 725 265

ParamILS 25027 15989

SMAC 24963 17928

parameter values obtained by the methods. Figures 5 and 6 illustrate the best

parameter values found by the tuning methods (the parameter values are in700

their original scales). These results suggest the use of reasonably low values of

F for both scenarios, but also indicate a large spread of values returned by CR

and K.

Figure 5: Distribution of the best parameter values - Homogeneous scenario. The versions of

MetaTuner are labelled as: L - Linear; Q - Quantile; La - Lasso; R - Ridge. Irace is labelled

as “Ir”, and ParamILS as “Par”

Another interesting aspect that Metatuner enables researchers to investigate

are the most important contributors to a given algorithm’s performance on a705

problem class, which is illustrated in the table 2. The columns of this table

31



Figure 6: Distribution of the best parameter values. The parameter tuning methods are

labelled as in the prior figure.

indicate which model parameters were interpreted by MetaTuner as “the most

relevant” most often (Freq#1), second most-often (Freq#1) etc.. The two

numbers in brackets represent how many times the parameter was the most

relevant, followed by how many times it was among the 3 most relevant ones.710

Table 2 suggests that (considering the different combinations of exponents),

the MetaTuner versions detected mainly the main effects of CR (29 times as

the most relevant and 69 times among the 3 most relevant), F (25 times as the

most relevant and 37 times among the 3 most relevant), and the interaction of

F ×CR (38 times as the most relevant and 94 times among the 3 most relevant)715

as possibly the main contributors to the performance of DE/rand/1/bin on the

homogeneous scenario. For heterogeneous scenario, the results suggest the main

effect of CR (54 times as the most relevant and 113 times among the 3 most

relevant), and the interaction of F ×CR (51 times as the most relevant and 85

times among the 3 most relevant) as the main contributors to the performance720

of DE/rand/1/bin.

In fact, the influence of F , CR and of the interaction F × CR showed by

MetaTuner echoes in the literature, in several works, when using several versions

of DE for solving challenging problems. In [55] is presented visual “maps”

showing the quality of DE solutions as a function of choice of F and CR values,725

and this choice can vary with the DE version and the problem class. A parameter

32



combination framework for DE is proposed in [56] which employ a strategy of

combining different regions of the parameters space of F and CR in order to

improve results of DE. In [57] is presented the best 63 combinations of values

of F and CR determined by a self-adaptive DE for solving three well known730

benchmark problem sets. Another self-adaptive variation of DE is presented

in [58], and in this work was showed experimentally the influence of different

regions of the parameters space F and CR for the quality of DE solutions, for

several challenging problems.

Another interesting aspect is that the population size multiplier K does735

not seem to appear prominently as the most relevant factor, which suggests

that as long as the computational budget is maintained the population size

can be regarded as secondary in comparison to a good selection of F and CR.

According to [59], several strategies of choosing the population size, whether or

not related to the size of problem have been proposed, but it is not clear the740

impact of each of them in general.

Table 2: Most relevant terms of DE/rand/1/bin.

Scenario Version Freq #1 Freq #2 Freq #3

Homogeneous

Linear

Quantile

Lasso

Ridge

F × CR [14;27]

F × CR [13;22]

F [18;25]

F × CR×K [14;20]

CR2 [13;22]

CR2 [8;14]

CR3 [6;23]

F × CR [8;18]

F × CR2 [1;19]

F 2 [7;12]

CR [2;10]

F × CR2 [2;8]

Heterogeneous

Linear

Quantile

Lasso

Ridge

CR2 [18;25]

CR2 [21;25]

F × CR2 [12;16]

F × CR2 [25;27]

F × CR [6,15]

F 3 [7;16]

CR3 [11;24]

F × CR×K [3;21]

F × CR2 [2;14]

F × CR2 [6;13]

CR [3;20]

CR [1;19]

In general, the results of this experiment shows MetaTuner as a competitive

approach in relation to other parameter tuning methods both on Homogeneous

or Heterogeneous scenarios. Furthermore, MetaTuner’s explicit modelling of

performance as a function of the tunable parameters enables the identification745

of the most relevant contributors to the success of a given algorithm, providing

researchers with interesting analyses that can be used to guide algorithm devel-

33



opment and adaptation. This latter abillity is a clear advantage of MetaTuner

in relation to the other parameter tuning methods used here.

5.3. Tuning SAPS for the SAT problem750

This experiment is based on guidelines by Montero et al. [60], and its main

objective is a comparison of MetaTuner with well known methods based on the

literature in cases where few tuning instances are available.

The same four instantiations of MetaTuner used in the prior experiments

were used and compared with Irace, SMAC and ParamILS, as well as against755

a random sampling approach used to provide a performance baseline. The

methods were used for tuning the parameters of the Scaling and Probabilistic

Smoothing (SAPS) algorithm [61, 62] for solving the SAT problem. Four param-

eters were tuned: α ∈ [1.01, 1.4], wp ∈ [0, 0.06], ρ ∈ [0, 1], and ps ∈ [0, 0.2]. The

ranges were discretised to seven equally-spaced values for ParamILS.13 Only760

10 instances were available14, and all of them were used for both training and

validation. Although this may result in some overfitting of the resulting config-

urations to the instances, this is an unfortunate consequence of the very limited

number of available instances for tuning.

The performance measurement used for each SAPS configuration on each765

instance was the time-to-convergence, with a timeout of 15 seconds. Cases in

which the algorithm failed to converge within that time received a performance

value calculated as (15.00001 +min(max(0, sol/100000), 0.001)), where sol is

the lowest number of false clauses found. The computational budget used for

the tuning process was 1250 evaluations, for all tuning methods (this budget770

was chosen after preliminary tests using ParamILS and SMAC), and the other

initial parameters of all parameter tuning methods were set as in the prior

experiment. The random sampling method consisted of randomly generating

125 configurations and running each one once on each instance, returning the

13Following recommendation from http://www.cs.ubc.ca/labs/beta/Projects/ParamILS/

index.html, from where the instances were obtained.
14All instances are satisfiable examples of the SAT problem.

34



configuration with the best median performance. The seeds used for running775

the SAPS algorithm on instances were the same, for all tuning methods. This

experiment was performed in the same machine that was used for the first

experiment.

Ten independent replicates were run for each tuning method. The best con-

figurations returned by each method were then ran 30 times on each instance780

(using seeds for the random number generator different from those used dur-

ing the tuning process), and the overall performance of each configuration was

calculated as the grand mean of the observed performances on the instances.

Figure 7 presents the distribution of the mean overall performance of the

tuning methods, considering the 10 best configurations returned by each one. It785

is clear from the figure that all tuning methods actually provide better configu-

rations than would be obtained by simply performing a random search over the

space of parameters. However, two MetaTuner approaches (Linear and Quantile,

like in the Heterogeneous scenario of the prior experiment) presented outlying

replicates in which their performance were worse than that of random search.790

Even if rare, this is enough to generate scepticism about these two alternatives.

A Kruskal-Wallis test was able to detect the differences as statistically signif-

icant at the 95% confidence level (p = 7.7× 10−6), and the subsequent pairwise

Wilcoxon-Mann-Whitney tests indicated ParamILS and Irace as the best, fol-

lowed by: Lasso, Ridge and SMAC; Quantile and Linear; and Random approach795

as the worst. Table 3 displays the median runtime of all approaches. As in the

previous experiment, as the computational cost of evaluating the algorithm be-

comes larger, the differences in added computational burden of the methods

become less important.

Figure 8 illustrates the distribution of the parameter values obtained at the800

end of the 10 replicates for all methods. All of them were able to generate solu-

tions with a large spread of values, suggesting that high-quality configurations

for this particular problem possibly emerge from the interaction of parameter

values, instead of being dominated by a few main effects of the parameters. Ta-

ble 4 shows the most relevant parameters returned by the versions of MetaTuner805

35



Figure 7: Overall mean performance of each tuning method for the SAPS algorithm.

Table 3: Median runtimes for the SAPS tuning experiment.

Method Median run time (seconds)

Ridge 6005

Lasso 4965

Linear 3772

Quantile 3850

Irace 3376

ParamILS 4895

SMAC 3122

for this scenario. Parameters ps and ρ seem to appear as the most relevant more

often, but there is generally a more heterogeneous distribution of parameters

identified as the most relevant ones, which can indicate that all parameters share

a similar importance in terms of determining the performance of the algorithm.

From the literature, in [61] is presented an approach called “RSAPS” (Reac-810

tive Saps), which is a self-adaptive SAPS. The results of this work suggest that

the search intensification of SAPS can be dynamically improved by adapting

the values of ρ and ps while fixing values for wp and α, reaching better results

than the original SAPS. Although a more intensive research is necessary about

this issue, it suggest that ρ and ps can have important influence on the quality815

36



of solutions provided by SAPS, as indicated by MetaTuner. As in the prior

experiment, MetaTuner is the only one parameter tuning method used here

that is able to provide this sort of insight about the relation between algorithm

parameters values and problem class.

Table 4: Most relevant parameters - SAPS

Version Freq #1 Freq #2 Freq #3

Linear

Quantile

Lasso

Ridge

ps2[6;10]

ps2[6;7]

ρ3[4;7]

wp2 × ρ[5;9]

ρ[2;3]

α2[1;3]

ρ[4;5]

wp× ρ× ps[3;5]

wp× ρ[1;3]

wp2[1;2]

α× ρ2[2;6]

ρ3[1;4]

Figure 8: Distribution of parameter values obtained for the SAPS problem. The versions of

MetaTuner are labelled as: L - Linear; Q - Quantile; La - Lasso; and R - Ridge. Irace is

labelled as “Ir”, and ParamILS as “Par”

6. Conclusions820

In this work we present a new parameter tuning framework based on concepts

from Sequential Model Based Optimisation (SMBO) methods. The proposed

37



framework is centred on the sequential optimisation of perturbed regression

models of expected algorithm performance conditional on parameter values,

and on the sequential evaluation of new problem instances on the most promis-825

ing candidate configurations. It is proposed to be, at the same time, a tool

for: a) reaching good parameter values and; b) provide to the user regression

models which can identify the most relevant parameters, in terms of the main

or interaction effects.

The proposed method was tested in three different experiments, and the830

main conclusions we can draw from these are that: (i) in general, Metatuner is

able to yield competitive parameter values when compared with those obtained

by other well known parameter methods, in a variety of problem scenarios; and

(ii) the proposed method can strongly suggest the most relevant parameters

when dealing with a tuning scenario for which the relation between the algorithm835

performance and the parameter values is dominated by few main and interacting

effects of the parameters.

Future works included: further testing and development, needed to effec-

tively establish its power and limitations, like the limitations of MetaTuner in

terms of the number of parameters that can be tuned, and the adaptation of840

the principles described here to the explicit tuning of categorical or hierarchical

parameters (without resorting e.g. to dummy-variable encoding). The effects of

using alternative algorithms in the optimizating regression modellings phase, in

terms of performance and regression models returned by MetaTuner; and lastly,

an investigation of the convergence problems with the versions Quantile and845

Linear is mandatory.

6.1. A brief discussion on convergence

While a formal proof of convergence of the proposed approach to optimal

parameter values is not provided in this paper, we can offer some qualitative

discussion on the expected asymptotic properties of MetaTuner.850

Given a problem class of interest, the ability of the proposed framework to

reach the optimal parameter values is dependent on three aspects: (i) the ability

38



to generate candidate configurations arbitrarily close to the optimal parameter

set θ?; (ii) the quality of the regression, i.e., the predictive ability of the model

in terms of estimating the performance of new candidate configurations for the855

problem class of interest; (iii) the quality of the optimiser used, i.e., given the

response surface provided by the regression model, its ability to converge to the

estimated optimum of that surface.

First, the ability of the proposed method to generate candidate configura-

tions arbitrarily close to the optimum can be guaranteed (albeit only asymptoti-860

cally) by arbitrarily increasing the initial sampling - e.g., using Latin Hypercube

Sampling [21, 34] or even a simple grid design - within the space of valid con-

figurations Θ. Moreover, even a sparse initial sampling (which is the common

case) can result in configurations arbitrarily close to the optimum, based on the

combination of iterative model building and optimisation approach used.865

The quality of the regression models can be split in two parts: structure

and fit. In terms of structure, it should be obvious that a poor choice of model

structure (e.g., fitting a plane to observations that follow a highly nonlinear

relationship) may prevent the method from approaching the optimal configura-

tion. However, we expect that even low-order models (e.g., capturing quadratic870

or cubic terms) can generate iteratively better approximations, at least in the

neighbourhood of high-quality candidate configurations, where lower order trun-

cations can adequately approximate the underlying performance surface. More-

over, it is possible (albeit at an elevated computational cost) to increase the

order of the regression models used, or to employ machine learning methods875

capable of adequately approximating or interpolating high-order surfaces. In

terms of fit the convergence to an arbitrarily good approximation of the optimal

configuration can be guaranteed (again, only asymptotically, and at a possibly

prohibitive computational cost), e.g., by using interpolation models instead of

regression [63] and increasing the number of configurations and instances vis-880

ited (either initially or iteratively), so that approximation errors would tend to

zero on visited configurations. We expect, however, that the proposed method

would be able to converge to the vicinity of optimal configurations, or at least of

39



high-quality local optima, given the design principles employed in the develop-

ment of MetaTuner (e.g., model perturbations based on quantifiable modelling885

uncertainties, etc.) and assuming that the regression models used do not have

their underlying assumptions severely violated.

Finally, the convergence of MetaTuner is conditional on the adequacy of the

optimiser used to generate new candidate configurations based on the perturbed

models. If non-revisiting global optimisers are used, e.g., DIRECT [64], then890

convergence to the optima of each perturbed model can be asymptotically guar-

anteed. This, coupled with the considerations presented earlier on the ability of

the models to converge iteratively to good approximations around optimal con-

figurations suggests that the method should be able to return those solutions.

In general, however, computationally cheaper heuristics such as Simulated An-895

nealing are recommended for the model optimisation, so as not to result in

prohibitively long tuning times, which sacrifices the convergence guarantees.

In summary, even though we cannot at this time provide adequate proofs or

bounds on the convergence of MetaTuner to the optimal configuration for a given

problem class, we have reason to assume that its structure allows, at least in900

principle, the discovery of these optimal points. Further studies, both theoretical

and practical, are necessary to better explore the abilities and limitations of the

proposed method.

References

[1] M. Gendreau, J.-Y. Potvin (Eds.), Handbook of Metaheuristics, Springer,905

2010.

[2] A. E. Eiben, J. E. Smith, Introduction to Evolutionary Computing,

Springer, 2003.

[3] M. Birattari, Tuning Metaheuristics - A Machine Learning Perspective, 1st

Edition, Springer-Verlag Berlin Heidelberg, 2005.910

40



[4] A. E. Eiben, S. K. Smit, Parameter tuning for configuring and analyzing

evolutionary algorithms, Swarm and Evolutionary Computation 1 (2011)

19–31.

[5] H. H. Hoos, Automated algorithm configuration and parameter tuning, in:

Autonomous Search, Springer, 2012, pp. 37–71.915

[6] T. Bartz-Beielstein, Sequential parameter optimization, IEEE Congress on

Evolutionary Computation (2009) 773–780.

[7] D. R. Jones, M. Schonlau, W. J. Welch, Efficient global optimization of

expensive black-box functions, Journal of global Optimization 13 (1) (1998)

455–492.920

[8] M. López-Ibáñez, J. Dubois-Lacoste, L. P. Cáceres, M. Birattari, T. Stützle,

The irace package: Iterated racing for automatic algorithm configuration,

Operations Research Perspectives 3 (2016) 43 – 58.

[9] F. Hutter, H. H. Hoos, K. Leyton-Brown, Sequential model-based optimiza-

tion for general algorithm configuration, in: Proceedings of the 5th Inter-925

national Conference on Learning and Intelligent Optimization, LION’05,

Springer-Verlag, Berlin, Heidelberg, 2011, pp. 507–523.

[10] F. Hutter, H. H. Hoos, K. Leyton-Brown, T. Stutzle, Paramils: an auto-

matic algorithm configuration framework, Journal of Artificial Intelligence

Research 36 (2009) 267–306.930

[11] M. Birattari, On the estimation of the expected performance of a meta-

heuristic on a class of instances. how many instances, how many runs?,

Tech. Rep. TR/IRIDIA/2004-001., IRIDIA, Université Libre de Bruxelles,

Belgium (2004).

[12] S. H. Hurlbert, Pseudoreplication and the design of ecological field experi-935

ments, Ecological Monographs 54 (2) (1984) 187–211.

41



[13] S. E. Lazic, The problem of pseudoreplication in neuroscientific studies: is

it affecting your analysis?, Lazic BMC Neuroscience 5 (11) (2010) 1–17.

[14] O. Maron, A. W. Moore, Hoeffding races: Accelerating model selection

search for classification and function approximation, in: Advances in neural940

information processing systems, 1994, pp. 59–66.

[15] A. Moore, M. S. Lee, Efficient algorithms for minimizing cross validation

error, in: Proceedings of the 11th International Conference on Machine

Learning, 1994, pp. 190–198.

[16] M. Birattari, T. Stutzle, L. Paquete, K. Varrentrapp, A racing algorithm945

for configuring metaheuristics, in: Proceedings of the Genetic and Evolu-

tionary Computation Conference, GECCO 2002, Morgan Kaufmann Pub-

lishers, San Francisco, CA, 2002, pp. 11–18.

[17] D. J. Sheskin, Handbook of Parametric and Nonparametric Statistical Pro-

cedures, 5th Edition, Chapman & Hall/CRC, 2011.950

[18] P. Balaprakash, M. Birattari, T. Stützle, Improvement strategies for the f-

race algorithm: Sampling design and iterative refinement, in: International

workshop on hybrid metaheuristics, Springer, 2007, pp. 108–122.

[19] M. Birattari, Z. Yuan, P. Balaprakash, T. Stützle, F-race and iterated f-

race: An overview, in: T. Bartz-Beielstein, M. Chiarandini, L. Paquete,955

M. Preuss (Eds.), Experimental Methods for the Analysis of Optimization

Algorithms, Springer, 2010, pp. 311–336.

[20] T. Bartz-Beielstein, C. W. G. Lasarczyk, M. Preuss, Sequential parameter

optimization, in: Proceedings Congress on Evolutionary Computation

2005 (CEC’05), Edinburgh, Scotland, 2005, pp. 773–780.960

URL http://www.spotseven.de/wp-content/papercite-data/pdf/

blp05.pdf

42



[21] M. D. McKay, R. J. Beckman, W. J. Conover, A comparison of three

methods for selecting value of input variables in the analysis of output

from a computer code, Technometrics 21 (2) (1979) 239–245.965

[22] G. D. Wyss, K. H. Jorgensen, A User’s Guide to LHS: Sandia’s Latin

Hypercube Sampling Software, Risk Assessment and Systems Modeling

Department - Sandia National Laboratories (February 1998).

[23] D. C. Montgomery, Design and Analysis of Experiments, 5th Edition, John

Wiley & Sons, New York, NY, 2012.970

[24] F. Hutter, H. H. Hoos, K. Leyton-Brown, An evaluation of sequential

model-based optimization for expensive blackbox functions, in: Proc. Ge-

netic and Evolutionary Computation Conference, 2013, pp. 1209–1216.

[25] E. Burke, G. Kendall, J. Newall, E. Hart, P. Ross, S. Schulenburg, Hyper-

heuristics: An emerging direction in modern search technology., in: B. M.975

Springer (Ed.), Handbook of metaheuristics, 2003, pp. 457–474.

[26] F. Caraffini, F. Neri, M. Epitropakis, Hyperspam: A study on hyper-

heuristic coordination strategies in the continuous domain., Information

Sciences (477) (2019) 186–202.

[27] S. S. Choong, L.-P. Wong, C. P. Lim, Automatic design of hyper-heuristic980

based on reinforcement learning., Information Sciences (436) (2018) 89–107.

[28] P. B. C. Miranda, R. B. C. Prudêncio, G. L. Pappa, H3ad: A hybrid hyper-

heuristic for algorithm design., Information Sciences 414 (2017) 340–354.

[29] V. Nannen, A. E. Eiben, A method for parameter calibration and relevance

estimation in evolutionary algorithms, GECCO’06 - Genetic and Evolution-985

ary Computation Conference (2006) 183–190.

[30] V. Nannen, A. E. Eiben, Relevance estimation and value calibration of

evolutionary algorithm parameters, International Joint Conference on Ar-

tificial Intelligence (2007) 975–980.

43



[31] N. Vecěk, M. Mernik, B. Filipič, M. Črepinšek, Parameter tuning with990

chess rating system (crs-tuning) for meta-heuristic algorithms, Information

Sciences 372 (2016) 446–469.

[32] J. Sacks, W. J. Welch, T. J. Mitchell, H. P. Wynn, Design and analysis of

computer experiments, Statistical Science 4 (4) (1989) 409–423.

[33] M. J. Crawley, The R Book, Wiley, second edition, 2012.995

[34] K. Q. Ye, Orthogonal column latin hypercubes and their application in com-

puter experiments, Journal of the American Statistical Association 93 (444)

(1998) 1430–1439.

[35] L. Kuipers, H. Niederreiter, Uniform distribution of sequences, John Wiley

& Sons, New York, 2005.1000

[36] J.-H. Ning, K.-T. Fang, Y.-D. Zhou, Uniform design for experiments with

mixtures, Communications in Statistics - Theory and Methods 40 (10)

(2011) 1734–1742.

[37] T. J. Santner, B. J. Williams, W. I. Notz, The Design and Analysis of

Computer Experiments, Springer New York, 2003.1005

[38] K. Deb, S. Agrawal, A niched-penalty approach for constraint handling

in genetic algorithms, in: Artificial Neural Nets and Genetic Algorithms,

Springer-Verlag Science + Business Media, 1999, pp. 235–243.

[39] I. H. Witten, E. Frank, M. A. Hall, C. J. Pal, Data Mining: Practical

machine learning tools and techniques, Morgan Kaufmann, 2016.1010

[40] R. Koenker, K. F. Hallock, Quantile regression, Journal of Economic Per-

spectives 15 (4) (2001) 143–156.

[41] T. Strutz, Data fitting and uncertainty: A practical introduction to

weighted least squares and beyond, Vieweg and Teubner, 2010.

[42] R. Koenker, Quantile Regression, Cambridge University Press, 2005.1015

44



[43] R. Tibshirani, Regression shrinkage and selection via the lasso, Journal

of the Royal Statistical Society. Series B (Methodological) 58 (1) (1996)

267–288.

[44] A. B. Owen, A robust hybrid of lasso and ridge regression, Tech. rep.,

Stanford University (October 2006).1020

[45] J. A. Nelder, R. Mead, A simplex method for function minimization, The

Computer Journal 7 (4) (1965) 308–313.

[46] J. C. Nash, R. Varadhan, G. Brothedieck, General-Purpose Optimization,

r Documentation (2017).

URL http://stat.ethz.ch/R-manual/R-devel/library/stats/html/1025

optim.html

[47] A. J. Dobson, A. G. Barnett, An Introduction to Generalized Linear Mod-

els, 4th Edition, 2018.

[48] A. Dı́az-Manŕıquez, G. Toscano, J. H. Barron-Zambrano, E. Tello-Leal, A

review of surrogate assisted multiobjective evolutionary algorithms, Com-1030

putational Intelligence and Neuroscience (4) (2016) 1–14.

[49] L. Shi, K. Rasheed, A survey of fitness approximation methods applied in

evolutionary algorithms., in: B. H. Springer (Ed.), Computational Intelli-

gence in Expensive Optimization Problems, 2010, pp. 3–28.

[50] F. Goulart, S. T. Borges, F. C. Takahashi, F. Campelo, Robust multiob-1035

jective optimization using regression models and linear subproblems., in:

Proc. Genetic and Evolutionary Computation Conference, 2017, pp. 569–

576.

[51] R. Jiao, S. Zeng, C. Li, Y. Jiang, Y. Jin, A complete expected improve-

ment criterion for gaussian process assisted highly constrained expensive1040

optimization, Information Sciences (471) (2019) 80–96.

45



[52] S. M. Mousavi, J. Sadeghi, S. T. A. Niaki, N. Alikar, A. Bahreininejad,

H. S. C. Metselaar, Two parameter-tuned meta-heuristics for a discounted

inventory control problem in a fuzzy environment, Information Sciences

276 (2014) 42–62.1045

[53] F. Campelo, M. Botelho, Experimental investigation of recombination op-

erators for differential evolution, in: Proceedings of the Genetic and Evo-

lutionary Computation Conference 2016, GECCO ’16, ACM, 2016, pp.

221–228.

[54] N. Hansen, A. Auger, S. Finck, R. Ros, Real-parameter black-box optimiza-1050

tion benchmarking bbob-2010: Experimental setup, Tech. Rep. Research

report RR-7215, INRIA (2010).

[55] M. Cervenka, H. Boudná, Visual guide of f and cr parameters influence on

differential evolution solution quality, in: 24th International Conference on

Engineering Mechanics, 2018, pp. 141–144. doi:10.21495/91-8-141.1055

[56] Z. D. J. Zhang, Parameter combination framework for the differential evolu-

tion algorithm, Algorithms 12 (4) (2019) 1–22. doi:doi:10.3390/a12040071.

[57] T. R. R. A. Sarker, S. M. Elsayed, Differential evolution with dynamic pa-

rameters selection for optimization problems, IEEE Transactions on Evo-

lutionary Computation 18 (5) (2014) 689–707.1060

[58] B. B. M. M. J. Brest, S. Greiner, V. Zume, Self-adapting control parameters

in differential evolution: A comparative study on numerical benchmark

problems, IEEE Transactions on Evolutionary Computation 10 (6) (2007)

646–657.

[59] A. P. Piotrowski, Review of differential evolution population size, Swarm1065

and Evolutionary Computation 32 (2017) (2016) 1–24.

[60] E. Montero, M.-C. Riff, B. Neveu, A beginner’s guide to tuning methods,

Applied Soft Computing 17 (2014) 39–51.

46



[61] D. A. D. Tompkins, H. H. Hoos, Scaling and probabilistic smoothing: Dy-

namic local search for unweighted max-sat, in: Conference of the Canadian1070

Society for Computational Studies of Intelligence, Springer, 2003, pp. 145–

159.

[62] D. A. D. Tompkins, H. H. Hoos, Ubcsat: An implementation and experi-

mentation environment for sls algorithms for sat and max-sat, in: Theory

and Applications of Satisfiability Testing: 7th International Conference,1075

SAT 2004., 2004, pp. 306–320.

[63] R. L. Hardy, Theory and applications of the multiquadric-biharmonic

method: 20 years of discovery., Computers & Mathematics with Appli-

cations 19 (1990) 163–208.

[64] D. R. Jones, C. D. Perttunen, B. E. Stuckman, Lipschitzian optimization1080

with the lipschitz constant, Journal of Optimization Theory and Applica-

tions 79 (1993) 157–181.

47



Appendix 1: Parameter relevance tables, Experiment 1

Tables 5 and 6 show a summary of the most relevant parameters for the

scenarios in Experiment 1 (section 5.1), considering each version of MetaTuner1085

and each dimension of Quadratic and Ackley Functions. Having both the algo-

rithm performance and the parameter values scaled in the interval [0,1] when

building the regression models, the most relevant parameters for each run were

those with highest absolute values in the regression models.

The columns of these tables indicate which model parameters were inter-1090

preted by MetaTuner as “the most relevant” most often (Freq#1), second

most-often (Freq#1) etc.. The two numbers in brackets represent how many

times the parameter was the most relevant, followed by how many times it was

among the 3 most relevant ones.

48



Table 5: More relevant parameters - Quadratic Function

Dimension Version Freq #1 Freq #2 Freq #3

2

Linear

Quantile

Lasso

Ridge

θ1[21;22]

θ1[30;30]

θ1[29;30]

θ1[30;30]

θ2
1[5;24]

-

θ3
1[1;29]

-

θ1θ
2
2[3;7]

-

-

-

3

Linear

Quantile

Lasso

Ridge

θ1[26;29]

θ1[17;23]

θ1[30;30]

θ1[30;30]

θ1θ2[2;10]

θ2
1[4;20]

-

-

θ2
1[1;25]

θ1θ2[4;10]

-

-

4

Linear

Quantile

Lasso

Ridge

θ1[27;27]

θ1[29;30]

θ1[30;30]

θ1[30;30]

θ2
1[2;26]

θ2
1[1;30]

-

-

θ1θ3[1;7]

-

-

-

5

Linear

Quantile

Lasso

Ridge

θ1[30;30]

θ1[30;30]

θ1[29;30]

θ1[30;30]

-

-

θ2
3θ4[1;1]

-

-

-

-

-

6

Linear

Quantile

Lasso

Ridge

θ1[30;30]

θ1[30;30]

θ1[30;30]

θ1[30;30]

-

-

-

-

-

-

-

-

7

Linear

Quantile

Lasso

Ridge

θ1[17;22]

θ1[9;14]

θ1[30;30]

θ1[30;30]

θ1θ5[2;4]

θ2
1[3;15]

-

-

θ1θ7[2;4]

θ1θ5[3;8]

-

-

8

Linear

Quantile

Lasso

Ridge

θ1[29;29]

θ1[30;30]

θ1[30;30]

θ1[30;30]

θ7[1;5]

-

-

-

-

-

-

-

49



Table 6: More relevant parameters - Ackley Function

Dimension Version Freq #1 Freq #2 Freq #3

2

Linear

Quantile

Lasso

Ridge

θ1θ2[11;16]

θ1θ2[12;17]

θ3
1[12;21]

θ2[30;30]

θ2
2[7;16]

θ2
2[7;18]

θ3
2[8;20]

-

θ2
1[6;12]

θ2
1[7;12]

θ1θ2[4;9]

-

3

Linear

Quantile

Lasso

Ridge

θ1θ3[6;11]

θ1θ2[10;13]

θ3
2[3;11]

θ2θ3[23;25]

θ2θ3[5;9]

θ2
3[6;11]

θ2[3;8]

θ2
2θ3[3;3]

θ2
1[5;6]

θ2
2[5;10]

θ3[2;7]

θ3[2;24]

4

Linear

Quantile

Lasso

Ridge

θ2
1[6;12]

θ2
2[8;10]

θ3
3[3;6]

θ2θ3[11;18]

θ2
3[4;9]

θ2
1[6;11]

θ1θ2θ3[3;4]

θ3θ4[6;13]

θ2
4[4;9]

θ2
3[4;10]

θ1θ
2
3[3;3]

θ4[5;19]

5

Linear

Quantile

Lasso

Ridge

θ2
3[6;11]

θ2
4[6;11]

θ3
3[3;3]

θ5[14;24]

θ2
4[5;8]

θ2
3[4;8]

θ3
4[2;2]

θ3[3;16]

θ2
1[2;8]

θ2
2[3;14]

θ1θ3θ5[1;2]

θ3θ4θ5[3;3]

6

Linear

Quantile

Lasso

Ridge

θ2
6[5;9]

θ2
5[6;8]

θ5[2;2]

θ2θ3θ4[8;11]

θ1θ2[4;8]

θ2
4[5;9]

θ2θ4θ6[1;3]

θ3
2[4;8]

θ2
2[4;7]

θ2
6[4;6]

θ2[1;2]

θ3[3;6]

7

Linear

Quantile

Lasso

Ridge

θ2
6[2;6]

θ2
6[5;7]

θ1θ2θ7[1;2]

θ2
2[3,5]

θ2
4[2;6]

θ2
5[5;7]

θ4θ
2
6[1;1]

θ2
5[3;5]

θ2
7[2;4]

θ2
2[4;5]

θ4θ5θ7[1;1]

θ3[2;5]

8

Linear

Quantile

Lasso

Ridge

θ4[6;10]

θ5[5;9]

θ3θ6[2;3]

θ2
5[25;30]

θ2[5;8]

θ7[4;7]

θ5θ8[2;2]

θ2
2[3;19]

θ5[4;10]

θ4[4;6]

θ3θ5[1;4]

θ2
3[1;15]

50


