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Abstract

Significance: Oxidized phospholipids are now well recognized as markers of biological oxidative stress and
bioactive molecules with both pro-inflammatory and anti-inflammatory effects. While analytical methods
continue to be developed for studies of generic lipid oxidation, mass spectrometry (MS) has underpinned the
advances in knowledge of specific oxidized phospholipids by allowing their identification and characterization,
and it is responsible for the expansion of oxidative lipidomics. Recent Advances: Studies of oxidized phos-
pholipids in biological samples, from both animal models and clinical samples, have been facilitated by the
recent improvements in MS, especially targeted routines that depend on the fragmentation pattern of the parent
molecular ion and improved resolution and mass accuracy. MS can be used to identify selectively individual
compounds or groups of compounds with common features, which greatly improves the sensitivity and spec-
ificity of detection. Application of these methods has enabled important advances in understanding the
mechanisms of inflammatory diseases such as atherosclerosis, steatohepatitis, leprosy, and cystic fibrosis, and it
offers potential for developing biomarkers of molecular aspects of the diseases. Critical Issues and Future
Directions: The future in this field will depend on development of improved MS technologies, such as ion
mobility, novel enrichment methods and databases, and software for data analysis, owing to the very large
amount of data generated in these experiments. Imaging of oxidized phospholipids in tissue MS is an additional
exciting direction emerging that can be expected to advance understanding of physiology and disease. Antioxid.
Redox Signal. 22, 1646–1666.

Introduction and Focus

Oxidized phospholipids are now well established to
have a plethora of bioactive effects that contribute

to both physiological and pathophysiological processes.
Historically, there has been the most interest in enzymatic
oxidation of unsaturated lipids, for example, by cycloox-
ygenases, lipogenases, and cytochrome P450-dependent en-
zyme; the analysis and effects of the resulting nonesterfied
products, including prostaglandins, thromboxanes, and leu-
kotrienes, have been very widely studied and reviewed (12,
59, 75, 89, 128, 129, 154). However, more recently, there has
been growing appreciation of the importance of oxidized
phospholipids produced nonenzymatically through adventi-
tious oxidation in a variety of inflammatory conditions. The

biological effects of oxidized phospholipids are often distinct
from those of the corresponding free fatty acids, and a large
volume of work has been carried out to investigate the rec-
ognition and signaling processes underlying their effects (7,
30, 31, 38, 61, 134). Oxidized phospholipids are known to
interact with several cell surface receptors, and oxidized fatty
acyl chains of plasma membrane phospholipids can protrude
from the cell surface to act as damage-associated molecular
patterns (25, 37). It is becoming clear that the biological
effect is dependent on the nature and structure of the oxidized
phospholipid, as well as being concentration and cell-type
dependent.

The enormous variety of different chemical structures of
oxidized phospholipids complicates their study considerably.
Advances in our understanding have depended on the ability
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to separate heterogeneous mixtures of oxidized phospholip-
ids derived from biological samples and elucidate their
structures, which has largely relied on analytical techniques
that can provide molecular-level detail such as mass spec-
trometry (MS), and developments in MS technology have
been critical to the increased recognition of the importance of
oxidized phospholipids.

This article focuses on the analysis of oxidized glycer-
ophospholipids, and it explores why MS is such an informa-
tive and useful method to study them. Recent developments in
MS technology that enhance its application to complex bio-
logical samples are described, and examples of the knowledge
obtained regarding specific oxidized phospholipids and their
levels in vivo are given. The major focus is on the use of liquid
chromatography mass spectrometry to study oxidized phos-
phatidylcholines (PCs) and ethanolamines, reflecting the
balance within the literature, but a brief mention of other
approaches and phospholipids is included. The aim of the
article is to give nonexperts interested in studying phospho-
lipid oxidation an overview of both the potential and the
complexity of MS approaches.

Types of Lipid Oxidation Products

One of the challenges in the analysis of oxidized phos-
pholipids is their extensive heterogeneity, which is a conse-
quence of the large number of phospholipids that exist and
the variety of oxidants that can modify them. The oxidation
products formed from phospholipids depend on the type of
oxidation (free radical versus two electron attack) and the
structure of the phospholipid in question. Free radical attack
leads to lipid peroxidation through well-characterized path-
ways that have been extensively reviewed (87, 94, 105, 115,
120). Phospholipids containing polyunsaturated fatty acyl

chains (PUFAs), such as arachidonic, eicosapentaenoic, or
docosahexaenoic acids, are most vulnerable to this sort of
oxidative attack. In contrast, hypohalous acids (derived from
the myeloid cell enzymes myeloperoxidase and eosinophil
peroxidase) and some reactive nitrogen species can addi-
tionally attack lipids containing mono-unsaturated fatty ac-
ids, the vinyl ether bond of plasmalogens, or reactive
headgroups such as phosphoethanolamine or phosphoserine.
The extensive variety of possible products includes full-
length oxidation products, chain-shortened phospholipids,
and the corresponding fragments of the oxidized fatty
acyl chains, of which the aldehydes malondialdehyde and
4-hydroxy-trans-2-nonenal are well-known examples (7, 8).
The full-length oxidation products vary from simple modi-
fications (hydroperoxides, hydroxides, epoxides, and ke-
tones) to more complex products such as those resulting from
cyclization (e.g., isoprostane-like structures and cyclopente-
none rings) or further rearrangements (e.g., ring opening to
yield isolevuglandins) (Fig. 1). The structures of some of the
most commonly studied and detected oxidized phospholipids
are shown in Figure 2.

Approaches to Phospholipid Analysis

Traditional methods for detecting lipid oxidation products
can broadly be divided into those that depend on chemical
reactions with reagents, immunoassays, or separation tech-
niques (Fig. 3). Initial products of radical attack on phos-
pholipids contain carbon-centered or oxygen-centered
radicals, so electron spin resonance spectroscopy (ESR or
EPR) with spin traps can be used to detect them (77). A recent
example is the use of a-(4-pyridyl-1-oxide)-N-tert-butyl ni-
trone (POBN) to stabilize the radical products of doc-
osapentaenoic acid (C22:5) in an online LC-ESR system

FIG. 1. Generic structures
of most commonly investi-
gated esterified products of
phospholipid oxidation.
Phospholipids containing ara-
chidonate (C20:4) and lino-
leate (C18:2) are highly
abundant and common sources
of oxidized phospholipids.
‘‘R’’ indicates the glycero-
phospho headgroup to which
the oxidized structures shown
are esterified. The 20-carbon
structures shown in (a, b) de-
rive specifically from arachi-
donate, but analogous products
exist for linoleate, eicosa-
pentenoate (C20:5), and other
polyunsaturated fatty acids.
Truncated products (c) can de-
rive from either phospholipid.
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(96). However, it remains difficult to apply this technique to
complex biological samples, and a more common approach is
to use colorimetric or fluorimetric assays for nonradical
products. Most phospholipid oxidation products do not con-
tain extended chromophores and cannot be detected in the
visible range without a reaction with compounds that gen-
erate better chromophores or fluorophores. There are assays
for the detection of hydroperoxide groups, such as iodometric
titration (54), FOX assays (143), and isoluminol-dependent
assays (80, 146). Commonly used assays for aldehydes or
ketones are based on a reaction with 2,4-dinitrophenyl hy-

drazine (81, 137), cyclohexanedione, or pentafluorobenzyl
hydroxylamine (81, 120). Many variations of these assays
exist and have been used to investigate the occurrence of lipid
oxidation in extracts of biological samples (120). Hydro-
peroxide-reactive fluorogens also offer the possibility of
tissue imaging of lipid peroxidation. The hydrophobic com-
pound diphenyl-1-pyrenylphosphine (DPPP) is oxidized
fairly selectively by lipid hydroperoxides (owing to its lo-
calization in nonpolar areas) and has been used to demon-
strate the formation of lipid peroxides in rat pulmonary
microvascular endothelium during ischemia ex vivo (76).

FIG. 2. Examples of some commonly analyzed oxidized phospholipids.

FIG. 3. Overview of meth-
ods for analysis of oxidized
phospholipids. To see this il-
lustration in color, the reader is
referred to the web version of
this article at www.liebertpub
.com/ars
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However, it is difficult to extend this approach to whole an-
imal studies because of the toxicity of DPPP.

A limitation of all of these assays is that they are not
specific for individual products, but rather for classes of
products, so they are only suitable if a global measure of
oxidative damage is required. Depending on the complexity
of the sample, this issue can be partly addressed during
chromatographic separation before detection. Basic methods
such as thin layer chromatography continue to be used for
separating different classes of lipids (70, 110, 135). Gas
chromatography (GC) is a popular separation method for
modified fatty acids and improved methods continue to be
reported, for example, in separation of epoxy fatty acids from
hydroxy and un-modified fatty acids (83). Coupling GC to
MS provides additional structural information based on the
fragmentation profile of the analytes. The ionization methods
typically used in such instruments are high energy, such as
electron impact or chemical ionization, and should not be
confused with the low energy ionization methods discussed
later. GC-MS is widely regarded as the best method for quan-
tification of isoprostanes (17, 63) and has also been used for
hydroperoxides and hydroxides of fatty acids (120, 130).
However, it is less convenient for oxidized phospholipids,
which must first be hydrolyzed to free fatty acids (150), so
important structural information is lost. In contrast, high-per-
formance liquid chromatography (HPLC) is ideal for separating
oxidized and native phospholipids, and it is readily interfaced to
a range of detector types. Moreover, it interfaces well to soft
ionization MS, which, as discussed subsequently in this review,
has advantages for analysis of phospholipid oxidation products.

Immunoassays such as ELISAs and radioimmunoassays
offer an entirely different approach to detecting oxidized
phospholipids. They are usually highly sensitive but depend
on the availability of selective antibodies. Immunoassays for
nonesterified lipid oxidation products such as F2-isoprostanes
(139) and 8-iso-prostaglandin F2a (63, 137) have been
available for many years, but there are several problems with
them (130) and the best method for analysis of free iso-
prostanes is either GC-MS (67, 79, 103) or LC-MS methods
(93, 150). Natural antibodies of the IgM class that recognize
phosphocholine-containing lipids (e.g., T15; (22) and refs
therein) were found to have identical variable regions (and
therefore antigens) to more recently characterized natural
antibodies (the E0 series), found at high levels in ApoE-
deficient mice (29). The antibody E06 has been thoroughly
characterized and found to recognize both free oxidized PCs
(especially POVPC) and PC adducts to LDL and albumin. A
chemiluminscent ELISA for oxPC-modified LDL has now
been developed using E06 and applied extensively to studies
of lipid oxidation in cardiovascular and other diseases (127).

While all of these methods yield useful information about
lipid oxidation in general, most of them cannot identify
specific molecular oxidized phospholipid species, which
is important for understanding the biological effects. To
achieve this level of detail, advanced LC-MS/MS approaches
are the best option, and their application will be discussed in
the next few sections.

MS in Modern Oxidative Lipidomics

Electrospray ionization (ESI) and matrix-assisted laser
desorption/ionization (MALDI) are considered ‘‘soft’’ (low

energy) ionization techniques, and they have been used for
more than 50 years for the analysis of labile biomolecules,
including phospholipids (33, 95). They are a convenient
method to identify oxidized phospholipids, most of which are
readily ionizable. An important advantage compared with
GC-MS is that analytes can be detected directly, without the
chemical manipulation necessary to release the fatty acid
chains and derivatize them to generate the volatile species
required for GC (116). Thus, these soft ionization methods
tend to be simpler, less open to handling artifacts, and in-
formation on the intact phospholipid structure is not lost.
However, it is worth noting that in some cases it is currently
impossible to distinguish the positional distribution of oxy-
genated groups (e.g., in oxygenated derivatives of arachi-
donic acid such as LTB4, Hepoxilin A3 and 5, 12, and
15-HpETEs) using these methods, without resorting to hy-
drolysis and analysis of the fatty acids.

The ability of ESI and MALDI MS to analyze multiple
components in the sample simultaneously allows the profil-
ing of many lipid classes in biological tissue in parallel, and
has led to the development of shotgun lipidomics, in which
the sample is introduced into the mass spectrometer without
separation, and the components are scanned and, for MSMS
modes, fragmented (43). While this is a relatively powerful
technique, the variety of lipids is so large, and the ratio of
oxidized to un-modified lipids usually so small, that pre-
separation techniques are important to ensure representative
profiles are obtained; otherwise, minor signals can be ob-
scured or suppressed by more abundant molecular ions. As
ESI requires the infusion of the sample in solution, it can be
coupled very readily to HPLC, with normal phase and reverse
phase columns being most common, although other column
types have also been used (Fig. 4). Thus, LC-MS(MS) has
become the method of choice for most lipidomics work, al-
though in some cases the higher throughput achievable with
shotgun approaches is desirable; there are several informa-
tive reviews on this topic (9, 43, 58, 142). The use of MS in
biomolecule analysis has advanced enormously in the past
10 years, especially not only in terms of the sensitivity,
resolution, and scanning speed of mass spectrometers but
also in terms of identifying fragmentation patterns that can
be used for smart scanning approaches (111), and these
advances are now being translated to oxidative lipidomics
(73, 90). For example, LC linked to high-resolution MS has
been used to demonstrate the occurrence of oxidized PCs
and ethanolamines in plasma from control and obese human
subjects (21).

The application of ESI in lipidomics far exceeds the use of
MALDI, largely because of the potential for interfacing di-
rectly with liquid chromatography and simplicity of sample
preparation; MALDI usually requires co-crystallization of a
matrix with the sample, the quality of which affects the sig-
nal. This means that MALDI is intrinsically less amenable to
absolute quantification than ESI. However, procedures for
MALDI-MS of phospholipids and oxidized or chlorinated
phospholipids have been developed (32, 112, 122): Recently,
MALDI-MS has been applied to a wider range of oxidized
phospholipids (26, 27, 151) and has been used to investigate
the fragmentation of cardiolipin by copper in a mouse model
of the copper overload condition Wilson’s disease (151), as
well as demonstrating the occurrence of truncated oxidized
PCs in spinal cord tissue of Sprague–Dawley rats (124). It has
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been argued that MALDI has advantages compared with ESI
for biological samples, as it is more tolerant of the presence of
salts or detergents, whereas ESI usually requires sample
cleanup or the application of LC. MALDI has also been the
technique most commonly used for MS imaging to gain in-
formation on spatial distributions of molecular species across
tissues, whereas ESI requires extraction of the tissue.

Principles of Soft-Ionization MS Analysis

To be able to make best use of information on oxidized
phospholipids obtained from MS, it is necessary to under-
stand some basic principles of the techniques involved. Mass
spectrometers contain mass analyzers, which discriminate
between ions based on their mass-to-charge (m/z) ratio. In a
tandem mass spectrometer, which can be used to gain
structural information, two analyzers are connected together
via a third component, the collision cell; a molecule selected
in the first mass analyzer, the precursor (parent) ion, is broken
down by collision with an inert gas (He, N2, Ar, etc) in the
collision cell into fragment (daughter) ions that are analyzed
in the second mass analyzer. The same effect can be obtained
in ion trap mass spectrometers by capturing all of the ions,
selecting the one required for further analysis by ejecting all
the others, fragmenting this in the trap by collision with an
inert gas, and then scanning the resulting ions out of the trap
to obtain the mass spectrum. There is now a bewildering array
of different mass analyzers, connected together in an even
wider number of combinations, and some additional methods
of ion fragmentation. Each has its own merits, and further
specific information can be found in a number of reviews and
books (and many on-line resources) (4, 15, 23, 39). For
the purposes of this review, it is important to understand the
operation of the quadrupole (Q) mass analyzer, as this is the
most common first analyzer in tandem mass spectrometers. It
operates by allowing only ions of a specific m/z value to pass
through to the detector. This can be scanned through the m/z
range of a defined mass window, but as this scanning is slow
and of a relatively low resolution, quadrupoles are more
commonly used as mass filters by setting them up to select

individual ions rather than in scanning mode. An important
recent advance has been in the wide availability of high-
resolution (ability to distinguish two ions of similar mass),
high-mass accuracy (ability to accurately and reproducibly
measure the mass of an individual ion) instruments that
routinely achieve resolutions of 40–100 k and mass accura-
cies of 0.5–5 ppm. This is important in the analysis of oxi-
dized phospholipids, as it allows oxidized phospholipids to
be distinguished from native phospholipids of the same
nominal mass (such as PC18:0/18:0 and PC16:0/18:2-OOH)
at high resolution, owing to the unusual negative mass defect
of oxygen, which has an accurate mass of 15.9949 amu (138).

Every ion of a different m/z yields a unique signal in the
resulting spectrum, so this technique is ideal for investigating
complex mixtures. Although there may be compounds with
different elemental compositions but very similar masses
(isobaric compounds), these can often be differentiated by
high-resolution instruments, as mentioned earlier. In con-
trast, isomeric compounds, which have the same elemental
composition but different structures, can only be distin-
guished by fragmentation, or separated chromatographically
(102), or using ion mobility MS. Ion mobility mass spec-
trometry (IMS) is an increasingly valuable technique for lipid
analysis, after the recent introduction of commercial tech-
nologies (such as the Synapt� mass spectrometer and the
SelexION� source). Ion mobility separates ions based on
their shape (more correctly on their average collisional cross-
section) and has proved particularly useful in lipidomics for
distinguishing isobaric lipids from different classes or of
different double bond configurations (2, 14, 56, 66, 69, 93,
109). It also has great potential for removing interfering
chemical background from the mass spectra, allowing better
assignment and more sensitive detection, and has proved
particularly useful in mass spectrometric imaging applica-
tions (16, 52, 144). This technique has not yet been applied
specifically to oxidized lipid species, although there are some
reports that include oxidized lipids (51), but it will have great
potential for adding an additional dimension of separation.
As oxidation of a lipid or phospholipid to form a hydroper-
oxide or a hydroxide involves addition of oxygen to the

FIG. 4. Lipidomics approaches. Shotgun lipidomics involves infusion of the sample directly into the mass spectrometer,
which usually needs to be carried out on a high-resolution instrument to characterize the lipids present. Alternatively, lipids
can be separated by HPLC before interfacing with the instrument; normal-phase chromatography separates the lipid
according to their class or head group, regardless of the chain length or oxidation state, whereas reverse-phase chroma-
tography separates principally according to chain polarity, and hence distinguishes oxidized and unmodified lipids as well as
different chain lengths or degrees of unsaturation.

1650 SPICKETT AND PITT

http://online.liebertpub.com/action/showImage?doi=10.1089/ars.2014.6098&iName=master.img-004.jpg&w=336&h=154


native structure, the mass of the molecule is changed, which
can readily be detected by MS (118). Likewise, modification
through addition of HOCl to form chlorohydrins (53) or NO2

to form nitro-fatty acids (3, 65) results in new signals at
higher m/z. Breakdown products, including lysolipids and
chain-shortened phospholipids, appear at lower m/z windows.

The ionization mode, and to a lesser extent the solvent
system, determine the lipid class that can be observed:
Phosphatidylcholines (PC), sphingomyelins (SM), and phos-
phatidylethanolamines (PEs) are observed in positive ion
mode, whereas phosphatidylserines (PS), phosphatidylino-
sitols (PI), phosphatidylglycerols (PG), and cardiolipins (CL;
diphosphatidylglycerols) can best be observed in negative ion
mode (Table 1). However, adjustment of the solvent systems
with ionization modifiers can enable detection in the opposite
ionization mode if required: for example, although PC has a
constitutive positive charge on the choline moiety, phos-
phocholine-containing lipids can be observed in negative ion
mode as formate or acetate adducts (20). As PC is both very
abundant and easily observable in either mode, much re-
search had previously focused on identifying oxidation
products of unsaturated PCs (20, 116), although to address
this knowledge gap increasing studies on oxidation of pho-
pholipids with other headgroups are being undertaken, in-
cluding PE, PS, and CL (26, 70, 74, 132). The principles of
fatty acyl group oxidation are common to all the phospho-
lipids, and it is well established that hydroperoxides, hy-
droxides, epoxides, and chlorinated species can be detected,
according to the mass increments and fragmentation patterns.

However, when using fragmentation patterns to identify
the lipids present, it is important to be aware that the ioni-
zation state and the counter ion present alter the fragmen-
tation. Protonated glycerophospholipids undergo different
collision-induced decomposition to sodium adducts of the
same lipid, owing to their differing behavior in gas phase
chemistry (20, 34); likewise, negatively charged formate and
acetate adducts of PC fragment differently to the same PC
observed under positive ionization conditions. Character-
ization of fragmentation patterns for oxidized phospholipids
of interest facilitates the identification of these analytes in
biological samples and is essential for the development of
targeted MS approaches, as described in the next section. In
many studies, fragmentations have been determined experi-
mentally (99), although once the principles for one type of
oxidized product have been ascertained, they can be used to
generate theoretically expanded lists for other species of
analogous structure (85).

Types of Targeted Scanning Routines
for Oxidized Phospholipids

Tandem MS allows the use of targeted scanning routines,
which are important as they facilitate selective identification
and often quantification in more complex samples (58). In
much of the early research on identification of lipid oxidation
products, individual lipids or simple mixtures of lipids were
oxidized in vitro; thus, it was feasible to select and fragment
individual parent ions to identify the analyte by the pattern
of fragment ions. This MS approach is referred to as product
ion scanning (Fig. 5), and it has proved extremely useful
for structurally characterizing many phospholipid oxidation
products. For example, important early work on the identi-

fication of chain-shortened PCs and PCs with esterified iso-
prostanes in atherosclerotic plaques depended on this
approach (48, 97, 125, 140, 141), and it continues to be used
(55). It has been used to identify novel lipid oxidation
products such as isolevuglandins as well as to determine
mechanisms of oxidative fragmentation (68, 104). In ion trap
instruments, multiple sequential fragmentations (MSn) can
be carried out to provide more detailed analysis of the
structure in question (149). Product ion scanning also pro-
vides information on diagnostic fragment ions for individual
oxidized products, which can subsequently be used in the
targeted scanning approaches. Several reviews have de-
scribed typical fragmentation products and have provided
useful summaries of the information (20, 99, 117). In these
LC-MSMS lipidomic approaches to discover oxidized lipids
present in complex samples, data-dependent acquisition is
often used, whereby throughout the LC run, ions for frag-
mentation and product ion scanning are selected based
on intensity, which is prone to missing low-abundance ions
that may be biologically important (Fig. 6). Hence, targeted
methods with the potential to overcome this problem have
been developed.

There are three main targeted MS approaches, which have
different levels of selectivity (Fig. 5). Precursor ion scanning
identifies precursors (parent ions) that fragment to give a
specific fragment ion (daughter ion) of interest by scanning
through the masses in the first analyzer with the second an-
alyzer set to detect a specific m/z. Neutral loss scanning
identifies precursors that fragment by loss of a specific un-
charged fragment, regardless of the mass of the parent ion.
This routine scans the first and second mass analyzers with a
fixed mass offset between them corresponding to the mass of
the neutral fragment lost. Both of these methods can identify
families of analytes containing a particular structural feature.
For example, precursor ion scanning for m/z 184 identifies
phosphocholine-containing lipids such as SM or PC (126),
while scanning for neutral loss of 18 amu, corresponding to
water, and indicates the presence of hydroxyl groups (119). In
contrast, selected single reaction monitoring (SRM) should
be specific for a single molecular species, as both the m/z of
the parent ion and a diagnostic fragment ion are set, in the first
and second analyzers, respectively. The specificity of the
identification can be improved by selecting multiple ‘‘tran-
sitions’’ from precursor to fragment ions, assuming that
several strong fragmentation products occur; this technique is
known as multiple reaction monitoring (MRM), although
MRM has also come to refer to SRM experiments on multiple
precursors run in parallel. The principle in all these methods
is essentially the same, but SRM and MRM can be considered
specific cases of precursor ion scanning (for a single pre-
cursor of interest) (43). The fundamental difference be-
tween SRM/MRM and the scanning routines is that the latter
can be used as discovery approaches, searching more broadly
for types of products [hydroperoxides, chlorohydrins, hy-
droxides (119)], whereas reaction monitoring routines tend
to be used for analytical work when the presence of a specific
analyte has been established and a quantitative approach
is needed. SRM and MRM have much higher duty cycles
(more time is spent collecting data on the species of interest),
so they generally have higher sensitivity than scanning ex-
periments. Consequently, they are well suited to quantifica-
tion of oxidized lipids. Some typical diagnostic routines for
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1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine
are given as an example in Figure 7.

Application of Targeted MS Methods
for Oxidized Phospholipids

Although the MS routines described earlier have been
known for many years (as long as tandem MS instruments),
their application to the study of oxidized phospholipids has
expanded greatly recently as new instrumentation and soft-
ware have become available, and appropriate diagnostic ions
have been identified. This section reviews recent develop-
ments in the methodology in model biological systems.

Much of the work carried out to date has focused on the
analysis of PCs, as these are abundant phospholipids and
have a constitutive positive charge, so they yield strong ions
in the positive ion mode. The most common diagnostic scan
is for m/z 184.1 (the phosphocholine headgroup) in the pos-
itive ion mode, either as a precursor ion scan or transitions
from specific parent ions (SRM). Scanning for precursors of
m/z 184.1 allows detection of all PCs, not just oxidized forms
(Fig. 8), and also detects SMs as they contain a phos-
phocholine moiety, but nevertheless this is useful in studies
wanting to characterize the range of native and oxidized
species present (46, 98, 119). In contrast, SRM and MRM can
select specific oxidized forms. For example, SRMs of m/z
790 > 184 and 818 > 184 have been used to quantify mono-
hydroperoxides of 1-palmitoyl-2-linoleoyl-PC and 1-stearoyl-
2-linoleoyl-PC in healthy human plasma by comparison with
a calibration curve of synthetic standards (49). Similarly,

FIG. 5. Mass spectrometry frag-
mentation routines. (a) Product ion
scanning involves selection of a spe-
cific precursor, fragmentation, and
scanning of the fragment ions. This is
not a targeted scanning routine. (b)
As the precursor ions are scanned,
each, in turn, is fragmented but only
those yielding the selected product
ion generate a signal. (c) As the pre-
cursor ions are scanned and frag-
mented in turn, the product ions are
scanned with an m/z offset so only
those that lose a specific mass are
detected. (d, e) single reaction mon-
itoring (SRM) and multiple reaction
monitoring (MRM) are not scanning
routines, as both analyzers are set to
fixed masses. For SRM, a single
transition corresponding to a single
product ion is monitored, whereas for
MRM, several transitions or product
ions from the selected precursor are
detected. Note that to be detected,
fragments must retain the charge.

FIG. 6. Data-dependent acquisition. During the chro-
matographic separation and within each duty cycle, the mass
spectrometer collects data by scanning in MS mode to de-
termine the molecular ions that are present in the sample.
The most intense ions (3 in this example above the dotted
line, but could be any number from 1 to 10) are sequentially
selected and fragmented to determine their fragmentation
pattern (MSMS data), thus facilitating identification. The
process then starts again with another duty cycle. Thus in
each time frame of the chromatogram, MS data on all mo-
lecular ions and MSMS data on the most intense molecu-
lar ions are acquired. To see this illustration in color, the
reader is referred to the web version of this article at www
.liebertpub.com/ars
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hydroperoxyoctadecadienoyl phosphatidylcholine (HpODE-
PC) and hydroxyoctadecadienoyl phosphatidylcholine
(HODE-PC) were analyzed in rat and human plasma by
transitions from the parent ions (790 and 774, respectively) to
phosphocholine at m/z 184 (148). Other types of oxidized PC
products, including the epoxyisoprostane PEIPC (m/z
828.6 > 184) and lysolipids such as 1-palmitoyl-2-hydroxyl-
sn-glycero-3-phosphorylcholine m/z 496.3 > 184), have also
been detected by SRM (18). More recently, an extensive list of
SRM transitions was reported for the quantification of oxi-
dized products derived from the most abundant species of
phosphocholines in human dermal fibroblasts subjected to
UVA irradiation, which clearly caused increased levels of
many of these compounds (40). However, quite a few of these
transitions were not specific for an individual oxidized prod-

uct, owing to the existence of isobaric or isomeric PCs. This is
a limitation of detection in the positive ion mode using a single
transition to m/z 184. The specificity can be improved by
MRM where additional product ions resulting from the loss of
water ( - 18 Da) are used for hydroxides and loss of H2O2

(34 Da) for hydroperoxides. Uchikata et al. used this approach
to measure oxidized PCs in liver from mice fed on a high-fat
diet: As an example, the monoperoxide of SAPC was moni-
tored by transitions from m/z 842.6 to 184.1, 808.4 (loss of
H2O2), and 824.4 (loss of H2O) (136). It is important to note
that the loss of water is not a very specific transition, as it
occurs for hydroxides and hydroperoxides, although it has
been used in an SRM approach (50).

While positive ion detection works very well for PCs, most
other glycerophospholipids can be more readily observed in

FIG. 7. Examples of diag-
nostic routines for oxidized
PAPC. The m/z of the native
lipid is 782 in positive ion
mode and 826 as the formate
adduct in negative ion mode.
Peroxidation adds 32 Da (2O)
and reduction to a hydroxide
or formation of a ketone fur-
ther alter the m/z as indicated.
For each oxidized form, dif-
ferent scanning or reaction
monitoring routine are diag-
nostic. In the positive ion
mode, loss of hydrogen per-
oxide (34 Da) is diagnostic
for hydroperoxides and loss
of water (18 Da) indicates
hydroxides though it is not
very specific. In the negative
ion mode, precursor ion
scanning or SRMs for the
native (arachidonate [AA] or
palmitate [PA]) or modified
fatty acids can be used.

FIG. 8. Precursor ion scanning
of m/z 184.1 for products of oxi-
dized PAPC. Spectrum of autox-
idized PAPC showing the wide
range of oxidized products that can
be generated from a single molec-
ular phospholipid species. Full-
chain-length oxidation products
appear at m/z values greater than
those of the original phospholipid
(782.8), while chain-shortened
(fragmented) products appear at
lower m/z. Adapted from Spickett
et al., (119) with permission from
Elsevier.
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the negative ion mode, and this also has an advantage that a
wide range of fatty acyl fragments can be observed relatively
strongly in the MSMS spectra and used as reporters in pre-
cursor ion scanning. This approach has been applied effec-
tively in several studies on the generation of oxidized
products of PEs by lipoxygenases (89, 90). Precursor ion
scanning for phospholipids containing hydroxyeicosate-
traenoic acid (HETEs) (fragment ion at m/z 319.2) has been
carried out and identified precursor ions at m/z 738, 764, 766,
and 782 that were found to correspond to a family of plas-
malogen PEs containing 15-HETE (74). Similarly, scanning
for precursors of ions with m/z 317.2 can be used to identify
KETE-containing phospholipids (42). Subsequently, SRM
methods were set up and applied for a wide range of PEs from
several cell types; appropriate selection of collision energies
also allowed positional isomers (e.g., 5-HETE, 12-HETE, 15-
HETE) to be analyzed (82). In fact, PCs containing equiva-
lent oxidative modifications of the fatty acyl chains can also
be analyzed in the negative ion mode, if solvents containing
acetate or formate are used to generate [M-H + HCOOH] - or
[M-H + CH3COOH] - adducts, respectively (82, 85), and an
advantage is that two transitions of comparable intensity, one
for each fatty acyl chain, should be detectable. The corre-
sponding neutral loss of fatty acyl fragments is observed in
the positive ion mode, and facilitates structural determina-
tion, though these signals are generally weak and very de-
pendent on lipid structure. This neutral loss can be used as a
reporter scan, but is generally less sensitive and selective than
precursor ion scanning.

Recently, there have been studies on detection of oxidized
PS by targeted MS approaches (70, 71, 131, 135). Lipids
containing the phosphoserine headgroup can be selectively
detected by a neutral loss of 87 amu, and this has been applied
for the detection of native PSs and PSs containing an oxidized
fatty acyl chain (72). However, it has also been observed that
the amine moiety of the headgroup is susceptible to oxida-
tion, leading to formation of glycerophosphoacetic acid
(GPAA). Alternative selective scanning procedures for this
modification to the head group have been reported, involving
a neutral loss of 58 amu or scanning for precursor ions of m/z
137.1, and used to detect PS oxidation in keratinocytes sub-
jected to radical oxidation in vitro (Fig. 9) (72).

It is well recognized that lipids containing hydroxides can
be identified by loss of 18 Da and hydroperoxides by loss of
34 Da (1), and some studies have used the resulting transi-
tions for SRM or MRM with observation of the charged
fragment, as described earlier. In addition, these character-
istic fragmentations can be used in neutral loss scanning to
identify all analytes containing hydroperoxide moieties. This
has been demonstrated for lipids oxidized in vitro (117, 119)
(Fig. 10), but has not as yet been much utilized in biological
samples, as neutral loss scanning tends to be less sensitive
than precursor ion scanning or SRMs. The same is true for the
use of the neutral loss of 36 Da (H35Cl), which has been
suggested as diagnostic for chlorinated ions such as chloro-
hydrins of PCs. The presence of chlorine can be checked by
neutral loss of 38 Da for the isotopic H37Cl form; this profile
should match that of neutral loss of 36 Da, although weaker
owing to the 35Cl:37Cl isotope ratio (78, 92). However, cau-
tion is required, as bis-hydroperoxides may also undergo
sequential loss of two water molecules, corresponding to a
decrease of 36 Da (50).

Novel Strategies for Detecting or Quantifying
Oxidized Phospholipids

There is increasing interest in oxidation products of PEs,
which also commonly contain unsaturated fatty acids. Al-
though the neutral loss of 141 amu can be used to identify PEs,
this targeted approach underestimates contributions from vinyl
ether containing PEs, which fragment differently owing to the
more labile nature of the vinyl ether bond. This can be over-
come by chemically labeling the PE headgroup with 4-(di-
methylamino)benzoic acid, which fragments to yield a strong

FIG. 9. Precursor ion scanning of m/z 137.1 for oxi-
dized phosphatidylserine (PS) head group in stressed
HaCaT cells. (A) Spectrum of precursor ion scanning of the
ion at m/z 137.1 obtained from control HaCaT cells. (B)
Spectrum of precursor ion scanning of the ion at m/z 137.1
obtained from HaCaT cells incubated with the azo-initiator
2,2¢-azobis(2-amidinopropane) dihydrochloride (AAPH) at
30 mM for 24 h. (C) Spectrum of precursor ion scanning of
the ion at m/z 137.1 obtained from HaCaT cells after incu-
bation with 50 mM AAPH for 24 h. The fragment at m/z
137.1 reports on the presence of glycerophosphoacetic acid
derivatives that were found to be the major head group
oxidation products of PS and were increased in extracts of
oxidatively stressed cells. Adapted from Maciel et al. (72),
with permission from Elsevier.
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signal at m/z 191.1 that can be used for precursor ion scanning
(152). This fragmentation is favored compared with the loss of
the ether-linked chain, and therefore plasmalogen PEs are also
detected. An interesting application of this labeling approach is
that isotope-labeled DMABA (D0, D4, D6, and D10) can be
used for differential isotope labeling of samples, allowing
relative quantification of the PE profiles in different samples
by precursor ion scanning for m/z 191.1, 195.1, 197.1, or 201.1,
respectively. This has been used to demonstrate changes in
profile of PEs extracted from RAW264.7 cells and subjected to
oxidation with the radical initiator AAPH in vitro (153). An
ethyl-labeled PC hydroperoxide has also been synthesized
with the objective of following structural changes to hydro-
peroxides in biological systems, in this case human blood
(108). The phospholipid could be monitored selectively by
scanning for precursors of the ethyl-labeled phosphocholine
headgroup at m/z 198. Although this approach cannot be used
in vivo, as it involves a synthetic lipid rather than a chemical
labeling protocol, it represents an interesting method for
studying metabolism of individual oxidized PCs in vitro, as a
contrast to the use of expensive isotopically labeled lipids.

An interesting method for improving the extraction and
enrichment of oxidized phospholipids in LDL has been re-
cently reported by Hinterwirth et al. (46). Gold nanoparticles
(GNPs) with anti-OxLDL antibodies immobilized on their

surface were used to trap oxidized LDL selectively from
plasma samples, before extraction of the lipids and analysis of
the oxidized phospholipids by precursor ion scanning and
SRM for transitions to m/z 184.1. Four different antibodies
were tested: E06, an anti-Cu oxidized LDL antibody, an anti-
MDA-LDL antibody, and an anti-carboxymethyllysine-LDL
antibody; all the GNP-Ab conjugates showed specific binding
of oxLDL and significantly enhanced the levels of oxidized
phospholipids detected in plasma. This methodology also has
the advantage that it can be used to measure dissociation
constants for oxidized phospholipids, thus allowing the anti-
genicity of multiple lipid biomarkers to be screened. Other
enrichment strategies compatible with MS have also been re-
ported to improve the analysis of oxidized lipids in complex
samples. For example, aldehyde products of fatty acyl chain
oxidation have been trapped using hydrazine base reagents
conjugated to solid surfaces such as nanoparticles (41), and
the acidity of carboxylic acid oxidation products has been
exploited using a nanoparticle enrichment strategy (123).

Advances in Chromatographic Separation
of Oxidized Phospholipids

In addition to the advances in scanning approaches, there
have been new developments in chromatographic separation

FIG. 10. Targeted scanning for
oxidized PCs in combination with
reverse-phase liquid chromatog-
raphy. A heterogenous mixture of
oxidized phospholipids containing
unmodified PCs, hydroperoxides,
and chlorohydrins was separated on
a C8 Luna column and detected in
positive ionization mode on a
QTrap 5500 (119). (A) Total ion
chromatogram showing all posi-
tively charged species with the re-
tention times of major peaks
indicated. (B) Scanning of precur-
sors of 184.1 m/z to identify the
PCs improved the specificity and
signal-to-noise ratio; the fatty acyl
composition of the major PC spe-
cies is indicated. (C) Scanning for
neutral loss of 34 Da selected hy-
droperoxides derived from the un-
saturated species PLPC, SLPC, and
SAPC. (D, E) Scanning for neutral
loss of 36 Da and 38 Da respec-
tively; together, these identified the
chlorinated species present. The
inset shows the spectrum of several
chlorinated species formed from
PAPC eluting at approximately
12–16 min. The strongest signals in
(D) and (E) correspond to mono-
chlorohydrins formed from modi-
fication of SOPC, which are more
stable than chlorohydrins derived
from PAPC.
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for phospholipid oxidation products. LC-MS(MS) of oxi-
dized phospholipids is commonly carried out with conven-
tional (4.6 mm i.d.) or microbore (1 mm i.d.) columns, in
contrast to proteomics analysis where nanoflow is commonly
used; Lee et al. (60) demonstrated that nano-flow LC-MSn

was effective for separating a variety of native and oxidized
phospholipids. They used a laboratory-prepared 7 cm length
silica capillary of 75 lm i.d. containing ODS-P C18 resin
and gradient elution from water:acetonitrile (10:90 v/v) to
acetonitrile: methanol isopropanol (20:20:60 v/v), and with
data-dependent CID were able to detect the presence of 139
oxidized PLs species in commercially available oxLDL. The
chromatographic separation achieved by this method ap-
peared to be excellent, despite the column being packed in-
house. Several types of nano-flow columns with C18 resins
are available from commercial suppliers, and there is no
reason that these could not be used more extensively in ox-
lipidomics. Two-dimensional chromatography can also bring
some significant benefit in increasing sensitivity (106), al-
though at the price of more extensive sample manipulation
and data generation and analysis.

A completely different approach to improving separation
of oxidized phospholipids was taken by Uchikata et al. (136),
using supercritical fluid chromatography (SFC) on a 2-
ethylpyridine column. SFC uses carbon dioxide that is cooled
and pressurized to maintain it in a supercritical fluid state as
the mobile phase; it is suitable for nonpolar, labile analytes
and is able to separate chiral compounds. For interfacing with
MS, methanol containing 0.1% ammonium formate was used
as a modifier solvent, which is essential for generating ions of
the analyte. An advantage of SFC compared with reverse-
phase chromatography was that hydroxides, epoxides, and
hydroperoxides of PC could be separated; under the condi-
tions used, hydroxides eluted at 5–6 min, epoxides eluted
from 7.5 to 9 min, and hydroperoxides eluted at 10–10.6 min.
While this method offers potential for advanced separation
and analysis of full-chain oxidation products, it requires
specialized chromatographic equipment and cannot yet be
considered a routine analytical technique, although com-
mercial systems are available.

Knowledge on Disease Physiology from Lipidomics
Approaches to Lipid Oxidation

A critical question in the development of methods to
identify and measure oxidized lipid products is to what extent
they have been applied to obtain novel information about
physiological systems. Fully targeted MRM-based methods
have been in use for a number of years and there are a sub-
stantial number of publications related to physiology and
disease, especially for nonesterified lipid oxidation products
(oxylipins) (19, 121, 147, 154), but the semi-targeted meth-
ods are newer and currently there are fewer applications. As
oxidized phospholipids are formed in inflammatory situa-
tions, many of the applications have been to cardiovascular
conditions, such as ischemia-reperfusion injury and athero-
sclerosis, or infectious diseases, leading to systemic or
chronic inflammation.

Oxidized phospholipids are known to influence inflam-
matory processes, and, consequently, several studies have
used MRM to quantify their levels in disease and control
conditions. For example, POVPC, PGPC, and PEIPC were

found in macrophages infected with Mycobacterium bovis
using transitions from the native masses to 184; using relative
quantitation, the level of PEIPC, in particular, was found to
be increased approximately 3.5-fold, and lyso PC also in-
creased (18). The antibody E06 was used to investigate the
occurrence of oxidized phospholipids in the less controlled
lepromatous lesions, compared with the well-contained tu-
berculoid leprosy lesions, demonstrating the value of these
complementary methods. Although absolute quantification
was not carried out, the analysis of these oxidized PLs by
targeted MS provided evidence of their role in controlling
inflammatory outcomes during infection and the similarity of
these inflammatory lesions with atherosclerotic lesions (18).

Nakanishi et al. (85) used MRM in the negative ion mode
to detect oxidized PCs, with transitions from their native m/z
to those of both the sn-1 and sn-2 chains (full length and
chain-shortened respectively). The use of two or, in some
cases, even three transitions gave extra confidence in the
identification, but a disadvantage of analysis in the negative
ion mode is that the overall sensitivity is often lower than in
the positive mode. The transitions were based on theoreti-
cally expanded data sets; that is, they identified transitions of
each PL and oxidation type, and extrapolated them to anal-
ogous oxidized phospholipids of different chain lengths. The
method was used to compare 44 different oxPLs in ischemic
and nonischemic myocardium. It was found that levels of
these oxPLs varied, with hydroperoxides, aldehydes, and
carboxylic acids the most abundant in both tissues, but there
appeared to be greater increases in ischemic tissue of prod-
ucts derived from C20:4 and C22:6 containing PLs, where the
level approximately doubled according to the peak area.
However, a limitation of the study was that quantitative and
statistical analyses were not carried out. The authors con-
cluded that C22:6 lipids provide a protective barrier against
oxidative damage, but further work would be required to
demonstrate the benefit of these lipids in ischemia.

Increased levels of oxidized CL were detected in mito-
chondria from cardiac muscle after ischemia in the aged heart
(62). Data-dependent acquisition was used, which is a non-
targeted MS methodology: at each sampling point of the
chromatogram, the most intense peak in the spectrum was
selected for fragmentation (MS2) and the most intense signal
in the MS2 spectrum was fragmented further (MS3). The MS
data obtained were searched for masses of interest related to
oxidized CL. A particularly interesting finding was that ox-
idation of CL appeared to occur in a nonstochastic manner,
with the addition of three oxygen atoms apparently on a
single acyl chain, rather than a mixture of oxidation products
and sites. The implication is that ischemia injury may lead to
an enzymatic oxidation of CL, which could be instrumental in
initiating apoptosis; oxidation of CL is known to favor re-
lease of cytochrome c from mitochondria and decrease the
activity of the electron transport chain complexes (91, 107).
Nonrandom oxidation of CL has also been reported in other
tissues and conditions (133). Thus, MS analysis can provide
important information about cellular and biochemical pro-
cesses.

Coronary and peripheral artery interventions are used to
treat obstructive vascular diseases and acute coronary syn-
dromes, but release of material from the plaque can cause
distal complications such as embolisms. Ravandi et al. (98)
used distal embolic protection filters to collect material
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released during these procedures and demonstrate the pres-
ence of oxidized PLs. Scanning for precursors of m/z 184
(phosphocholine headgroup) in the positive ion mode was
used to identify PC-containing PLs in the extracted filter
material, before quantitative analysis using SRM. The
method was established using six commercially available oxi-
dized lipids with 1,2-dinonanoyl-sn-glycero-3-phosphocholine
as an internal standard, so the oxPLs could be quantified in
terms of ng of material collected or as a % of the total oxidized
PC analyzed. The filter material was enriched in oxidized lipids
compared with unoxidized LDL, with PONPC as the most
abundant component; around 75 ng was found to be present in
filters for saphenous vein grafts, although peripheral and carotid
interventions released less material (*50 ng). This is impor-
tant, as aldehyde and carboxylate-containing products have
been found to have different effects on vascular tissues (7, 30,
38). The study also demonstrated the value of protection filters
to reduce the amounts of oxidized PLs reaching the micro-
vasculature (98).

Essentially the same MS approach, involving transitions
from the parent molecular ion to m/z 184, also demonstrated
that levels of hydroxy, hydroperoxy, and truncated PCs were
increased in plasma from rats and patients suffering from
chronic alcohol exposure and alcoholic liver disease. Ana-
lysis of the temporal appearance of these products suggested
that rather than being related to initial oxidative stress oc-
curring during ethanol metabolism, they were produced later
during the critical transition to pathologic steatohepatitis,
when hepatic inflammation occurs. As oxidatively truncated
phospholipids are pro-inflammatory and pro-apoptotic, it was
suggested that they were likely to contribute to adverse sys-
temic effects of chronic ethanol exposure, as well as being
markers of steatohepatitis (148).

Oxidized PEs were found to occur in bronchoaveolar la-
vage fluid from patients with lung diseases, using negative
ion MS analysis (42). Precursor ion scanning was used as
a discovery tool to find precursors of m/z 317.2 (KETE-
containing lipids). The analysis of individual oxPEs was then
carried out by monitoring transitions from parent ions to m/z
153.2 (12-KETE), 219.2 (15-HETE), or 179.2 (12-HETE),
using higher collision energies to induce dissociation within
the chain and provide information on positional isomers.
Patients with cystic fibrosis had significantly higher levels of
three oxidized plasmenyl phosphoethanolamines: 18:0p/15-
KETE-PE, 18:1p/15-KETE-PE, and 16:0p/15-KETE-PE, at
levels from approximately 0.05 to 3.5 ng/ml; although similar
levels of the ester-linked compound 18:0a/15-KETE-PE
were observed, the difference was not significant. The HETE-
and KETE-containing PEs are mainly generated by the ac-
tion of 15-lipoxygenase in macrophages, and they were
shown to cause stimulation of PPARc and upregulate CD36
expression in peritoneal macrophages (42). The increased
levels of these oxidized lipids are thought to have a role in
damping down the acute pulmonary inflammation charac-
teristic of cystic fibrosis and may offer therapeutic potential
for treating the disease.

The formation of oxidized CL and PS has also been ob-
served in animal models of lung damage, such as that induced
by hyperoxia, c-radiation, or carbon nano-tubes, which can
induce chronic pulmonary inflammation and fibrosis (5, 133,
135). Using shotgun lipidomics for initial identification fol-
lowed by LC-MSMS for quantitative analysis, these condi-

tions were found to result in much greater % increases in
hydroperoxides and hydroxides of PS and CL compared with
the other more abundant lipid classes PC and PE. This se-
lective pattern of phospholipid peroxidation involving pri-
marily CL and/or PS has also been reported in traumatic brain
injury, and the observation that only certain polyunsaturated
species within each of these classes became oxidized is in
agreement with the study of CL oxidation in cardiac muscle
(62). These studies concluded that mitochondrial lipid per-
oxidation pathways contributed to the chronic damage in-
volved in inflammatory lung damage by triggering apoptotic
pathways, and that mitochondrially targeted electron scav-
engers or heme-iron ligands might be able to protect against
this damage (133).

Future Perspectives

A great deal of information currently available on the ex-
tensive range of individual oxidized phospholipids that occur
both in vitro and in vivo has been provided by MS analysis.
Interestingly, although products such as hydroperoxides and
epoxides are often regarded as unstable, they have been de-
tected in tissue samples from many acute and chronic in-
flammation conditions, as have the more stable truncated
phospholipids containing reactive aldehyde or ketone moie-
ties that can also form adducts to proteins, and a range of
other oxidized products with known or potential biological
activity. Using accurate mass or fragmentation patterns,
distinct oxidized molecular species and isomeric compounds
have been identified. In fact, the major problem with non-
targeted MS analysis is the amount of data available, exem-
plified by the size of a typical data file for a 1 h LC-MSMS run
of 0.5 GB, and the consequent complexity of its analysis. For
example, recent lipidomic studies of LDL have identified
between 150 and 275 native molecular lipid species (13,
100), a study of mouse plasma using SFC identified 461 lipids
(145), many lipids have been comprehensively profiled in
brown adipose tissues (47), and other reports have identified
even higher numbers (11); the likely number of different
oxidized forms is considerably higher than this, and many
different oxidized phospholipids have been reported in dis-
eased tissues. The manual identification of such large num-
bers of species becomes an impossible task, and other
approaches are required to make the data manageable.

One approach, as described earlier, is the use of targeted
methods to find specific relevant modified lipids. An alter-
native approach is the use of software to cross-search the MS
data against databases of lipid masses and fragmentation pat-
terns for identifications. The most established open access
database for lipidomics is LIPIDMAPS (www.lipidmaps.org/),
but researchers are also developing their own databases of
phospholipid MS characteristics and software tools for ex-
ploiting them. For example, LipidHome was developed by
research at the European Bioinformatics Institute in the
United Kingdom, and it incorporates a database and an MS1
search engine (28). Currently available databases and search
tools have been recently reviewed (45, 57); most are freely
available but two commercially available ones include Lipid
View, marketed by ABSCIEX for shotgun data, and SimLi-
pid from Premier Biosoft, which can handle LC-MS(MS)
data. Until recently, oxidized lipids and phospholipids have
been poorly represented in these resources, but as interest in
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FIG. 11. Identification and imaging of two proposed OxPCs at m/z 716. The MS spectrum (a) illustrates the complex
mixture of biomolecules observed in tissue. MS2 (b), MS3 (c), and MS4 (d) spectra and images demonstrate the feasibility of
identifying and localizing OxPCs in biological tissues using the MALDI MSn methods developed in this work. On the basis
of the product ions observed, two isomeric OxPCs were identified, PC(16:0/11:0 COOH) and PC(18:0/9:0 COOH). The
proposed structures are displayed in the orange and purple boxes, and the product ions specific to each of these OxPCs are
indicated by orange stars and purple diamonds for PC(16:0/11:0 COOH) and PC(18:0/9:0 COOH), respectively. Fur-
thermore, on comparison of the MSn images of m/z 716 ([PC(16:0/11:0 COOH) + Na] + and [PC(18:0/9:0 COOH) + Na] + ) to
the MS image of m/z 756 ([PC(16:0/16:0) + Na] + , a PL known to localize in the gray matter of rat spinal cord), the ions
related to the OxPCs appear mostly in the gray matter (outlined in red). Reprinted with permission from Stutts et al. (124);
Copyright ª 2013 American Chemical Society. To see this illustration in color, the reader is referred to the web version of
this article at www.liebertpub.com/ars
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their analysis and available MS data grow, this is being
remedied. LiPilot is a software tool designed for the identi-
fication of phospholipid structures from MSMS data (64) and
has been used to carry out automatic searches of oxidized PLs
found in LDL (60). This is an area that is expected to develop
greatly in the next few years, and will be very important as
improvement in instrument technology and scanning rates
provide ever-increasing amounts of data, for example from
‘‘pseudo-targeted’’ approaches using q-TOF instruments,
which requires data mining of the extensive datasets.

An issue that will be important for the future is the avail-
ability of standards. In contrast to the large number of
available isotope-labeled or unlabelled nonesterified lipids,
standards for oxidized phospholipids are fewer and often
prohibitively expensive, owing to the greater synthetic
difficulty. Relative quantification, involving comparison of
lipid profiles between samples or ratioing of oxidized
products versus native precursors, can be carried out with-
out labeled standards (101). However, absolute quantifica-
tion of oxidized lipid levels requires standards of all
analytes of interest, as the ionization efficiency varies with
chain length and phospholipid class. Quantification by
comparison with a small number of standards that may not
have directly comparable MS behavior has limitations; es-
pecially in discovery applications, absolute quantification
continues to be a challenge.

Unlike protein aldehydes (generated from direct oxidation
or short-chain lipid adducts, such as HNE), there are very few
reported methods for the enrichment of oxidized phospho-
lipids, which is especially surprising given their generally
low abundance. Of the few there are, the most effective ap-
pear to be nanoparticle-based enrichment of acidic products
generated either directly from the oxidation or via reaction of
lipid aldehydes with an acidic aniline based reagent (4-ami-
nobenzoic acid) using either ZrO2 or surface functionalized
Fe3O4 core-shell superparamagnetic nanoparticles (123), or a
bifunctional thiol hydrazide that can be captured on GNPs for
isolation and then the aldehyde is released using hydroxyl-
amine (41). The former have the advantage that they can be
directly analyzed by adding the particles to the MALDI
matrix.

An area that is likely to grow considerably in the next few
years is MS imaging of oxidized lipids. MS imaging involves
collection MS or MRM data at a number of raster points
across a sample, and reconstructing an abundance map from
this using ion intensities (36, 84), and its potential for phos-
pholipids has been recently reviewed (113). The most com-
monly used method to date is MALDI, although a range of
newer methods that operate at atmospheric pressure, such as
desorption ESI (24), laser ablation electrospray ionization
(LAESI) (86), laserspray ionization (LSI) (44), and liquid
extraction surface analysis (LESA) (10), which generally
have limiting resolutions between 20 and 100 lm, and
higher-resolution methods such as secondary-ion mass spec-
trometry (SIMS, sub-micron resolution) (6) are showing
promise as alternative methods. The use of ToF-ToF instru-
ments, and especially the coupling of imaging methods
to other high-resolution MS instruments where ion analysis
and fragmentation are fully decoupled from the ionization
method, along with the application of ion mobility MS are
revolutionizing the capabilities of this methodology. MALDI
imaging appears to work particularly well for easily ionized

lipids (PC, PE) as well as for other metabolites or peptides
(88), and studies on the lipid content of a number of animal
tissues have been reported, especially in the brain and liver,
which have a high lipid content; this has been comprehen-
sively reviewed recently (35, 36). As yet, very few studies in
which oxidized lipids were detected have been reported
(114), but Stutts et al. have used sophisticated MSn meth-
odology to image truncated carboxylate-containing PCs in rat
spinal cord and show they were mainly localized to the gray
matter (Fig. 11) (124), and the analysis of oxidized lipids in
traumatic brain injury has been recently reviewed (114). This
technology is an area of considerable interest and value for
understanding the localization of oxidized phospholipids
within diseased and inflamed tissue, although currently spa-
tial resolution of the image is limited by the laser spot di-
ameter and other factors to 10–50 lm.

In conclusion, oxidative lipidomics is an exciting and
biomedically important area that depends largely on MS
technology, and in which we can expect to see significant
advances in the near future as the technology and supporting
methodological refinements are developed further.
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Abbreviations Used

CL¼ cardiolipin
DPPP¼ diphenyl-1-pyrenylphosphine

EPR/ESR¼ electron paramagnetic/spin resonance
spectroscopy

ESI¼ electrospray ionization
GC-MS¼ gas chromatography mass spectrometry

GNP¼ gold nanoparticle
GPAA¼ glycerophosphoacetic acid
HETE¼ hydroxyeicosatetraenoic acid
HODE¼ hydroxyoctadecadienoic acid
HOOA¼ 5-hydroxy-8-oxo-6-octenoic acid
HpETE¼ hydroperoxyeicosatetraenoic acid

HPLC¼ high-performance liquid chromatography

KETE¼ ketoeicosatetraenoic acid
LAESI¼ laser ablation electrospray ionization

LC¼ liquid chromatography
LESA¼ liquid extraction surface analysis

LSI¼ laserspray ionization
MALDI¼matrix-assisted laser desorption/ionization

MDA¼malondialdehyde
MRM¼multiple reaction monitoring

MS¼mass spectrometry
NMR¼ nuclear magnetic resonance
ODS¼ octadecasilane

PAzPC¼ 1-palmitoyl-2-azelaoyl-sn-glycero-3-
phosphocholine

PC¼ phosphatidylcholine
PE¼ phosphatidylethanolamine

PEIPC¼ 1-palmitoyl-2-(5,6-epoxyisoprostane
E2)-sn-glycero-3-phosphorylcholine

PGPC¼ 1-palmitoyl-2-glutaroyl-sn-glycero-3-
phosphorylcholine

PONPC¼ 1-palmitoyl-2-(9-oxo-nonanoyl)-sn-glycero-
3-phosphorylcholine

POVPC¼ 1-palmitoyl-2-(5-oxovaleroyl)-sn-glycero-
3-phosphorylcholine

PS¼ phosphatidylserine
Q¼ quadrupole

SFC¼ supercritical fluid chromatography
SM¼ sphingomyelin

SRM¼ single reaction monitoring
ToF¼ time of flight
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