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Abstract Nitryl chloride (ClNO2) acts as a source of highly reactive chlorine atoms as well as an
important NOx reservoir. Measurements of ClNO2 at an operational U.K. landfill site are reported here for
the first time. A peak concentration of 4 ppb of ClNO2 was found with a peak mean nighttime maximum of
0.9 ppb. Using models based upon the photolysis of observed ClNO2 and atmospheric chlorine chemistry,
chlorine atom concentrations reaching in excess of 1.20 × 105 molecules/cm3 in the early morning following
sunrise are calculated. These concentrations are approximately 10 times higher than previously reported in
the United Kingdom, suggesting a significant impact on the oxidizing capacity around such sites. Given the
ubiquity of landfill sites regionally and globally, and the large abundances of Cl atoms from the photolysis of
ClNO2, chlorine chemistry has a significant impact on ozone formation and volatile organic compounds
oxidation as shown by WRF‐Chem modeling.

Plain Language Summary Landfill sites are a known source of traces gases into the atmosphere,
but measurements often focus predominately on methane and carbon dioxide. A small subsection of trace
gas measurements at landfill sites have shown, however, that these sites may be important halogen sources
that could have subsequent impacts on air quality and climate. Spatially limited field measurements have
previously been reported of a halogen species, ClNO2, showing that this species is consistently formed
during nighttime hours, but no such measurements before now have been made at any landfill site. ClNO2

undergoes photolysis upon sunrise, releasing the extremely reactive Cl as well as NO2 into the atmosphere
and therefore plays an important part in the total budget and distribution of tropospheric oxidants,
halogens, and reactive nitrogen species, all of which are important to air quality. Here we present mass
spectrometry measurements of ClNO2 taken at an undisclosed landfill, which show high concentrations in
comparison to any other global study of this type. We use predictive modeling techniques to show the
importance of this halogen species to air quality, using indicators such as ozone formation. Based on these
results we recommend that landfill sources of Cl should be included in future air quality studies.

1. Introduction

Landfill gas is a product of the natural biological decomposition of waste material deposited in landfills, typi-
cally characterized by production of methane and carbon dioxide (Farquhar & Rovers, 1973). Emissions of
other trace gases from landfill sites are potentially large but often uncharacterized and poorly sampled, with
implications for local and regional air quality. Allen et al. (1997) have shown that trace gases other than CO2

and CH4 are present in landfill gas and that they are formed from intermediate biochemical reactions asso-
ciated with degradation processes or directly from the degradation and volatilization of certain materials.
The impact of these trace gases on air quality and thus human health may be more significant than that
of the bulk gases (Chiriac et al., 2007). Keller (1988) showed that the traces gases found in landfill gas are
composed of saturated and unsaturated hydrocarbons, acidic hydrocarbons, sulfur compounds, and haloge-
nated compounds. Allen et al. (1997) and Chiriac et al. (2007) provided information on emissions of halogen‐
containing compounds from landfill, showing that emissions of such species depend highly on temperature
and waste composition as well as the use of compaction vehicles. The principle sources of these volatile
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organic compound (VOC) emissions are due to faults in capping or gas collection, open leachate chambers,
faults in the liners and covers of closed cells, and finally open cells (Chiriac et al., 2007). Studies such as
Eklund et al. (1998) and Schweigkofler and Niessner (1999) have completed measurements of VOC concen-
trations at various landfill sites, with these studies suggesting that halogen chemistry may be important in
landfill sites. Studies focusing on the emission of precursors to reactive chlorine from Landfill sites are how-
ever very limited.

The heterogeneous reaction of N2O5 and chloride containing aerosol was first shown in the laboratory to
produce ClNO2 by Finlayson‐Pitts et al. (1989) and recently there has been considerable interest in fieldmea-
surements of ClNO2 in both continental and polluted coastal sites, with reported concentrations ranging
between a few parts per trillion and 4 ppb (Osthoff et al., 2008; Kercher et al., 2009; Thornton et al., 2010;
Mielke et al., 2011; Riedel et al., 2012; Phillips et al., 2012; Mielke et al., 2013; Tham et al., 2014; Mielke
et al., 2015; Bannan et al., 2015; Wang et al., 2016, 2017; Osthoff et al., 2018; Priestley et al., 2018) as well
as modeling the importance of chlorine chemistry (e.g., McFiggans et al., 2012; Sarwar et al., 2012; Sarwar
et al., 2014; Sommariva et al., 2018). No such data from locations such as landfill sites as yet exists despite
suggestions of a large source of halogens in such environments (Eklund et al., 1998).

Recent studies have shown that Cl atoms from photolysis of ClNO2 can contribute significantly to the total
oxidizing capacity (Bannan et al., 2015; Osthoff et al., 2008; Phillips et al., 2012; Tham et al., 2014). Cl atoms
are highly reactive toward VOCs and rate coefficients for their reactions with alkanes are generally 2 orders
of magnitude larger than those for OH. As oxidation reactions in the troposphere govern the fate of primary
pollutants they have an important influence on air quality, climate, and tropospheric ozone production
(Prinn, 2003). ClNO2 can also have an important influence on NOx lifetimes (Osthoff et al., 2008). Despite
this, such chemistry is sparsely constrained by measurements. As landfill sites are a potential source of gas-
eous halogens, there is a potentially large source of ClNO2 as yet unquantified. The highly reactive Cl atoms
released from this source are likely to have a significant impact on oxidizing capacity that is as yet unquan-
tified regionally or globally if ClNO2 is consistently found to be present in significant quantities.

In order to assess the impact that ClNO2 has on boundary layer chemistry around landfill sites, a measure-
ment campaign with the aim of measuring ClNO2 using a quadrupole chemical ionization mass spectro-
meter (CIMS) was completed. The effect that Cl from the photolysis of ClNO2 has on the total
tropospheric oxidizing capacity at this landfill site is evaluated by the method explained in Bannan et al.
(2015); Bannan, Bacak, et al. (2017) and also by WRF‐Chem regional model.

2. Materials and Methods
2.1. Experimental Site

The landfill site for this measurement campaign, as part of the Greenhouse gAs Uk and Global Emission
(Palmer et al., 2018), will remain anonymous. Measurements were made in August 2014. This specific land-
fill site accepts a typical, wide range of nonhazardous domestic and commercial waste, occupying around
330,000 m2, and accepts waste on weekdays and Saturdays. The active waste is covered daily by soil and inert
materials and the site is equipped with an active gas control system that is made up of a network of extraction
cells connected to four landfill gas engine engines. This landfill site is generally typical of U.K. landfill sites in
both size and the waste is accepts and will assumed to be so in the analysis of this study. The landfill site is in
close proximity (<5 km) to the center of a large unnamed town and very close proximity (approximately 500
m) to a busy A road.

The site has an active leachate management system, which treats landfill leachate prior to discharge to
sewer. The leachate treatment plant next to the landfill site is a combination of an aeration tank and an ultra-
filtration unit and operates continuously. It is likely that the aeration tank is a source of local elevated VOCs
as landfill leachate is a complex mixture of trace constituents and water. These trace constituents will be a
combination of salts, organic compounds and likely small traces of halogenated compounds based on the
use of Cl‐base degreasers that is aerated aggressively to reduce the amount of ammonia and organics present
before discharge to the sewer. This is a process that potentially volatilizes any Cl‐containing species in the
mixture. Volatile organic halogenated compounds from this source are however unlikely to contribute to
the ClNO2 production seen at this site.
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This site is not permitted to accept hazardous wastes, and as a result, any material containing readily liber-
ated chlorine being accepted in any quantity is unlikely. Chlorine‐containing materials that could enter the
site would include the following: polyvinyl chloride, nonhazardous materials containing NaCl (wood, food,
and consumer products) ,and certain domestic materials.

Bleaches and other cleaning materials containing free‐Cl may be used in small quantities at the site for nor-
mal domestic purposes such as cleaning in offices. The wastewater from such activities would be directed to
the sewerage system and not to the landfill site. The site is regulated under an Environmental Permit and
any large‐scale use of Cl‐containing bleaches within the permitted boundary is unlikely to occur since this
would breach the conditions of the permit. In addition, Cl‐containing bleaches are detrimental to the micro-
biological processes active on site within the waste mass and the leachate treatment process so their use
would not be desirable.

The quadrupole CIMS, various methane/CO2 analyzers, and basic meteorological instrumentation were
deployed in this exploratory study. Factors that can affect ClNO2 production such as O3, NOy, aerosol surface
area, aerosol composition, and humidity were not measured and are not therefore be reported. A process
based study to ascertain which specific molecules and pathways contribute to ClNO2 production at landfills
is the next important step but is beyond the scope of the work.

2.2. CIMS

A quadrupole CIMS using iodide reagent ion was used to make measurements of ClNO2 and was deployed
around 200 m from the active filling site, and around 50 m from the nearest closed cell. The measurements
presented here have an identical set up, including the inlet, to measurements described in Bannan et al.
(2014), Bannan, Bacak, et al. (2017), Bannan, Murray Booth, et al. (2017). ClNO2 was measured at m/z
207.9 (I.ClNO2). N2O5 was measured as a fragment at m/z 62 (NO3−) as in Le Breton et al. (2014) and at
m/z 235 (I.N2O5

‐) but a large daytime signal (nonlinear between the two) at this site implied a significant
interference at both masses and rendered this measurement unusable.

Final calibration was completed postcampaign for ClNO2, relative to formic acid, which was calibrated for
and measured throughout assuming the ratio between formic acid and ClNO2 sensitivity remains constant.
Procedures for calibrations, determination of backgrounds for ClNO2 and the associated uncertainties are
described by Bannan et al. (2015), Bannan, Bacak, et al. (2017). Sensitivity for N2O5 is required first before
the sensitivity of the instrument to ClNO2 can be determined. Calibration of N2O5 was completed by flowing
dry N2 over solid, purified N2O5 into the CIMS and a NOx analyzer (Thermo Fisher, model 42i NO‐NO2‐NOx

Analyzer), with the concentration determined by the stoichiometric ratio of NO2:N2O5. There have been
reported instances where the NOx analyzer is sensitive to NO3, thus having the potential to influence the
reported concentrations of N2O5. However, numerous intercomparisons with the broadband cavity
enhanced absorption spectrometer, including Le Breton et al. (2014), Bannan, Bacak, et al. (2017), and
Zhou et al. (2018) show that this calibration is robust. The possible interference of NOy on the NOx analyzer
is therefore not deemed important. ClNO2 was produced by flowing a known concentration of N2O5 in dry
N2 through a wetted NaCl scrubber. Conversion of N2O5 to ClNO2 can be as efficient as 100% on sea salt, but
it can also be lower, for example if ClNO2 were to convert to Cl2 (Roberts et al., 2008). For NaCl the conver-
sion efficiency has been as low as 60% (Hoffman et al., 2003). In this calibration we have followed the
accepted methods of Osthoff et al. (2008) and Kercher et al. (2009) that show a conversion yield of 100%
and have assumed this yield here. The sensitivity for ClNO2 was 4.1 counts per parts per trillion and the
3σ ClNO2 limit of detection (LOD) was 5 ppt.

2.3. UGGA

CH4 measurements were made using an Ultra‐portable Greenhouse Gas Analyser (UGGA; Los Gatos
Research, USA); technical information regarding this spectroscopic technique is given by Paul et al.
(2001). Due to its better portability, the UGGA was not colocated with the CIMS but instead was positioned
at the edge of a closed landfill cell, adjacent to the active filling area. The noncontinuous CH4 measurements
provide representative values for the on‐site landfill environment that enable a loss rate for atomic Cl to be
calculated, as described subsequently. Laboratory calibrations using certified references before and after the
deployment fell within the 1% absolute uncertainty quoted by the manufacturer.
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2.4. Modeling

The potential importance of ClNO2 acting as a source of Cl atoms can be inspected using a simple model,
assuming the following reactions govern the steady state concentration of Cl. It should be noted that this
is clearly a simplification as there will inevitably be additional sources and losses of the Cl atom.

ClNO2 þ hv→ClþNO2 (R1)

Clþ O3→ClOþ O2 (R2)

Clþ CH4→HClþ products (R3)

Clþ C6H6→products (R4)

Clþ C5H10→products (R5)

Clþ C7H8→products (R6)

ClþH2S→products (R7)

Cl½ � steady state ¼ J1 ClNO2½ �f g= k2 O3½ � þ k3 CH4½ � þ k4 C6H6½ � þ k5 C5H10½ � þ k6 C7H8½ � þ k7 H2S½ �f g

C6H6, C5H10, C7H8, and H2S were not concurrently measured in this study but have been previously mea-
sured as part of local monitoring of this U.K. landfill site. Historical Gas chromatography mass spectrometry
(GCMS) measurements used for the calculations of this study were made by sampling the main gas collec-
tion line directly before the waste gas goes through the onsite blowers. The concentrations used in the cal-
culations presented here are then scaled to the measured ambient CH4 concentration during this study.
Again this is clearly a simplification with associated unquantifiable errors; however, given the lack of asso-
ciated measurements concurrent with the CIMS and UGGAmeasurements, a complete as possible loss term
for the Cl is presented here.

The amount of Cl generated from landfill sites is also quantified by incorporating the emissions of ClNO2

(scaled from the concentrations of ClNO2 in this study) and landfill sites in England (https://data.gov.uk/
dataset/ad695596‐d71d‐4cbb‐8e32‐99108371c0ee/permitted‐waste‐sites‐authorised‐landfill‐site‐boundaries)
into the mesoscale nonhydrostatic 3‐D meteorological model, WRF‐Chem (Archer‐Nicholls et al., 2014). By
considering the production of Cl from the photolysis of ClNO2 and the losses of Cl by the reactions with
ozone and all modeled VOCs, the concentration of Cl was calculated in the model. The rate coefficients were
taken from NIST Chemical Kinetics Database (https://kinetics.nist.gov/kinetics/index.jsp). To determine
the effect of Cl on tropospheric ozone, we compared themodel run that included the emission of ClNO2 from
landfill sites to a base case experiment that omitted this emission. The reactivity comparison between VOCs
+ Cl and VOCs + OH is also investigated using WRF‐Chem model study.

The approximate calculation we present here assumes that the landfill is releasing ClNO2 at a constant rate
to give a 24‐hr average level of ClNO2 consistent with that observed at the site of approximately 350 ppt. We
also assume that the emission is from an approximate area of 4 km2 into a boundary layer with an approx-
imate height of 0.5 km.

3. Results

The complete time series of ClNO2 is shown in Figure 1a, with concentrations far exceeding the LOD on
every night of the measurement campaign. A mean nighttime peak ClNO2 concentration of 901 ppt was
observed with a maximum peak of 4075 ppt, but only for a very brief period of time. The measured ClNO2

concentrations are substantially higher than that of other reported U.K. measurements of ClNO2 in
London (Bannan et al., 2015) where a mean nighttime ClNO2 concentration of 84 ppt was observed and a
maximum peak of 724 ppt and considerably higher than those reported in other U.K. measurements
(Bannan, Bacak, et al., 2017; Priestley et al., 2018; Sommariva et al., 2018). It is interesting to note that the
Sunday (10 August 2014) during the measurement period, on the day there is no waste disposal and active
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filling, shows the lowest reported measured peak concentrations, but given the relativity short measurement
period, a second Sunday measurement was not possible. It is, however, noted that the delivery of waste is
only likely to be significant in terms of atmospheric emissions due to the number of vehicle movements
as the emissions from the site are thought not to vary significantly day‐to‐day. Comparable with
previously reported measurements of ClNO2, a very obvious diurnal profile, linked to production and
photolysis was observed in the ClNO2 (e.g. Kercher et al., 2009; Mielke et al., 2011; Osthoff et al., 2008;
Thornton et al., 2010). Concentrations of ClNO2 above the LOD were measured, on average, until 11 a.m.
and then built up again following sunset with a mean peak of 901 ppt (Figure 1b).

Figure 2 illustrates that the vast majority of the high ClNO2 concentrations arise from the wind sector in
which the landfill site is located (active filling site is NW) or during more stagnant winds. There is also a sug-
gestion of elevated concentrations in the sector associated with the sewage treatment works, but this is not
correlated with the largest enhancements seen during these measurements. The vast majority of the largest
enhancements coming from the landfill site sector enhances our confidence in the conclusion that the land-
fill site is the source of such elevated ClNO2 concentrations rather than the nearby large road (SE direction)
and the large town also in the SE direction.

While Keller (1988), Allen et al. (1997), and Chiriac et al. (2007) measured a comprehensive suite of haloge-
nated compounds in landfills, the tropospheric lifetimes of the detected species range from 12 to hundreds of
years and thus will not contribute to chlorine loading observed here. It is reiterated that a process based
study to ascertain which specific molecules and pathways contribute to ClNO2 production at landfills is
the next important step, as is the measurement of such species at other landfill sites.

3.1. Implications for VOC Oxidation

Figure 3a shows that calculated steady state Cl atom concentrations rise rapidly after sunrise, with the peak
around 1.24 × 105 atoms cm3, calculated specifically at the measurement site (R1‐7). In Weybourne the Cl
atom concentrations reached 6 × 103 atoms cm3, in comparison with the 1 × 104 atoms cm3 reported in
London, using similar methods. The steady state Cl atom concentrations are comparable to the regional

Figure 1. (a) Time series of ClNO2 from the Manchester ground CIMS. (b) Mean diurnal cycle of ClNO2 for the complete
landfill measurement campaign (red). The box and whisker plots show the, median, 5th and 95th percentiles of ClNO2,
with the red crosses with connecting lines illustrating themean values, again for the landfill site. Data between 11 a.m. and
5:30 p.m. whose mean values are below the LOD (signified by the blue line) are excluded from statistical analysis. For
comparison the mean ClNO2 concentration from London (black) andWeybourne are also shown (purple). LOD= limit of
detection.
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modeling WRF‐Chem study that produces 1.25 × 105 cm3 of Cl in different parts of the United Kingdom
(Figures 3b and S1 in the supporting information). The Cl produced from the landfill sites can have a signif-
icant impact on ozone levels with increases up to 5 ppb in the polluted cities of the United Kingdom
(Figures 3c and S2). The ratio of the loss rates of VOC (e.g., CH4) by Cl and OH show that VOCs are often
removed more effectively by Cl. The removal of CH4 by Cl can be up to 100 times faster in some parts of
the United Kingdom (Figure 3d) than by OH and Cl can also significantly impact ethane, isoprene, 1,3‐
butadiene and toluene oxidation (Figure S3).

Based on the approximate calculation we present here the annual ClNO2 production from the landfill is
approximately 900 kg/year. There may be uncertainty in the estimates presented here but if our best esti-
mates of emission are correct then landfills are indeed a considerable source of ClNO2 and should be consid-
ered in future studies. Clearly, further work is necessary to establish more accurate emissions estimates and
the reproducibility across multiple landfills.

In Bannan et al. (2015), Bannan, Bacak, et al. (2017) chlorine was recycled by a number of chemical path-
ways, but these reactions are not included in the calculations presented here, meaning that the Cl atoms per-
sisted longer into the day in comparison with the calculations of this study where recycling is not considered.
There are also many other species, many of which can be measured by the I− CIMS, that are not reported
here that would have likely increased the concentration of chlorine at this site (e.g., HCl and HOCl). A much
increased measurement capability by coupling a time of flight analyzer to the chemical ionization source
would also give a more complete chlorine source from this site (e.g., Le Breton et al., 2018; Priestley et al.,
2018) as well as other halogen species (e.g., Le Breton et al., 2017). In both regard the simple calculations
and incomplete measurement suite presented here represent a lower limit to the total Cl released from this
source and more detailed chemistry could enhance the impact of the Cl source from this site. In the steady

Figure 2. ClNO2 concentrations as a function of wind speed (m/s) and direction for the complete time period these data
are available. Size of the markers also depicts the concentration of ClNO2. Boxed areas show general direction but not
relative distance of the landfill (Colored red and nearest point 50 m away), sewage treatment (colored blue and situated
around 50 m away), and the nearest town (colored orange and 5 mi to the center of the town). The north sector is free of
data due to a local obstruction in this direction.
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state calculation the reaction of Cl with CH4, among a limited selected others, is used to calculate the loss
rate, with the assumption that while other species may be important, the very high methane
concentration typical of landfill would be expected to be the dominant reaction pathway for Cl loss.
Therefore, a lower limit of Cl loss is also calculated. Despite these acknowledged simplicities in the

Figure 3. (a) Average calculated diurnal Cl atom concentration profile from the landfill study (red). Cl atom concentration profiles calculated from London (blue)
and Weybourne (black) are shown for comparison. (b) WRF‐Chem simulations of Cl calculated from incorporating the emissions of ClNO2 scaled from the con-
centrations of ClNO2 in this study to all active U.K. landfill sites at 9 a.m. (c) Enhancement of tropospheric ozone considering the production of Cl from U.K.
landfills at 9 a m. (d) Reactivity comparison between VOCs + Cl and VOCs + OH using WRF‐Chem model study at 9 a m. VOC = volatile organic compound.
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chemistry, as a first measurement of this type at a landfill site, it gauges the importance of chlorine chemistry
in such locations. Given the measurements and model calculations presented here the importance of chlor-
ine chemistry at sites of this type is significant, especially given the ubiquity of landfill sites.

4. Conclusions

Significant nighttime concentrations of up to 4 ppb of ClNO2 at a landfill site in the United Kingdom have
beenmeasured using a quadrupole CIMSwith I‐ionization scheme. Amean nighttime peak concentration of
901 ppt suggests that the production of this species is a common occurrence at landfill sites and very simple
calculations have shown that this source of Cl alone is significant and much higher than has reported in
other measurements of this type in the United Kingdom. This is the first time a measurement of this type
has been made at such a site and suggests that chorine chemistry at landfill sites is important to consider,
especially given the ubiquity of landfill sites in the United Kingdom and globally.
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