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Abstract 

Astrocytes are now increasingly acknowledged as having fundamental and 

sophisticated roles in brain function and dysfunction. Unravelling the complex 

mechanisms that underlie human brain astrocyte-neuron interactions is therefore an 

essential step on the way to understanding how the brain operates. Insights into 

astrocyte function to date, have almost exclusively been derived from studies 

conducted using murine or rodent models. Whilst these have led to significant 

discoveries, preliminary work with human astrocytes has revealed a hitherto 
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unknown range of astrocyte types with potentially greater functional complexity and 

increased neuronal interaction with respect to animal astrocytes. It is becoming 

apparent, therefore, that many important functions of astrocytes will only be 

discovered by direct physiological interrogation of human astrocytes. Recent 

advancements in the field of stem cell biology have provided a source of human 

based models. These will provide a platform to facilitate our understanding of normal 

astrocyte functions as well as their role in CNS pathology. A number of recent 

studies have demonstrated that stem cell derived astrocytes exhibit a range of 

properties, suggesting that they may be functionally equivalent to their in vivo 

counterparts. Further validation against in vivo models will ultimately confirm the 

future utility of these stem-cell based approaches in fulfilling the need for human- 

based cellular models for basic and clinical research. In this review we discuss the 

roles of astrocytes in the brain and highlight the extent to which human stem cell 

derived astrocytes have demonstrated functional activities that are equivalent to that 

observed in vivo.  

 

Abbreviations CNS, Central Nervous system; ESC, Embryonic stem cell; iPSC, 

Induced pluripotent stem cell; EC, embryocarcinoma; Ca2+, Calcium; ATP, 

Adenosine triphosphate; IP3, Inositol trisphosphate; GLAST, Glutamate/aspartate 

transporter; GLT-1, Glutamate transporter; ROS, Reactive oxygen species; GSH, 

Glutathione; GSSG, Glutathione disulphide; GCL, Glutamate cysteine ligase; GSR, 

GSSG reductase; Nrf2, Nuclear factor erythroid 2; ARE, Antioxidant response 

element; TCA, Tricarboxylic acid cycle; MCT, Monocarboxylate transporter; GFAP, 

Glial fibrillary protein. 

Introduction 

The term ‘glial cell’ refers to a heterogeneous group of various cell types including 

oligodendrocytes, microglial cells and astrocytes. Astrocytic cells have long been 

viewed as simple homogeneous cells that carry out supportive housekeeping roles 
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throughout the brain. However, astrocytes represent a complex and functionally 

diverse population of cells (Khakh and Sofroniew, 2015) which are now recognised 

to be intimately involved with neuronal signalling, forming with neurons what is now 

termed the ‘tripartite synapse’ (Volterra and Meldolesi, 2005). Together with basic 

housekeeping activities, astrocytes play key roles in the development and function of 

neuronal circuitry, as well as CNS-responses to disease states (Barres, 2008). 

Analysis of the human brain has estimated on average a maximal glial/neuron ratio 

of 0.99. However, this ratio is very different across brain regions such as cerebellum 

(0.23), and the grey matter of the cerebral cortex (1.48) when compared with the rest 

of the brain (11.35)  (Herculano-Houzel, 2014). 

The physiological roles and properties of astrocytes are now under greater scrutiny 

and a number of in vivo studies have emphasised the emerging role of astrocytes in 

previously uncharted processes, which involve executive CNS functional capability, 

such as information processing and behaviour (Laming et al., 2000). However, key 

questions regarding the contribution astrocytes make to more basic aspects of 

neuronal function, such as network activity and disease modulation still remain 

unexplored.   

Mechanistic studies of functional astrocytic-neuron interactions that rely upon 

imaging and physiological methods, have largely been carried out using in vivo 

models or ex vivo brain slices or primary rodent cultures. Whilst these models have 

provided great insight into the complex and diverse roles of astrocytes, some studies 

have highlighted key differences between human and rodent astrocytes. Oberheim 

et al (2009) demonstrated that human astrocytes are 2.6 fold larger and extend 10-

fold more primary processes, and therefore cover more synapses than mouse 

astrocytes. In addition, human and ape brains contain astrocyte subtypes that do not 

exist in the rodent brain (Oberheim et al., 2009). Furthermore, Han et al (2013) 

observed that engraftment of human astrocytes into mouse brain early in 

development, enhanced LTP and learning in these human glial chimeric mice. Such 

findings indicate significant and important roles for human astrocytes and that human 
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astrocytes are likely to exceed the capabilities of rodent cells. This emphasises the 

need to develop human models that can explore the most advanced features of 

astrocyte function. This human-based route will facilitate a more complete 

understanding of the contribution of astrocytes towards human brain physiology and 

pathophysiology. 

The development of human CNS models has been beset by historic difficulties, such 

as obtaining significant quantities of viable adult human tissue, as well as ethical 

concerns regarding the use of (more plentiful) foetal tissue. However, recent 

advances in stem cell biology have provided a unique opportunity to study the 

human CNS cell systems in the laboratory. Whilst there is great interest in the use of 

these cells in regenerative therapies and for modelling human disease, it is essential 

in terms of model credibility, to determine the functionally of these cells in 

comparison with their in vivo counterparts. Whilst stem cell derived neuronal cells 

derived from human sources have received a large amount of interest, the potential 

for forming and studying astrocytic cells and their function, has been largely 

underexploited.  

Roles of astrocytes 

In this review we will summarise the diverse roles of astrocytes and discuss the use 

of stem cells to study these roles in vitro. Numerous studies have now demonstrated 

significant correlation between the functional characteristics of stem cell derived 

astrocytes and primary cells.  Here we discuss the studies that have demonstrated 

the functional characteristics of stem cell derived astrocytes in the areas of 

development, glutamatergic transmission, gliotransmission, oxidative stress, 

metabolism and disease (Fig. 1). 

Role of astrocytes in CNS development 

During mammalian CNS development, neural precursor cells differentiate in specific 

waves, firstly generating neurons followed by astrocytes (Freeman, 2010). This order 

of development continues during postnatal development (Bandeira et al., 2009). 
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Astrocytes associate with multiple synapses and coordinate the development of 

neuronal networks. Indeed, astrocytes are crucial to the development of functional 

synapses using both secreted (Clarke and Barres, 2013) and contact mediated 

signals (Barker et al., 2008, Hama et al., 2004, Elmariah et al., 2005). In addition, the 

maturation of synaptic events in vitro is also enhanced by the presence of astrocytes 

(Johnson et al., 2007, Tang et al., 2013, Hartley et al., 1999). The patterning of 

neural and astrocytic cells derived from stem cells in vitro also occurs in a temporal 

manner and has been demonstrated in a range of human foetal (Lee et al., 1993, 

Caldwell et al., 2001) and stem cell types, including embryonic stem cells (ESC) 

(Krencik and Zhang, 2011), induced pluripotent stem cells (iPSC) (Shaltouki et al., 

2013, Roybon et al., 2013) and embryocarcinoma cells (EC) (Bani-Yaghoub et al., 

1999).  

Synaptic modulation 

A key feature of neurons is their ability to communicate with one another and 

transmit information via synaptic transmission (Carmignoto, 2000). A sophisticated 

mechanism of bidirectional signalling exists between neurons and astrocytes that 

coordinates this functional relationship, indicating an important role for astrocytes in 

the normal functioning of nervous system (LoPachin and Aschner, 1993, Verderio 

and Matteoli, 2001, Araque et al., 2014).  

Astrocytic processes encapsulate numerous synapses in the CNS and are able to 

modulate synaptic activity (Carmignoto, 2000). Neurotransmitters released at the 

synapse can activate receptors on astrocytes, inducing sustained cytosolic calcium 

(Ca2+) elevations or periodic oscillatory activity, which propagates within and 

between astrocytes (Carmignoto, 2000). Ca2+ elevations in astrocytes cause 

glutamate release from the same cells, which generates a positive feedback stimulus 

to neurons that modulates neuronal excitability and synaptic transmission enabling 

astrocytes to integrate extracellular signals and exchange information (Fields and 

Stevens-Graham, 2002, Perea and Araque, 2002). In addition, astrocytes can also 

respond to gliotransmitters such as glutamate and ATP that can have paracrine 
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effects on neighbouring astrocytes and alter neurotransmission (Zhang and Haydon, 

2005). Astrocytes also display intrinsic Ca2+ oscillations that are not driven by 

neuronal activity. These oscillations can display regular pacemaker patterns, 

although the precise role of these patterns is unclear (Parri et al., 2001, Parri and 

Crunelli, 2001). 

We have previously shown that EC derived astrocytes sense neuronal activity and 

respond to synaptically released neurotransmitters (Hill et al., 2012, Tarczyluk et al., 

2013). We have also demonstrated that these astrocytes are able to propagate 

signals throughout the astrocytic syncytium (Hill et al., 2012). Following activation of 

G protein coupled receptors the second messenger molecule inositol trisphosphate 

(IP3) initiates intracellular Ca2+ release that is transferred to neighbouring astrocytes 

through gap junctions. In addition, the release of the gliotransmitter ATP activates 

purinergic receptors on adjacent cells, thus enhancing the propagation of a resultant 

calcium wave (Simard and Nedergaard, 2004). Mechanical stimulation of EC and ES 

derived astrocytes initiate calcium elevations in the stimulated cell that are 

propagated through the astrocytic syncytium by sequential recruitment of adjacent 

astrocytes (Hill et al., 2012, Roybon et al., 2013).  In EC-derived astrocytes calcium 

wave propagation was also found to be dependent upon both gap junctions and 

purinergic signalling, demonstrating gliotransmission in EC derived astrocytes (Hill et 

al., 2012). These astrocytes also displayed rhythmic calcium oscillations in a manner 

previously observed in rat astrocytes (Parri and Crunelli, 2001). Whilst the role of this 

activity is unknown in CNS function, such outputs may have a significant role within 

neuronal network activity.  

Control of synaptic activity 

Astrocytes are pivotal in the maintenance of synaptic transmission. The excitatory 

neurotransmitter glutamate is synthesised in glutamatergic neurons and then 

accumulated into synaptic vesicles. In response to neuronal stimulation, glutamate is 

released into the synaptic cleft by calcium dependent exocytosis of synaptic vesicles, 

producing a stimulus in an adjacent neuron. Glutamate is then deactivated primarily 
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by transport into surrounding astrocytic processes by a sodium-dependent uptake 

system involving astrocytic excitatory amino acid transporters (EAAT) such as the 

glutamate/aspartate transporter (GLAST) and glutamate transporter 1 (GLT-1) 

(Danbolt, 2001). 

Despite its role as a neurotransmitter, glutamate acts as a potent excitotoxin when 

present at high concentrations at glutamatergic synapses, resulting in excitotoxicity. 

The over-stimulation of excitatory amino acid receptors by glutamate results in 

increased levels of cytosolic Ca2+, and the subsequent activation of calcium 

dependent enzymes including proteases, lipases and nucleases (Garcia and 

Massieu, 2003), as well as the production of ROS; this is  followed by mitochondrial 

dysfunction leading to necrosis or delayed apoptosis (Almaas et al., 2002). Astrocytic 

processes closely encapsulate synapses and under normal physiological conditions 

EAATs reduce the extracellular glutamate concentrations to low nM (e.g. 25nM) 

levels (Herman and Jahr, 2007). Thus, glutamate transport into astrocytes plays a 

crucial role in modulating efficient synaptic transmission whilst preventing 

excitotoxicity (Tzingounis and Wadiche, 2007).  

The importance of astrocytes in the maintenance of glutamate concentrations in 

culture is highlighted by the issue of excitotoxicity. Stem cell-derived neurons have 

previously been used to study excitotoxicity and demonstrate increased sensitivity to 

glutamate during differentiation (Munir et al., 1995, Hanko et al., 2006, Gupta et al., 

2013). The ability to generate functional astrocytes from stem cells is essential to 

study normal astrocyte function. Numerous studies have identified the expression of 

the glutamate transporters GLT-1 and GLAST in stem cell derived astrocytes 

(Tarczyluk et al., 2013, Shaltouki et al., 2013, Roybon et al., 2013). These proteins 

are involved in maintaining physiological extracellular glutamate concentrations. 

Indeed, functional astrocytes derived from EC, iPSC and ESC have demonstrated 

efficient sodium-dependent glutamate uptake (Shaltouki et al., 2013, Roybon et al., 

2013, Serio et al., 2013, Sandhu et al., 2003) and display the functional 

characteristics of primary astrocytes. Such observations demonstrate the potential 
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use of these cells as a platform for studying CNS dysfunction in vitro as well as the 

neuroprotective effects of astrocytes in co-culture. 

Astrocytic maintenance of cellular glutathione levels 

Dringen et al. (1999a) have previously demonstrated that the detoxification of 

peroxide by neurons is less efficient than that of astrocytes. In addition, astrocytes 

are able to protect neurons against oxidative stress, through the supply of 

glutathione (Desagher et al., 1996). They are also able to non-enzymatically 

scavenge extracellular hydrogen peroxide via the release of pyruvate (Desagher et 

al., 1997, Wang and Cynader, 2001). Glutathione is present in high concentrations 

(1-3 mM) in the human brain (Iwata-Ichikawa et al., 1999) and the enzymes for its 

synthesis, catalysis, interconversion of GSH and GSSG and formation of GSH S-

conjugates are all present in the brain (Makar et al., 1994). As with other tissues 

subject to oxidative stress, glutathione capacity is efficiently maintained by 

homeostatic means, such that GSSG levels are only approximately 1% of available 

thiol levels during normal (non-oxidative stress) conditions (Sagara et al., 1996). 

Studies suggest that GSH in the CNS is more concentrated in astrocytes, and that 

astrocytes also possess higher levels of GSH synthesising machinery and exporting 

capacity, which protects surrounding neurons against oxidative insults (Sagara et al., 

1996, Takuma et al., 2004, Watts et al., 2005). There is evidence that an intensive 

metabolic exchange occurs between astrocytes and neurons which is important in 

the maintenance of optimal thiol status of neurons and protection of the brain from 

oxidative stress (Dringen et al., 1999b, Dringen et al., 2000). Indeed, primary murine 

neurons co-cultured with astrocytes approximately double their intracellular GSH 

concentration in comparison with neurones grown in monoculture and are thought to 

be dependent on neighbouring astrocytes for maintenance of their GSH level via 

provision of cysteine, the rate-limiting substrate for GSH synthesis (Drukarch et al., 

1997, Gegg et al., 2003). 
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The capacity of cells to maintain or even increase glutathione levels during a 

xenobiotic or oxidative challenge is important in the prevention of cell dysfunction 

and death (Dringen et al., 2000). It has been suggested that transcriptional up-

regulation of glutathione synthesis in astrocytes appears to mediate astrocytic 

resistance against oxidative stress and enables the astrocytes to protect neurons 

(Iwata-Ichikawa et al., 1999). The importance of the function of astrocytic GSH 

metabolism that is evident (at least in cell culture models), suggests that in vivo a 

compromised glutathione system may contribute to a lower defence capacity of the 

brain against ROS.  

Glutathione is synthesised in two stages. Firstly γ-glutamylcysteine is synthesised by 

the enzyme glutamate cysteine ligase (GCL) from glutamate and cysteine; next, 

glycine is added by glutathione synthetase (GS). Glutathione is present within cells 

in both reduced (GSH) and oxidised (GSSG) forms. GSSG can be reduced to GSH 

by GSSG reductase (GSR). Genes encoding components of the GSH system are 

activated following binding of the transcription factor nuclear factor-erythroid 2-

related factor 2 (Nrf2) to a cis-acting DNA promoter sequence called the antioxidant 

response element (ARE) (Kensler et al., 2007). Expression of the key components of 

GSH biosynthesis and regulation have been observed in both ESC (Gupta et al., 

2012) and iPSC (Chen et al., 2014) derived astrocytes. Upregulation of ESC- derived 

astrocytic glutathione biosynthesis, secretion, and extracellular breakdown can be 

used by neurons to support their own glutathione levels thus allowing non-cell-

autonomous neuroprotection, a process which has been observed to be maintained 

through glutathione-dependent and independent mechanisms following treatment 

with hydrogen peroxide (Gupta et al., 2012). However, in neuron and astrocyte 

cultures derived from Down’s syndrome patients these processes are compromised 

(Chen et al., 2014). However, the application of a small molecular Nrf2 activator 

enhanced the neuroprotective effect of human ESC derived astrocytes in these 

cultures (Gupta et al., 2012). Our laboratory has previously demonstrated that EC 

derived astrocytes can also modify neuronal toxic responses through GSH and 
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maintenance of cellular energy levels following treatment with a range of xenobiotics 

(Woehrling et al., 2010, Woehrling et al., 2007). 

Astrocytic metabolism 

The abundance of astrocytes, their close proximity to neurons and their position at 

the interface of blood vessels (Kacem et al., 1998), and synapses, facilitate neuronal 

metabolic support via intercellular exchange of proteins, lipids and other 

macromolecules (Naus and Bani-Yaghoub, 1998, Gordon et al., 2007, Iadecola and 

Nedergaard, 2007). Additionally, astrocytes support neurons via the delivery of 

nutrients, removal of metabolic waste products and the redistribution of metabolites 

over long distances (via gap junctions) throughout the astrocytic syncytium (Giaume 

et al., 2010). Elevated neuronal activity requires an increase in nutrient availability 

and corresponding shifts in cerebral blood flow (Koehler et al., 2009). Astrocyte end-

feet contact the endothelial cells of brain microvessels, thus increasing nutrient 

delivery to neurons as required (Lopachin and Aschner, 1993).  

If cellular ATP production falls due to the inhibition of oxidative metabolism by 

mitochondrial toxins, it has been postulated that astrocytes, rather than neurons, 

respond with an increase in glycolytic activity, glucose consumption and lactate 

production to supplement ATP levels (Almeida et al., 2001). Thus, it is considered 

that generally astrocytes will demonstrate less vulnerability to mitochondrial toxins 

than neurones (Almeida et al., 2001, Pellerin and Magistretti, 2003) and that if 

energy levels of astrocytes can be preserved then their cellular defence mechanisms 

may reverse or even prevent injury to other brain cells caused by free radical release 

from ATP depleted cells (Sharma et al., 2003).   

The astrocyte-neuron lactate shuttle hypothesis (ANLS)(Pellerin and Magistretti, 

1994) provides a potential model to understand how neural activity relates to 

changes in metabolism and neuronal plasticity (Pellerin and Magistretti, 2012). 

Glutamate released from neurons into the synaptic cleft is taken up by the glutamate 

transporters GLAST and GLT-1 and is recycled within astrocytes to produce 
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glutamine for neuronal use. However, co-transport of Na+ by glutamate transporters 

raises intracellular sodium concentrations, activating Na+/K+ ATPase which leads to 

a decrease in cellular ATP. As energy demands increase, glycolysis is enhanced 

and lactate is released into the extracellular space via the MCT1/4 transporters. 

Neuronal MCT2 expression allows uptake of lactate which is rapidly converted by 

LDH1 to pyruvate for ATP generation by the TCA cycle (Pellerin and Magistretti, 

2012). During prolonged activity astrocytes may also rely upon reserves of glycogen. 

Brain glycogen content resides solely in astrocytes and is likely to perform a dynamic 

role during normal brain function (Obel et al., 2012). Indeed, both potassium and 

glutamate can promote significant glycogen breakdown, ensuring rapid lactate 

production during brain activation (Dienel et al., 2002, Swanson, 1992). 

Glycogenolysis has been shown to be essential in rat hippocampal learning (Suzuki 

et al., 2011) and chick bead discrimination (Gibbs et al., 2006) and so is intimately 

linked to memory formation. The pathway involved in the production of lactate by 

astrocytes in the brain is unclear. Dienel and McKenna (2014) have suggested other 

metabolic pathways including glutamate oxidation and glycolysis alongside lactate 

release could also contribute to the energy demands of excitatory 

neurotransmission. 

 

Our laboratory has recently demonstrated that EC derived neurons and astrocytes 

display a functional ANLS and that EC derived astrocytes can metabolise glycogen 

(Tarczyluk et al., 2013). Following neuronal stimulation, astrocytes break down their 

glycogen and produce more lactate that is released into the surrounding culture 

media. This process can be blocked using DL-threo-beta-benzyloxyaspartate or 

ouabain suggesting that astrocytic uptake of glutamate and subsequent activation of 

the Na+/K+ ATPase triggers glycogenolysis and glycolysis in these cells. As 

metabolic processes are perturbed in neurodegenerative conditions such as 

Alzheimer’s and Parkinson’s disease then it is important that the cultures used to 

model these diseases are able to replicate normal physiology. 

Astrocytic involvement in neurotoxicity and disease   
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Whilst it is well established that the trophic and protective support offered by 

astrocytes to neurons may provide increased tolerance of neurons to some specific 

neurotoxins (Yu and Zuo, 1997, Tieu et al., 2001), the multifaceted nature of the 

astrocytic-neuronal relationship provides numerous potential sites of disruption for 

neurotoxic chemicals (LoPachin and Aschner, 1993, Tieu et al., 2001). Thus, 

regarding xenobiotic neurotoxic mechanisms, nerve damage induced by chemicals 

may not only involve direct damage to the nerve cell (Heijink et al., 2000) but also 

dissociation or negation of astrocytic-neuronal interactions (LoPachin and Aschner, 

1993, Cookson et al., 1995), or damage to the astrocytes themselves (O'Callaghan, 

1991, Karpiak and Eyer, 1999). Additionally, there is evidence that astrocytes may 

be necessary for the expression of neuronal toxic effects, particularly via the release 

of cytokines from astrocytes (Bruccoleri et al., 1998, Viviani et al., 2000). Cytokines 

play an important role in regulating the activity of cells in the CNS and serve as an 

additional means of communication between neurons and astrocytes (Brown, 1999). 

Cytokines are also important mediators of the host defence system and inflammatory 

response (Wu and Schwartz, 1998). Astrocytes in the CNS can both secrete and 

respond to cytokines, such as tumor necrosis factor-alpha (TNF-α). TNF-α release 

may occur in response to a variety of biological stimuli, including activation (Wu and 

Schwartz, 1998, Viviani et al., 1998) and may be necessary for the expression of 

toxicity towards neurons by some substances, for example via induction of the 

apoptotic cascade (Viviani et al., 1998). 

A major function of Glial cells, is to respond dynamically to many CNS pathologies, 

such as stroke, neurodegenerative disease and exposure to some neurotoxins; 

indeed damage to all glial cell types, including astrocytes, appears to illicit this glial 

reactivity  (O'Callaghan, 1991, O'Callaghan et al., 1995). This  process, also known 

as astrogliosis or glial activation, is not completely understood but is a hallmark of 

hypertrophy (O'Callaghan, 1991). Hypertrophy is associated with increased positive 

staining for GFAP due to an increased number of astrocytic processes, rather than 

proliferation. Indeed, astrocyte mitosis usually only occurs when a nervous system 

injury creates a physical space that can be filled by dividing astrocytes (Wu and 
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Schwartz, 1998). In addition to an increase in GFAP levels, astrocytic activation may 

be accompanied by increased glucose uptake, and enhanced metabolic status, 

protein and RNA synthesis (Cookson et al., 1995, Wu and Schwartz, 1998, Pekny 

and Nilsson, 2005).  

In the generation of stem cell derived astrocytes from stem cells it is important to 

consider the degree of reactivity displayed by the cells produced. In disease 

modelling reproduction of the reactive state may be essential to observe astrocyte 

induced toxicity. However, in order to study normal functions in astrocyte cultures, 

the production of cells which display a mature quiescent astrocytic state is important.  

Roybon et al. (2013) have recently developed protocols that allow the production of 

both mature quiescent or activated astrocytes that can be used to distinguish 

between these different functional states. Such methods provide a significant step 

forward in the ability to study human function in both healthy tissue and in disease. 

In addition to their responses to neurotoxins, astrocytes have been implicated in 

neuroprotection and pathogenesis in numerous neurological conditions (Maragakis 

and Rothstein, 2006, Sidoryk-Wegrzynowicz et al., 2011) including epilepsy 

(Benarroch, 2009), ischemia (Anderson et al., 2003), Alzheimer’s (Nagele et al., 

2004) Parkinson’s (Zhang et al., 2005) and Huntington’s diseases (Singhrao et al., 

1998), as well as Rett syndrome (Ballas et al., 2009), and Amyotrophic Lateral 

sclerosis (ALS) (Bristol and Rothstein, 1996).  

Such findings suggest that modulation of astrocytic function may provide the basis of 

future novel therapeutic strategies and the exploration of such modalities 

necessitates the generation of practical and relevant functional human astrocytic 

models. The development of such new human model systems to study neuron-glia 

interactions will also advance our understanding of the roles of astrocyte in 

neurological pathologies. Whilst ESC and EC cells have provided effective model 

systems for recapitulating normal astrocytic function in vitro, their utility in studying 

disease states may be limited. However, since the generation of induced pluripotent 

stem cells from somatic cells by ectopic expression of the transcription factors 
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Oct4, Sox2, Klf4, and c-Myc (Takahashi et al., 2007), the possibility of generating 

patient specific disease models for neurodegenerative diseases has been realised. 

Furthermore the technical expertise to directly reprogramme somatic cells to produce 

induced neural precursor cells (Kim et al., 2011), neuronal cells (Vierbuchen et al., 

2010) and induced astrocytes (Caiazzo et al., 2015) has further expanded the toolkit 

available to researchers. Interestingly, one of the deficiencies in early approaches to 

modelling specific neurodegenerative diseases in vitro has been a lack of neuronal 

and astrocytic cultures with the specific anatomical and functional characteristics of 

the particular brain tissues affected. However, this has been remedied through the 

recent development of neural differentiation protocols that allow the formation of 

region- specific neuronal cultures including dopaminergic, spinal cord, interneurons 

and cortical neurons to be produced (Chambers et al., 2009, Fasano et al., 2010, Li 

et al., 2005, Liu et al., 2013, Shi et al., 2012).   

Indeed, the use of iPSC platforms has rapidly expanded and they have been 

successfully applied to the generation of a wide range of disease specific neuronal 

platforms including ALS (Dimos et al., 2008), Huntington’s (Zhang et al., 2010), 

familial dysautonomia (Lee et al., 2009), spinal muscular atrophy (Ebert et al., 2009), 

Rett syndrome (Marchetto et al., 2010), schizophrenia (Brennand et al., 2011), 

Alzheimer’s (Kondo et al., 2013, Israel et al., 2012) and Parkinsons’s disease 

(Devine et al., 2011). These models not only allow researchers to study disease 

pathology directly, but also allow rapid screening of novel potential therapeutic 

compounds in the same directly relevant model to man. 

Paradoxically, many of these studies have focused on the sole production of neurons 

in these cultures and have overlooked the role of astrocytes. However, a number of 

recent studies have demonstrated the production highly purified populations of 

astrocytes (Krencik and Zhang, 2011, Krencik et al., 2011, Serio et al., 2013, 

Shaltouki et al., 2013, Juopperi et al., 2012). Such in vitro models allow researchers 

to study the pathology of patient- derived astrocytes as well as to demonstrate the 

non-cell autonomous effects on healthy neurons in a number of diseases. For 
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example, using astrocytes derived from Rett syndrome patients’ iPSCs, several key 

abnormalities have been revealed, in comparison with healthy cells, with regard to 

astrocyte differentiation, dysregulated GFAP expression, as well as abnormal non-

cell autonomous effects on the morphology and function of heathy neurons  

(Williams et al., 2014, Andoh-Noda et al., 2015). In addition, other groups have also 

recapitulated increased vacuolation phenotypes in Huntington’s disease patient 

derived astrocytic cells (Juopperi et al., 2012). Using ALS patient derived cells, TAR 

DNA-binding Protein 43 mutants demonstrated increased levels of TDP-43 

mislocalisation and decreased astrocyte survival (Serio et al., 2013). Furthermore, 

Meyer et al. (2014) used induced neural precursor cells from patients carrying the 

hexanucleotide expansion in C9ORF72 that has also been associated with ALS and 

FTD. Following differentiation into astrocytes these cells displayed non-cell 

autonomous toxicity towards motor neurons in a manner previously reported for cells 

derived from autopsies. In cells derived from Down’s syndrome patients, astrocytes 

display higher levels of ROS as well as non-cell autonomous effects on neurons, 

including reduced neurogenesis, ion channel maturation and synapse formation. 

(Chen et al., 2014). This study also demonstrated the partial correction of 

pathological phenotypes using the drug minocycline. Such studies suggest a 

potential role of astrocytes in these disease processes and provide potential 

platforms for high-throughput drug screening as well as mechanistic studies that may 

highlight future therapeutic approaches. 

Conclusion 

In this review we have focussed upon the role of astrocytes in normal functioning 

and disease within the CNS. Whilst there is a rapid expansion in the use of iPSC 

technology to study human neurodegenerative disease, the inclusion/role of 

astrocytes in this context has often been overlooked. A growing body of work has 

demonstrated the feasibility of generating functional, disease-relevant astrocytes 

from iPSCs. The rapid development of patient- derived iPSC lines is an exciting step 

in studying numerous developmental and neurodegenerative disorders. However, in 
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order to fully realise the future role of these models, further characterisation of these 

cultures and inclusion of functional astrocytes is essential. Furthermore a deeper 

understanding of astrocytic diversity and their functional roles within the CNS is 

necessary in order to develop realistic neuronal circuits that will enable the 

elucidation of their functional role in health and disease. The identification of factors 

involved in the patterning of specific astrocytic subtypes in vitro is also required to 

provide cultures that are representative of astrocytic heterogeneity (Khakh and 

Sofroniew, 2015). In addition, improvements in culture conditions are also important  

to produce relevant cell types as well as neural circuits, which may only be realised 

using 3D cultures that recapitulate the in vivo environment (Lancaster et al., 2013).  

Existing in vitro and in vivo experimental models have given us a tantalizing glimpse 

of the complexity of the different forms and functions of the human astrocyte. Further 

development of these technologies will enable us gain a greater understanding of 

normal astrocytic functions as well as their role in disease processes that will 

ultimately expedite the process of drug discovery.  
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Figure Legend 

Abstract figure 

Astrocytic cells have been derived from a variety of stem cell sources. This review 

discusses the roles of astrocytes in the brain and highlights the extent to which 

human stem cell derived astrocytes have demonstrated functional activities that are 

equivalent to that observed in vivo.  

 

Fig 1. Properties of stem cell derived astrocytes. Astrocytic cells derived from stem 

cells have been shown to recapitulate features previously observed in vivo. 1) 

Glutamatergic transmission, 2) Metabolism, 3) Oxidative stress, 4) Disease states, 5) 

Development, 6) Gliotransmission. 
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