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ABSTRACT
The gracile nucleus (GN) and lateral part of rostral dorsal

accessory olive (rDAO) are important relays for indirect,

postsynaptic dorsal column, and direct ascending path-

ways, respectively, that terminate as climbing fibers in the

“hindlimb-receiving” parts of the C1 and C3 zones in the

cerebellar cortex. While the spinal cells of origin of that pro-

ject to GN and rDAO are from largely separate territories in

the spinal cord, previous studies have indicated that there

could be an area of overlap between these two populations

in the medial dorsal horn. Given the access of these two

ascending tracts to sensory (thalamic) versus sensorimotor

(precerebellar) pathways, the present study therefore

addresses the important question of whether or not individ-

ual neurons have the potential to contribute axons to both

ascending pathways. A double-fluorescent tracer strategy

was used in rats (red Retrobeads and Fluoro-Ruby or green

Retrobeads and Fluoro-Emerald) to map the spatial distri-

bution of cells of origin of the two projections in the lumbar

spinal cord. The two pathways were found to receive input

from almost entirely separate territories within the lumbar

cord (levels L3–L5). GN predominantly receives input from

lamina IV, while rDAO receives its input from three cell pop-

ulations: medial laminae V–VI, lateral lamina V, and medial

laminae VII–VIII. Cells that had axons that branched to sup-

ply both GN and rDAO represented only about 1% of either

single-labeled cell population. Overall, the findings there-

fore suggest functional independence of the two ascending

pathways. J. Comp. Neurol. 522:2179–2190, 2014.

VC 2013 Wiley Periodicals, Inc.
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To make its vital contribution to movement control,

the cerebellum is dependent on sensory signals from

skin, joints, and muscles that are conveyed by a com-

plex array of ascending pathways. A major component

of these paths includes a precerebellar synaptic relay

within the inferior olive. The latter is the sole source of

climbing fiber afferents that terminate in longitudinally

organized zones within the contralateral cerebellar cor-

tex (for review, see, e.g., Voogd and Bigar�e, 1980; Apps

and Hawkes, 2009). The importance of the olivo-

cerebellar projection is emphasized by the fact that par-

tial or complete olivary ablation leads to motor deficits

that resemble those that follow cerebellectomy (e.g.,

Murphy and O’Leary, 1971; Seoane et al., 2005).

Of the various paths that transmit information from the

periphery to the cerebellum via the olive, the most com-

prehensively studied are those that travel in the ventral

funiculus (VF) and dorsal funiculus (DF) of the spinal

cord. The VF-spino-olivo-cerebellar pathway (VF-SOCP)

involves a direct projection from cells of origin in the

spinal cord to the contralateral inferior olive (e.g., Arm-

strong and Schild, 1980; Swenson and Castro, 1983;

Molinari, 1984). By contrast, the DF-SOCP is indirect, and

includes primary afferent projections from dorsal root

ganglia cells as well as spinal cells of origin of the postsy-

naptic dorsal column (PSDC) that synapse in the dorsal

column nuclei (DCN) which, in turn, sends projections to

the contralateral olive (e.g., Ekerot and Larson, 1979a,b).

Both the DF- and VF-SOCP are functionally organized

into multiple subpaths that terminate in different cerebellar

cortical zones (e.g., Oscarsson and Sjolund, 1977b; Ekerot

and Larson, 1979a). For example, signals arising from the
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ipsilateral hindlimb conveyed via the two SOCPs have a

convergent site of precerebellar relay in the lateral half of

the rostral dorsal accessory olive (rDAO; Armstrong et al.,

1982; Gellman et al., 1983; Matsushita et al., 1992) before

terminating as climbing fibers in the hindlimb-receiving

parts of the C1 and C3 zones in the anterior and posterior

lobes of the cerebellar paravermis (Oscarsson, 1969; Cooke

et al., 1972; Berkley and Hand, 1978; Oscarsson and Sjo-

lund, 1977a,b; Ekerot and Larson, 1979a).

The cerebellar paravermis is widely acknowledged as

critically involved in the control of reflex and voluntary

limb movements (for review, see Bloedel and Bracha,

1995; Apps and Garwicz, 2005) but the significance of

why the same paravermal regions receive climbing fiber

signals relayed via both the “direct” VF-SOCP and the

“indirect” DF-SOCP remains unknown. As a first step, it

is important to have knowledge of the underlying neural

pathways involved. Previous single-tracer studies of the

spinal cells of origin of the DF- and VF-SOCPs suggest

that although the two populations are largely separate,

there are potentially overlapping territories in the

medial dorsal horn of the spinal cord (Rustioni, 1973,

1977; Angaut-Petit, 1975; Rustioni et al., 1979; Rustioni

and Kaufman, 1977; Armstrong et al., 1982; Giesler

et al., 1984; Molinari, 1984). This raises the possibility

that either: 1) a common population of spinal neurons

exists that transmits information to rDAO both directly

via the VF-SOCP and indirectly via the DF-SOCP; or 2),

that these pathways arise from separate, but partly

intermingled populations of spinal neurons which form

the anatomical basis of a functional independence of

the two ascending pathways. The possibility also exists

that there are important differences between species in

the organization of these ascending paths. In particular,

the majority of previous studies have been performed

in cats, so the present study updates knowledge in a

species that is more widely used in current research.

The aim of the present experiments was therefore to

use a double retrograde tracer strategy in rats to map,

in the same animal, the distributions of single- and

double-labeled spinal projection neurons following injec-

tions of bidirectional tracers into hindlimb-receiving

components of the rDAO and the DCN. The results

reveal that in rats the two pathways arise from spatially

distinct populations of spinal neurons, providing the

neural substrate for functional independence prior to

convergence at the level of the olive.

MATERIALS AND METHODS

Surgery
All experimental procedures were carried out in

accordance with the UK Animals (Scientific Procedures)

Act 1986 and approved by the University of Bristol Ani-

mal Welfare and Ethical Review Body. Experiments were

carried out on a total of 27 adult male Wistar rats

anesthetized with a ketamine/medetomidine mix

(60mg � kg21/250lg � kg21; i.p. Pfizer Animal Health,

UK). Supplementary intraperitoneal doses of anesthetic

were given, as required, to maintain a surgical plane of

anesthesia. Rats were placed in a stereotaxic frame

with the head initially tilted downward to allow access

to the dorsal surface of the caudal brainstem. If neces-

sary, the ventral portion of the occipital bone was

removed to allow a clear view of obex.

Using a pneumatic picopump (WPI, UK) attached to

a glass micropipette (tip diameter 50 lm), 5 3 50–

100 nl (maximum of 500 nl) injections of one color

of the retrograde and anterograde tracer (i.e., green

or red, see below) were delivered just below the sur-

face of the brainstem to make a unilateral, rostrocau-

dally oriented series of injection sites into GN, 1–1.5

mm caudal from obex. This region of GN has previ-

ously been shown to be the primary site of origin of

the gracilo-olivary projection and thus a key relay in

the hindlimb component of the C1 and C3 zone DF-

SOCP (Molinari, 1984).

In the same animal, but with the head in the horizon-

tal skull position (incisor bar at 23.3 mm; Paxinos and

Watson, 2005), a maximum of 2 3 50–100 nl injec-

tions of a different color of a solution containing both

anterograde and retrograde tracer was delivered contra-

lateral to the GN injection into lateral rDAO to study

the hindlimb C1 and C3 zone VF-SOCP (AP: obex; ML:

1.4 mm; DV: 3.8 mm; at a 37� angle; cf. Cerminara and

Rawson, 2004). For each olivary injection, the micropip-

ette was left in situ for 10 minutes postinjection, to

minimize leakage of the tracer along the dorsoventral

track of the pipette. After all the tracer injections were

made, the brainstem was covered with gelfoam and the

overlying neck muscles and skin sutured in layers.

Anesthesia was reversed with a subcutaneous injection

of atipamezole (1 mg � kg21, s.c. Pfizer Animal Health,

UK).

Anterograde and retrograde tracers
A solution containing one color of retrograde and

anterograde tracer material was used to allow both ret-

rograde analysis of spinal projection neurons and

anterograde verification of the injection site. The mix-

ture consisted of an undiluted suspension of green or

red fluorescently tagged latex microspheres (Retro-

beads, LumaFluor, Naples, FL), combined with an

anterograde tracer of a matching color (20% solution of

fluorescent dextran amines; Fluoro-Ruby or Fluoro-

Emerald; Molecular Probes, UK).

C.R. Flavell et al.

2180 The Journal of Comparative Neurology |Research in Systems Neuroscience



Retrobead double cell labeling experiments
Previous studies have shown that the two colors of

Retrobeads, when used on their own, produce unambig-

uous double retrograde cell labeling (Apps and Ruigrok,

2007). However, in the present experiments it was

found that the dextran amines were also transporting to

some extent in the retrograde direction and thereby

interfered with the visualization of double-labeled cells,

leading potentially to false positives (Schofield et al.,

2007). To minimize the possibility of false-positive

double-labeled cells, a second series of experiments

was therefore conducted, where a further six animals

received double tracer injections of red and green Ret-

robeads alone, with one color injected into GN, and the

other color injected into rDAO. Injection procedures

were identical to those detailed above.

In one additional control animal, a 1:1 mixture of red

and green Retrobeads was injected into GN using the

coordinates described above to determine whether the

tracers were transported with equal efficiency. Retro-

gradely labeled cells in the dorsal horn of the spinal cord

from three sections per L3–L5 segment were sampled.

Histological processing
Following a 7–10-day recovery period, the animals

were reanesthetized (Propofol, bolus, i.v., AstraZeneca,

UK) and perfused transcardially with 0.9% heparinized

NaCl followed by 4% paraformaldehyde. The brain, spi-

nal cord, and, in some experiments, dorsal root ganglia

(DRG) L4 and L5 were removed, postfixed for 24 hours

in 4% paraformaldehyde, allowed to sink in cryoprotec-

tant (30% sucrose in phosphate buffer [PB]), and stored

at 4�C. All sections were cut into 40-lm sections using

a freezing microtome. The cerebellum was separated

from the brainstem and cut sagittally, while the brain-

stem and spinal cord were cut in the transverse plane.

Spinal cord tissue from segments L3–L5 was collected

as two series; cerebella and brainstem sections were

split into three series.

Sections were mounted onto gelatin-coated slides

and analyzed using a Zeiss Axioskop II Mot epifluores-

cent microscope (Oberkochen, Germany) fitted with a

100W-mercury UV light source and an Axiocam digital

camera. Red fluorescent labeling produced by Fluoro-

Ruby and/or red fluorescent Retrobeads was visualized

using filter set number 15 (dichroic mirror [DM]

580 nm; band pass [BP] 546/12 nm; long pass [(LP]

590 nm). Green fluorescent labeling (Fluoro-Emerald

and/or green fluorescent Retrobeads) was visualized

using filter set number 9 (DM 510 nm; BP 450–490

nm; LP 515 nm). Photomicrographs were adjusted for

brightness and contrast with Adobe PhotoShop (San

Jose, CA) or Corel Photopaint (Ottawa, Canada) and

they were assembled in plates with Adobe Illustrator or

Corel Draw. Red color was converted to magenta for

the benefit of color-blind readers (e.g., Fig. 1).

Analysis of retrograde and anterograde
labeling

The extent of the injection sites was plotted onto

standard transverse maps of the medulla (Paxinos and

Watson, 2005). Analysis of retrogradely labeled cells in

the spinal cord was confined to lumbar segments L3–L5

because in rat these segments receive the majority of

peripheral afferents from the hindlimb, particularly those

arising from the hindpaw (Grant and Robertson, 2004).

An estimate of the numbers and distributions of retro-

gradely labeled neurons (single-labeled red or green and,

where appropriate, double-labeled red and green) in

alternate spinal cord sections was made and their distri-

bution mapped onto standard spinal cord maps (Paxinos

and Watson, 2005). Only labeled cell bodies were

counted; labeled dendrites or cell fragments were disre-

garded. As the sections were 40 lm thick and only every

other spinal cord section was counted, a cell body that

was split across three sections would need to have a cell

body that was in excess of 80 lm. A previous study has

indicated that in rat lumbar spinal cord, cell bodies do

not exceed 30 lm in diameter, including in the rostrocau-

dal plane (Molander et al., 1984); therefore, it is very

unlikely that our analysis overestimated counting of cells.

Instead, the sampling was likely to underestimate the

true numbers of labeled cells. We therefore used the

Abercrombie correction (Abercrombie, 1946) to adjust

the counts accordingly. The correction factor applied was

as follows:

Nt5
ðNo 3 section thickness 3 number of section seriesÞ

ðSection thickness 1cell diameterÞ

Where Nt and No are the true and observed numbers

of cells, respectively. The mean diameter of a spinal

cord neuron in the lumbar segment was taken from

individual lamina reported by Molander et al. (1984).

These ranged from 5 lm in laminae I–III and X to

30 lm in lamina X. Thus, in the present experiments:

Nt5
ðN o 3 40 3 2Þ

ð401cell diameter Þ

where the Abercrombie correction factor applied for dif-

ferent laminae varied from 1.14 to 1.78.

All mean cell counts in the Results are Abercrombie-

corrected.

To generate “cluster” diagrams (Fig. 3), outlines were

drawn around groups of three or more cells that were

Spino-olivocerebellar paths
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less than 0.5 mm apart and the outlines from all cases

overlaid. Analysis of anterograde labeling in the cerebel-

lar cortex was carried out on every third sagittal section

of the cerebellum. The regional distribution of any

climbing fiber terminal labeling resulting from injection

of anterograde tracer into rDAO was denoted by hatch-

ing (e.g., Fig. 1E). The same method was used to chart

the extent of terminal labeling in rDAO resulting from

injection of anterograde tracer into GN (not shown). To

confirm direct projections to GN, in four animals the

DRG were also recovered and cut longitudinally (10

lm) on a cryostat and examined for retrograde cell

labeling of DRG neurons.

In different experiments either the red or green mix-

ture of tracers was injected into each target. However,

for clarity of presentation, and to allow data from multi-

ple cases to be pooled, all injections are illustrated as

though red tracers were injected into the left GN and

green tracers were injected into the right rDAO.

To quantify the distribution of retrogradely labeled

neurons in the spinal cord, each single- or double-

labeled neuron was assigned to a particular spinal cord

lamina (laminae I–II, III, IV, V–VI, VII–VIII, IX, X) or spi-

nal nucleus (lateral spinal nucleus, LSN). As the injec-

tions into rDAO resulted in two subpopulations within

laminae V–VI of segment L3 (see Results), this grouping

was further divided into two: a lateral and medial

region. The total number of neurons localized in each

group in lumbar segments L3, L4, and L5 was calcu-

lated, and the data from all experiments were pooled

Figure 1. Photomicrographs of anterograde and retrograde labeling. A: An example of anterogradely labeled terminal fibers (arrow) in con-

tralateral rostral dorsal accessory olive (DAO) as a result of injection of bidirectional tracer into the GN (case CFP78). PO, principal olive.

B: Low-power photomicrograph of retrogradely labeled neurons (arrows) in lumbar segment L3 arising from an injection into the GN (case

CFP104). Approximate outline of spinal cord gray matter is shown by dotted line. C: High-power photomicrograph of retrogradely labeled

cells (arrows) in the ipsilateral L4 dorsal root ganglion, following injection of retrograde tracer into GN (case CFP78). D: High-power photo-

micrographs of anterogradely labeled climbing fibers in contralateral cerebellar cortex arising from injection of bidirectional tracer into

rDAO (case CFP87). Arrowhead shows climbing fiber in molecular layer (ml) with arrow pointing to climbing fiber stem axon in granule cell

layer (gl). E: Standard sagittal outline of the cerebellar cortex 1.4 mm lateral from the midline with hatching to indicate location of antero-

gradely labeled climbing fibers after an injection into DAO in case CFP83. II–V, cerebellar lobules II–V; CI, crus I; CII, crus II; Cop, copula

pyramidis; PML, paramedian lobule; Sim, lobulus simplex. F: Low-power photomicrograph of retrogradely labeled spinal neurons (arrow) in

lumbar segment L3 following injection of retrograde tracer in DAO in case CFP104. Scale bars 5 200 lm in A,C; 500 lm in B,F; 50 lm in

D.

C.R. Flavell et al.
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and then compared using one-way analysis of variance

(ANOVA) and Tukey’s multiple comparisons test, using

the statistical analysis software GraphPad Prism v. 6.0

(San Diego, CA).

RESULTS

A total of 19 animals were used to study the spatial

distribution of spinal cord cells in the lumbar enlarge-

ment (L3–L5) that project to hindlimb-receiving parts of

the dorsal column nuclei (GN) or inferior olive (lateral

rDAO). In each animal one color of bidirectional tracer

mixture was injected into GN and the other color

injected into lateral rDAO. Injections of tracer into GN

were always contralateral to injections made into rDAO.

No differences were found in the numbers of spinal

neurons labeled from transport from red or green injec-

tion sites.

Injection sites in GN and rDAO
Because a mixture of anterograde and retrograde

tracer was used in each injection, it was possible to

gauge the extent to which the injection site in GN or

rDAO was on target for the hindlimb component of the

DF-SOCP and VF-SOCP, respectively. GN injections

were judged to be on target if: 1) the injection site was

centered on the transitional zone of GN (1–1.5 mm cau-

dal to obex; Molinari 1984); 2) anterogradely labeled

terminals were located in the lateral half of rDAO

(arrow, Fig. 1A); and 3) retrogradely labeled cell bodies

were located in the spinal cord (arrows, Fig. 1B). For all

GN injections (n 5 19) these criteria were met, although

the full extent of anterograde labeling in rDAO could

not be mapped as it was generally obscured, at least to

some extent, by the injection site of the other tracer

mix in rDAO. On average, 246 6 35 (mean 6 SEM) spi-

nal neurons were labeled in lumbar segments L3–L5

after injections into GN. In four animals the dorsal root

ganglia (DRG) for spinal segments L4 and L5 were also

studied, and in each case retrograde cell labeling (due

to transport in the dorsal column pathway) was also

found (arrows, Fig. 1C).

Injections into rDAO were judged to be on target if:

1) they were centered on the lateral part of rDAO; 2)

anterogradely labeled climbing fibers were present, but

not necessarily confined to, “hindlimb-receiving” areas

of the cerebellar cortex (copula pyramidis and paraver-

mal lobules I–IV (including presumably the hindlimb

parts of the C1 and C3 zones; Atkins and Apps, 1997;

Eisenman, 1981; Jorntell et al., 2000; Fig. 1D,E); and 3)

retrogradely labeled cell bodies were located in the spi-

nal cord (Fig. 1F). These criteria were satisfied in 13 of

the 19 cases. On average, 200 6 41 (mean 6 SEM) spi-

nal neurons were labeled in lumbar segments L3–L5

after injections into rDAO. This value was not signifi-

cantly different from the mean number of spinal neu-

rons labeled after injections into GN (P 5 0.40, Welch’s

unpaired t-test). However, it should be noted that the

possibility remains that differences in cell counts may

occur within segmental levels not studied in the present

experiments.

In two additional animals (cases CFP116 and 117) the

injection sites were localized above the rDAO and, in

common with injections into rDAO, a little tracer spread

along the dorsoventral pipette track through the brain-

stem. In both of these cases there were a few retro-

gradely labeled neurons in the spinal cord (10 and 14

cells in CFP116 and CFP117, respectively, located within

lamina V–VIII). No evidence of labeled climbing fibers

could be found in either case, although some labeled

mossy fibers were identified in CFP117 (not illustrated).

The low incidence of retrogradely labeled spinal neurons

in these two cases suggest that most of the retrogradely

labeled neurons in the spinal cord in the 13 double tracer

experiments selected for detailed analysis are likely to

have originated from deposition of tracer into rDAO

rather than areas immediately dorsal to it.

Distribution of spinal cord neurons following
injections into DAO and GN

An example of a double tracer experiment is shown

in Figure 2. Figure 2A,B illustrate the injection sites in

rDAO and GN, respectively. Typical of the material as a

whole, retrograde transport from the injections into

rDAO and GN labeled two almost entirely separate pop-

ulations of cells in lumbar segments of the spinal cord,

with no double-labeled cells found in L3–L5 (Fig. 2C). In

segments L3–L5, spinal neurons labeled from the injec-

tion site in GN were located predominantly within lam-

ina IV (arrow, Fig. 2C), representing 78% of the total

GN projecting cell population, while cells retrogradely

labeled from the injection site in rDAO were located

mainly within three territories: 1) the medial part of

lamina V in segment L3 (unfilled arrowhead, Fig. 2C),

representing 20% of the total rDAO projecting cell popu-

lation; 2) the lateral part of lamina V and adjacent

white matter in segment L3 (unfilled arrow), represent-

ing 10.5% of the total rDAO projecting cell population;

and 3) the medial part of laminae VII and VIII in L3–L5

(open arrowhead), representing 48% of the total rDAO

projecting population. A small area of overlap in the

two populations of single-labeled cells was present in

medial lamina V (filled arrowhead, L3).

To allow a detailed analysis of the distribution of GN-

projecting and rDAO-projecting spinal neurons, the

Spino-olivocerebellar paths
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maps of cell labeling from cases where injections were

judged to be centered on GN and rDAO were pooled

(n 5 13, Fig. 3). Figure 3A,B shows the total extent of

the injection sites (light shading) pooled for the 13

cases. The dark shading indicates “core” territories

where the injection sites overlapped in all cases. The

labeled spinal neurons in segments L3, L4, and L5

were assigned to individual lamina or spinal cord

regions (laminae I–II, III, IV, V–VI, VII–VIII, IX, X, LSN;

see Materials and Methods for further details).

Following injections into GN, the large majority of ret-

rogradely labeled cells were located in lamina IV, repre-

senting 77% of the total GN projecting cell population

for all cases pooled (magenta dots, Fig. 3C). The spatial

localization in lamina IV is highlighted by the “cluster”

analysis (Fig. 3D, see Materials and Methods for

details). Some cell labeling was also present in lamina

V and a few scattered cells were located in the LSN,

and ventromedially in laminae VI–IX and lamina X.

Neurons retrogradely labeled after injections into

rDAO (green dots, Fig. 3C) displayed a more complex

pattern of distribution that varied according to lumbar

segment. The spatial differences are highlighted by the

“cluster” analysis (Fig. 3D, see Materials and Methods

for details). Some retrograde cell labeling was present

in lamina X. However, the majority of cells retrogradely

labeled from the injection site in rDAO were located

mainly within three territories: i) the medial part of lam-

ina V in segment L3 (filled arrowhead, Fig. 3C), repre-

senting 19% of the total rDAO projecting cell population

of L3; ii) the lateral part of lamina V (including adjacent

white matter) in segment L3 (arrow, Fig. 3C), represent-

ing 3.5% of the total rDAO projecting cell population of

L3; and iii) the medial part of laminae VII and VIII (open

arrowhead), representing 36% of the total rDAO projec-

ting cell population). Populations (i) and (ii) were only

present in L3, while population (iii) was present

throughout L3, L4, and L5. In most cases a small area

of overlap of the two populations (GN and rDAO) of

single-labeled cells occurred medially in lamina V at

segmental level L3 (arrow, Fig. 3D). The number of GN

projection neurons in this area of overlap accounted for

less than 5% of the total cell population. For considera-

tion of cell double labeling, see below.

Figure 2. Distribution of spinal cord neurons following injections into rDAO and GN. Schematic transverse representations of injection

sites in rDAO (A), and GN (B) in case CFP89. Values for each level indicate approximate AP coordinates from Bregma (Paxinos and Wat-

son, 2005). ECN, external cuneate nucleus; DAO, dorsal accessory olive; GN, gracile nucleus; MAO, medial accessory olive; MCN, main

cuneate nucleus; PO, principal olive. C: Standard transverse outlines of the lumbar spinal cord depicting the pattern of retrograde cell

labeling in segmental levels L3, L4, and L5. Magenta dots denote cells labeled from the GN injection site. These are concentrated in a

mediolateral band within lamina IV (arrow); green dots denote cell labeling arising from the DAO injection site. Cell labeling from rDAO

form three populations: a cluster in the medial aspect of lamina V in L3 (filled arrowhead); a cluster in lateral lamina V and adjacent white

matter in L3 (unfilled arrow); and a cluster in the ventromedial aspect of lamina VII/VIII in L3, L4, and L5 (open arrowhead). Each dot rep-

resents an individual retrogradely labeled cell. Spinal laminae (I–X) according to Molander et al. (1984). LSN, lateral spinal nucleus; IML,

intermediolateral cell column. Scale bars 5 500 lm.
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Figure 4 is a quantitative analysis of cell counts in

different spinal regions in the three lumbar segments.

For GN projection neurons, significantly more labeled

neurons were located within lamina IV than in any other

spinal region throughout segments L3–L5 (dark blue

bars, Fig. 4A, L3: F(7,96) 5 39.11 P< 0.0001; L4:

F(7,93) 5 37.71, P< 0.0001; L5: F(7,93) 5 73.97, P<

0.0001, n 5 13; one-way ANOVA and Tukey’s multiple

comparison test). By comparison, for rDAO projection

neurons, in segment L3 significantly more labeled neu-

rons were located in medial laminae V–VI, compared to

every other group (dark green bar, Fig. 4B,

F(8,108) 5 14.07, P< 0.0001, n 5 13; one-way ANOVA

and Tukey’s multiple comparison test). While in seg-

ments L4 and L5, there were significantly more rDAO

projection neurons localized to laminae VII–VIII than

Figure 3. Overall distributions of spinal neurons that project to the GN and rDAO. A,B: Schematic transverse outlines of GN and DAO to

show location of all injections sites considered for detailed analysis (n 5 13). Dark shading shows core injection site area of all cases; light

shading shows maximum extent of injection sites. C: Pooled data from all double bidirectional tracer experiments to illustrate the distribu-

tions of neurons retrogradely labeled from injection sites centered on GN (magenta) and rDAO (green) in lumbar segments L3, L4, and L5.

Each dot indicates a retrogradely labeled cell. Three populations of cells were retrogradely labeled from the injection site in rDAO: i) Filled

arrowhead indicates location of cells in the medial part of lamina V in segment L3; ii) arrow indicates location of cells in lateral part of

lamina V and adjacent white matter in segment L3; and iii) open arrowhead indicates the cell population in the medial part of laminae VII

and VIII in L3, L4, and L5. D: Same segments showing data for each case depicted as outlines of "clusters" of neurons. Magenta outlines

show regions projecting to GN, green outlines show regions projecting to rDAO. See Materials and Methods for further details. Arrow indi-

cates main region of overlap of magenta and green outlines. Scale bar 5 500 lm.
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any other group (orange bars Fig. 4B, L4: F(7,96) 5

27.49, P< 0.0001, L5: F(7,96) 5 17.73, P< 0.0001,

n 5 13; one-way ANOVA and Tukey’s multiple compari-

son test).

Lack of double-labeled neurons following
retrograde tracer injections into GN and
DAO

In six additional double tracer experiments, Retro-

beads were used as retrograde tracers to reliably iden-

tify double-labeled cells (see Materials and Methods for

further details). Figure 5A,B illustrate retrogradely

labeled cells in the spinal cord from injection sites in

GN and rDAO. In all six experiments there was a close

correspondence between the spatial distribution of

single-labeled cells in the spinal cord and the overall

pattern obtained for the more extensive bidirectional

tracer experiments (compare upper row Fig. 5E with

Figs. 2 and 3). Only 10 double-labeled spinal neurons

were ever found (lower row Fig. 5E, blue crosses), rep-

resenting just 1.4% and 0.7%, respectively, of the total

single tracer cell populations arising from GN and rDAO

injections. The double-labeled cells were located mainly

in laminae V/VI in spinal segments L4 and L5 in

regions where there was also some overlap of the two

single-labeled cell populations.

To control for the possibility that the low numbers of

double-labeled cells found may be due to limitations of

the methods used, a control experiment was carried

out in which a 1:1 mix of red and green Retrobeads

was injected into the gracile nucleus (see Materials and

Methods). In a sample of sections from lumbar seg-

ments L3–L5 a total of 54 red and 53 green retro-

gradely labeled cells were found. The percentage that

were double-labeled was 96.4% and 94.6%, respectively,

demonstrating that both tracers had very similar trans-

port characteristics. The low number of doubles found

in the experiments was therefore likely to be a reliable

result.

DISCUSSION

The present study used a dual tracer strategy in rat

to allow direct comparison of the spatial distributions of

spinal cord cells of origin of the hindlimb components

of the DF- and VF-SOCPs. The key findings were that:

1) the two groups of projection neurons were found to

occupy mainly separate areas of the lumbar spinal

cord; 2) there is a small area of overlap in the medial

half of lamina IV–V in L3 but in this region of overlap,

the two populations of cells are intermingled with very

few double-labeled cells; and 3) there are differences

between rat and cat in the spatial organization of

spino-olivary paths.

Comparison with previous anatomical
studies of spino-olivary projections

In the current study, spinal neurons in the lumbar

enlargement that project directly to rDAO (and are

therefore likely to include cells of origin of VF-SOCPs

targeting the hindlimb parts of the cerebellar cortical

C1 and C3 zones) were located in three spatially

distinct populations: i) in the medial aspect of laminae

V–VI; ii) in the ventromedial ventral horn (laminae VII–

VIII); and iii) in the lateral aspect of lamina V.

Previously, the most detailed anatomical study (in the

cat) of lumbar spino-olivary pathways targeting the DAO

also concluded there were three distinct populations of

Figure 4. Quantitative analysis of lamina distribution of L3–L5

spinal projection neurons. A: Histogram plots mean cell counts

per spinal laminae and spinal nuclei for segmental levels L3–L5

arising from injections into GN. B: Histogram plots mean cell

counts per spinal laminae and spinal nuclei for segmental levels

L3–L5 arising from injections into rDAO. Counts are Abercrombie-

corrected (see Materials and Methods for further details). Data

are plotted as mean 6 SEM, n 5 13 double tracer experiments.

Statistical comparisons (one-way ANOVA and Tukey’s multiple

comparisons test) were made between laminae at each segmen-

tal level, ***P< 0.001. LSN, lateral spinal nucleus.
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neurons: a group in the dorsal horn (central part of lam-

ina V), a group in the ventromedial ventral horn, and a

third group in the white matter immediately adjacent to

the dorsal horn (Molinari, 1984). It was unclear if a

fourth group in the intermediate gray matter (lamina

VI/VII) was the result of retrograde transport from the

olive or the neighboring reticular formation. Our findings

in rat are in general agreement with these results, sug-

gesting similar principles of organization of spino-olivary

projections across species (Brown et al., 1977; Arm-

strong and Schild, 1980; Richmond et al., 1982; Arm-

strong et al., 1982; Molinari, 1984; McCurdy et al.,

1998). However, our results also suggest that the group

of projection neurons in lamina V are closer to the mid-

line than previously described. This is consistent with a

previous study in rat (Swenson and Castro, 1983) using

horseradish peroxidase (HRP) as a retrograde tracer,

where two populations of spino-olivary cells were

reported: one group dorsomedially and a second group

ventromedially, although these were reported only at

more rostral segments of the lumbar cord (L1–L3).

Swenson and Castro (1983) failed to identify a third

population of projection neurons in lateral lamina V.

This and the absence of cell labeling in more caudal

lumbar segments in their study may be attributed to

their use of a less sensitive retrograde tracer.

It is also of interest to compare the present findings

with those of Armstrong et al. (1982), who correlated

the location of injection sites centered on rostral and

caudal parts of the olive in cat with the known electro-

physiological properties of subpaths within the VF-

SOCP and their different zonal targets in the cerebellar

cortex (Oscarsson and Sjolund, 1977a–c). Armstrong

et al. (1982; see also Molinari 1984, 1985) suggested

that cells in the lumbosacral cord retrogradely labeled

in the dorsal horn, intermediate gray, and in the ventro-

medial ventral horn were spinal relays for the hindlimb

components respectively of the C1 and C3 zone VF-

SOCP (relayed via rDAO), the B zone VF-SOCP (relayed

via caudal DAO), and the A zone VF-SOCP (relayed via

the caudal medial accessory olive, MAO). The present

results challenge this interpretation and instead support

the view that in rats the different populations of cells in

the lumbar cord (except perhaps cells in the intermedi-

ate gray) all provide projections to rDAO and are there-

fore spinal relays for the hindlimb C1 and C3 zone VF-

SOCP. The possibility remains to be tested whether the

same regions of spinal cord also provide projections to

Figure 5. Lack of double-labeled neurons following retrograde tracer injections into GN and DAO. A–C: High-power photomicrographs

showing an example double-labeled cell in case CFP111 (A, field viewed for green fluorescence; B, same field viewed for red fluorescence;

C, both views combined). D: Injection sites in GN and rDAO. E: Upper panel, distribution of magenta and green single-labeled cells in spi-

nal cord segmental levels L3–L5. Each dot represents an individual labeled cell. Lower panel, distribution of double-labeled cells (blue

crosses). Same abbreviations as in Fig. 2. Scale bar 5 50 lm in C (applies to A,B).
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other parts of the olive involved in VF-SOCP subpaths

that target other cerebellar cortical zones.

Comparison with previous anatomical
studies of the postsynaptic dorsal column
projection

Previous retrograde tracer studies in rats have identi-

fied a mediolateral band of cells in laminae III/IV and

to a lesser extent cells in lamina X as the source of the

PSDC projection to GN (de Pommery et al., 1984; Gies-

ler et al., 1984). The present results are in good agree-

ment with this but indicate that in lumbar segments

L3–L5, lamina IV is by far the largest source of the pro-

jection in rats. Some retrogradely labeled cells were

also noted in lamina V. This is similar to the location of

cells of origin of the PSDC in cat which has been

reported as originating primarily from ventral parts of

nucleus proprius (i.e., laminae IV/V; Rustioni and

Kaufman, 1977; Bennett et al., 1983; Enevoldson and

Gordon, 1989). In the present study some scattered

cell labeling was also found in the lateral spinal nucleus

and in other laminae, notably laminae VII and VIII. Gies-

ler et al. (1984) noted in rat that spread of injectate

into the reticular formation underlying the DCN resulted

in cell labeling in deeper laminae. This raises the possi-

bility that in our experiments the diffuse cell labeling

found in these additional spinal cord areas was due to

some spread of the GN injection sites ventrally. For

example, spinoreticular projections originate from cells

in deeper laminae (Chaouch et al., 1983), while the

nucleus of the solitary tract, which lies immediately

below the GN, receives projections from the lateral spi-

nal nucleus (e.g., Men�etrey and Basbaum, 1987;

Esteves et al., 1993; Gamboa-Esteves et al., 2001;

Gamboa-Esteves et al., 2004).

Spatial separation of GN and DAO projection
neurons in the spinal cord

A unique aspect of the present study was that the

spinal origins of direct and indirect SOCPs could be

compared directly in the same animal. Fluorescent

microspheres were used as retrograde tracers, which

are highly effective as double retrograde tracers (Katz

et al., 1984; Hudson and Lumb, 1996; Apps and Gar-

wicz, 2000; Apps and Ruigrok, 2007; Schofield et al.,

2007; Herrero et al., 2012). It therefore seems unlikely

that the small number of double-labeled cells detected

was due to any limitations of the methods used. This is

supported by the finding that in our control experiment

we obtained nearly 100% double-labeled cells when the

Retrobeads were mixed in a 1:1 ratio. Additionally, the

two single-labeled cell populations were located mainly

in spatially separate areas of the lumbar cord with only

very limited overlap.

Concluding comments
The hindlimb C1 and C3 zone VF- and DF-SOCPs

share a number of physiological features in common.

Namely, climbing fiber projection to the same cerebellar

cortical zones, large receptive fields, and they both

exhibit extensive multimodal convergence of peripheral

afferents (low and high threshold cutaneous and group

II/III muscle afferents; Oscarsson, 1969; Oscarsson and

Sjolund, 1977a–c; Ekerot and Larson, 1979a,b). This

suggests that both SOCPs are unlikely to forward spe-

cific sensory information from the periphery, for exam-

ple, relating to the stimulation of a particular receptive

field, but instead forward a highly integrated signal con-

cerning primary afferent influence on spinal circuits

(Oscarsson, 1967, 1968, 1969). However, the two path-

ways also display a number of important differences.

The C1 and C3 zone VF-SOCPs are monosynaptically

activated by peripheral sensory inputs and therefore

represent the most direct of all SOCPs, with only a

disynaptic link between the periphery and climbing fiber

terminals in the cerebellar cortex (Sjolund, 1978). In

addition, transmission in these pathways is little influ-

enced by descending control systems (Andersson and

Sjolund, 1978; Sjolund, 1978), i.e., this channel offers a

potentially “secure route” by which information from

the spinal cord can influence cerebellar circuitry. By

contrast, the C1 and C3 zone DF-SOCPs include cells

of origin of the PSDC and have additional brainstem

relays within DCN and are subject to substantial

descending control at spinal and supraspinal levels

(Andersson, 1984; Noble and Riddell, 1989). This infor-

mation channel therefore has the potential to be modu-

lated during behavior, as seen in a range of task-

dependent settings for DF-SOCP projections to the fore-

limb C1 and C3 zones (e.g., Apps et al., 1995, 1997;

Apps and Lee, 2002).

With regard to the PSDC, the experimental

approaches used in the present study do not allow us

to determine whether or not there are two independent

components—one that forwards information to the thala-

mus, the other that forwards information to the olive,

and then on to the C1 and C3 zones of the cerebellar

cortex. Future studies are required to establish whether

this important distinction exists, since this is of consid-

erable functional significance in terms of identifying the

level of the neuraxis at which sensory and motor sys-

tems become segregated.

In summary, the present study demonstrates that the

direct VF-SOCP spinal projection to rDAO arises from

spatially distinct areas of the spinal cord compared to

C.R. Flavell et al.
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the indirect DF-SOCP. The spatial separation of these

two populations of neurons permits transmission and/

or regulation of functionally independent channels of

information to olivocerebellar climbing fibers terminat-

ing in the hindlimb C1 and C3 zones. Given that the

PSDC has important somatosensory functions (e.g., Wil-

lis and Coggeshall, 2004; Palecek, 2004) and is subject

to descending control, this pathway may form the sub-

strate for parallel processing of sensorimotor informa-

tion prior to feeding into cerebellar circuits.
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