PAPER • OPEN ACCESS

Free-space subcarrier wave quantum communication

To cite this article: S M Kynev et al 2017 J. Phys.: Conf. Ser. 917 052003

View the article online for updates and enhancements.

Related content

- Achieving high visibility in subcarrier wave guantum key distribution system
 V V Chistyakov, S V Smirnov, Yu V Nazarov et al.
- Free-space communication based on quantum cascade laser
 Liu Chuanwei, Zhai Shenqiang, Zhang Jinchuan et al.
- <u>Subcarrier selection for efficient CSI-based</u> <u>indoor localization</u> Yu Taso, Shih-Chun Yeh, Yu-You Liang et al.

IOP ebooks[™]

Bringing you innovative digital publishing with leading voices to create your essential collection of books in STEM research.

Start exploring the collection - download the first chapter of every title for free.

Free-space subcarrier wave quantum communication

S M Kynev¹, V V Chistyakov¹, S V Smirnov¹, K P Volkova², V I Egorov¹, A V Gleim¹

¹Department of Photonics and Optical Information Technology, ITMO University, Saint Petersburg 197101, Russia

²Department of Quantum Electronics, Peter the Great Saint-Petersburg Polytechnic University, Saint Petersburg, 195251, Russia

Abstract. We experimentally demonstrate quantum communication in 10 dB loss outdoor atmospheric channel with 5 kbit/s bitrate using subcarrier wave coding method. Free-space link was organized by telescoping system with symmetric fiber-optic collimators.

1. Introduction

Quantum communication (QC) is a new technique of secure key exchanging between parties in communication network. Nowadays different groups demonstrating quantum communication in optical fibers up to 404 km [1] and up to 144 km in free space [2]. Free space experiments demonstrating the feasibility of QC for sattelite-to-sattelite and ground-to-ground application. For expample in groundto-ground applications free space QC can solve last-mile problem in quantum networks. To date, mostly method based on polarization-coding has been implemented in free space[3-5]. In this work we show that subcarrier wave coding technique [6-8] can be adapted to free space quantum communication.

2. Experimental setup

Experimental setup is shown in figure 1. Free-space subcarrier wave QC system consists of Alice and Bob modules connected by free-space atmospheric quantum channel.

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. Published under licence by IOP Publishing Ltd 1

Saint Petersburg OPEN 2017	IOP Publishing
IOP Conf. Series: Journal of Physics: Conf. Series 917 (2017) 052003	doi:10.1088/1742-6596/917/5/052003

Semiconductor laser at the Alice module emits a signal at optical frequency ω which is directly modulated in LiNbO₃ phase modulator by an electrical signal with frequency Ω and modulation depth m<<1. The optical spectra are composed of central peak and two subcarriers at frequencies $\omega + \Omega$ and $\omega - \Omega$ with phase shift φ_A randomly chosen from four-state protocol. After modulation signal is attenuated and passed through beam expander and to receiver side by atmospheric quantum channel. The total optical power at the output of Alice module was equal to mean photon number 1 per pulse at subcarriers.

Free space atmospheric quantum channel was organized by telescoping system with symmetric fiber-optic collimators (Fig. 2.) An ideal atmospheric channel can be descripted by Gaussian beam solution of paraxial wave equation. Maximal length between Alice and Bob modules is limited by beam diffraction and depended on the collimator lens diameter.

$$L = \frac{2\pi\omega^2}{\lambda} \frac{\omega_0}{\omega} \sqrt{1 - \left(\frac{\omega_0}{\omega}\right)^2},$$

where ω is the beam waist, and ω_0 – radius of the beam at the lens. The length is maximized when $\omega_0/\omega = \frac{1}{\sqrt{2}}$.

At the receiver side signal is collected by symmetric beam collimator and coupled in an optical fiber and passed to Bob module. Here signal passed through phase modulator where random phase shift φ_B is introduced according to four-state protocol. Then signal transmitted to an optical spectral filter that separates the carrier from subcarriers. After spectral filter two subcarriers at frequencies $\omega + \Omega$ and $\omega - \Omega$ passed to single photon detector. When Alice and Bob introduced equal phase shifts ($\varphi_A - \varphi_B = 0$), constructive interference was observed in the side frequency optical signal. When the difference in phase shifts was a multiple of π , destructive interference was observed. Key generation and sifting was performed experimentally using the BB84 protocol.

Figure 2. Free-space channels with beam collimators in outdoor (a) and indoor (b) experiments.

The experiment was perfomed two times: indoor in lab with 1 m on-table-link (Fig.2a.) and outdoor on a cloudy day (Fig. 2b.) with atmospheric channel between two beam collimators \sim 20 m. . QC system parameters are shown in Table 1.

IOP Conf. Series: Journal of Physics: Conf. Series **917** (2017) 052003

Table 1. QC system parameters.

Parameter	Value
Central wavelength	1550 nm
Modulation clock frequency	100 MHz
Modulation frequency	4.8 GHz
Mean photon number	1
Measured losses in quantum channel	20 dB
Losses in Bob module	7 dB
Quantum efficiency of detector	20%
Spectral filter coefficient	99,99%
Spectral filter band	7.5 GHz

For measured losses in outdoor 20 m free-space link of 10 dB the sifted key rate was about 5kbit/s and QBER value was 6%.

For measured losses in indoor 1 m free-space link of 8 dB the sifted key rate was about 15 kbit/s and average QBER value was 3,28 %. At the reciever side beam collimator was rotated 45 degrees 8 times. Figure 3 shows that QBER pproximately the same for different positions of the telescope system.

Figure 3. Dependence of QBER on collimator rotation angle

3. Conclusion

In this work we have implemented subcarrier wave technique for free-space quantum communication using standard fiber-optical components in Alice and Bob modules. In free-space

doi:10.1088/1742-6596/917/5/052003

IOP Conf. Series: Journal of Physics: Conf. Series 917 (2017) 052003

regime this technique offers invariance to rotation of the telescope system and good capabilities in multiplexing.

Acknowledgments

This work was financially supported by the Ministry of Education and Science of Russian Federation

(project № 14.578.21.0112, RFMEFI57815X0112).

References

[1] Yin H-L et al 2016 *Phys.Rev. Lett* **117(19)** 190501

[2] Ursin R et al 2007 Nat. Phys. 3 481

[3] Elser D et al 2009 New J. Phys. **11** 045014

[4] Heim B et al 2014 New J. Phys. 16 113018

[5] Xavier G B 2009 New J. Phys **11 045015**

[6] Mora J et al 2012 Opt.Lett. 37(11) 2031-2033.

[7] Gleim A V et al 2014 Bull. Russ. Acad. Sci., Phys. 78(3) 171-175.

[8] Gleim A V et al 2016 Opt. Express 24(3) 2619-2633.

Erratum: Free-space subcarrier wave quantum communication

J. Phys.: Conf. Ser. 917 (2017) 052003

S M Kynev¹, V V Chistyakov¹, S V Smirnov¹, K P Volkova², V I Egorov¹, A V Gleim¹

¹Department of Photonics and Optical Information Technology, ITMO University, Saint Petersburg 197101, Russia ²Department of Quantum Electronics, Peter the Great Saint-Petersburg Polytechnic University, Saint Petersburg, 195251, Russia

viegorov@corp.ifmo.ru

Our paper «Free-space subcarrier wave quantum communication» in *Journal of Physics: Conf. Series* **917** (2017) 052003 contains the following misprints we would like to correct:

1. The expression for L on page 2, line 12 must be in the following form:

$$L = \frac{2\pi\theta^2}{\lambda} \frac{\theta_0}{\theta} \sqrt{1 - \left(\frac{\theta_0}{\theta}\right)^2},$$

- 2. On page 2, line 13 should be as follows: «where θ is the beam waist, and θ_0 is the radius of the beam at the lens. The length is maximized when $\theta_0 / \theta = 1/\sqrt{2}$ ».
- 3. The Acknowledgments section must be read as follows: This work was financially supported by the Ministry of Education and Science of Russian Federation (project № 14.578.21.0112, RFMEFI57815X0112).