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Abstract: This paper proposes a probabilistic power pinch analysis (PoPA) approach based on Monte–Carlo simulation (MCS)
for energy management of hybrid energy systems uncertainty. The systems power grand composite curve is formulated with the
chance constraint method to consider load stochasticity. In a predictive control horizon, the power grand composite curve is
shaped based on the pinch analysis approach. The robust energy management strategy effected in a control horizon is inferred
from the likelihood of a bounded predicted power grand composite curve, violating the pinch. Furthermore, the response of the
system using the energy management strategies (EMS) of the proposed method is evaluated against the day-ahead (DA) and
adaptive power pinch strategy.

1 Introduction
The significant impact of greenhouse gas emission on the
ecosystem has continued to encourage the deployment of
renewable energy sources (RES) such as wind turbines and solar
panels, for distributed generation (DG). Additionally, the
standalone RES serves as a good alternative for rural electrification
[1]. However, due to the high variability of RES, the hybrid energy
storage has been incorporated in the DG network to enhance
reliability. Consequently, energy produced by fossil fuels is
reduced by the RES penetration [2]. The combination of DG and
hybrid energy storage systems (HESS) transforms the traditional
power network from ‘fit and forget’ to a more dynamical and
multi-purpose system. Energy can also flow in multiple directions
and in various forms (like electrical and thermal) [3]. Therefore,
energy management strategies (EMS) with active control of the
HESS are desirable but introduce significant challenges.

Power pinch analysis (PoPA) [4] is a graphical method which
enables the systematic identification of energy recovery
opportunities in hybrid RES. It considers power demand and
supply requirements with respect to time in the form of the power
grand composite curves (PGCC) to identify inflection points
(called pinches) where power demands must be satisfied by
external, non-RESs. The identification of pinch points allows the
development of EMS which support efficient internal energy
recovery so that the use of non-renewable energy can be avoided.
The PGCC have mainly been used to identify energy needs in
deterministic scenarios to enhance reliability and optimal operation
of HESS. An EMS, using the PoPA graphical tool, was proposed in
an isolated hybrid micro-grid to identify the minimum energy
targets required for storage and consequently the needed
outsourced electricity to cater for energy deficit in a hybrid system
[4]. The operation cost and emission impact of diesel generator was
reduced after integration with renewable energy from wind turbines
and photovoltaic (PVs) panels using PoPA in [5]. In [2], PoPA was
presented as an enhanced graphical tool, exploiting the demand and
supply PGCC of an isolated hybrid micro-grid in a novel way and
in addition, load shifting has been employed using PoPA in [6].
The PGCCs were used in the form of a cascaded demand-supply
tables and as a graphical tool to identify peak demand, thereafter

time shifted to off-peak period, in a bid to enhance grid reliability.
More recently, [7] proposed a chance constrained optimisation in a
pinch analysis framework for RES sizing to meet a predefined
reliability to uncertainty, thereafter, Monte–Carlo simulation
(MCS) was used to verify the approach.

In [8], the shaping of the PGCC was implemented online, for
the first time, using the day-ahead (DA) rolling horizon model
predictive approach to compute the open loop control sequence
offline for the activation of the energy assets. The EMS which
consequently shapes the system's PGCC in order to avoid violating
the pinch point is pre-determined in the predictive horizon and
implemented on the system online. However, the open loop
approach becomes insufficient in handling forecast error due to
uncertainty, which causes a mismatch between the estimated and
real load and weather data profile.

The PoPA, therefore, benefits the operator as it serves as a
minimalist conservative technique for planning in advance,
demand, and power supply schedule using the PGCC. However,
weather intermittency as well as the stochastic consumers load
usage pattern, pose risk on both the reliability and infrastructure
sustainability of the assets. Therefore, incorporating the chance
constraint method in the EMS for energy recovery is essential since
the deterministic models are often employed with the PoPA which
consequently impact on reliability.

This paper presents two adaptations of the original method
presented in [8]. First, the prediction horizon is adapted in a
receding model predictive framework based on the prediction error.
Second, a probabilistic method, MCS is proposed for investigating
the robustness against load/weather uncertainty.

2 Methodological framework
2.1 Hybrid energy storage systems modelling

As a case study, the HESSs comprise renewable energy generation
via solar panels (PV), fuel cell (FC), and electrolyser (EL), battery
(BAT), water (WT), and hydrogen tank (HT), with a backup diesel
generator (DSL). The HESS parameters are the same as [3] for
consistency. The state of the accumulator SOAcc is expressed
mathematically as follows; (see (1)) 

J. Eng., 2019, Vol. 2019 Iss. 17, pp. 4288-4292
This is an open access article published by the IET under the Creative Commons Attribution-NonCommercial-NoDerivs License
(http://creativecommons.org/licenses/by-nc-nd/3.0/)

4288



The flow of electrical energy or material is defined as follows:

Fl ⇄ RSconv
j = εi(t) × δQi

j(t), i ∈ {x1, x2} (2)

where ɛi (t) is a binary variable of the dispatchable asset state, δ is
used for varying the magnitude of energy or material [ineq]
converted by the ith dispatchable unit [3]. Also, x1 and x2 are
energy transforming resources Rsconv ∈ [FC, EL, LD, DSL, PV]
which, respectively, supply and consume the energy in an energy
storage system l. In addition, the existence of an edge (signified by
‘←’ and ‘→’ which establishes a path for in and out flow of
energy, respectively), is represented by the logical binary variable
ɛi (t) ∈ [0, 1]. Furthermore, ɛi (t) is inferred from the state of the
storages SOAcc(t), where Cl is storage capacity and subscript l ∈
[BAT, HT, WT] refers to the energy storage system while m, n
superscripts refer to the actual and estimated values of the HESS.

εi(t) = L(εi
Avl(t), εi

Req(t), εi
Gen(t)) (3)

where superscripts Avl, Req, and Gen in ɛi represent availability,
request, and override are sub-logical conditions, respectively,
pertaining to l, which must be satisfied in order to activate the
dispatchable assets [3].

2.2 Power pinch for hybrid energy storage management

The BAT acts as the primary storage and the excess energy in the
system is utilised by the EL to produce hydrogen, while the BAT is
charged (state-of-charge (SOAccBAT) > 90%). The FC in turn
charges the battery using the stored hydrogen when SOAccBAT is
below the minimum set limit (0%). The energy management
system works to keep SOAccBAT of the battery within the
acceptable region, the (30% < SOAccBAT < 90%), to ensure
reliability and optimum operation of the HESS.

The main principles of the PoPA concept, as applied in power
generation systems, are illustrated in Fig. 1. An accumulator (e.g.
hydrogen tank) stores excess energy from a converter (e.g. PV) due
to saturation of another converter (e.g. battery's state of charge
SOAccBAT > Up). Similarly, another converter (e.g. Fuel cell)
utilises the stored hydrogen to maintain the SOAccBAT from falling
below a lower limit (SOAccBAT  < Lo). When maintenance of the
system within these limits becomes impossible, they are violated.
This is all shown through a plot of SOAccBAT with respect to time
(continuous black line in Fig. 1) which is called the power grand
composite curve (PGCC) of the system. In the case of the Lo limit,
the PGCC indicates the amount of minimum outsourced electricity
supply (MOES) required (e.g. through non-renewable resources) in
order to move and keep the curve above it. In the case of the Up
limit, the PGCC indicates the amount of minimum absorbed
electricity (MAE) that needs to be dumped, which is also
undesirable. By shifting the entire PGCC up or down (red dot-
dashed line in Fig. 1), the point in time where the PGCC touches
the Lo or Up lines is called the pinch point. The new, shifted curve
indicates the energy storage targets at each instance in order to
operate within the desired limits. The initiation or termination of
the appropriate converters allows the generation of an overall EMS
that best matches the shifted curve. However, realising the PoPA
successfully via DA strategy requires accurate load and weather
data which is often not the case due to uncertainty. The effect of the
uncertainty ΔH1,2 causes a mismatch between the actual and
predicted SOAcc parameters as shown in Fig. 2. Therefore,
violation of the upper and lower pinch may occur. 

2.3 Monte–Carlo simulation for uncertainty

The MCS has mostly been utilised to obtain probabilistic insight in
order to negate uncertainty via robust sizing [7], energy reserve
planning [10], and peak load shaving [11], as well as economic risk
analysis [12] in power systems. Furthermore, MCS is favourable
for low capacity planning in low-voltage grid to which the
simultaneity factor often employed in high-medium reserve
planning becomes less accurate.

3 Adaptive power pinch with Monte–Carlo
simulation for energy management
The chance constraint sizing approach presented in [7], for
minimum solar panel array area utilised in the PoPA framework,
primarily targeted reliability of the deterministic load demand
being met as well as the battery being charged. Furthermore,
energy management of BAT in the event that the battery becomes
fully charged and the utilisation of the excess energy were not
discussed. Thus, this paper presents an adaptation of the works of
[4] and [7, 9] by defining the robust adaptive energy management
algorithm in a probabilistic chance constrained framework.
Furthermore, the excess energy in the system, represented by
overcharging the BAT (SOAccBAT

n > 90%) and energy recovered as
well as over discharging the BAT (SOAccBAT

n < 30%), is
considered in the chance constraints evaluated with the MCS.

The MC sampling is performed iteratively in the prediction
horizon to determine the likelihood of the PGCC, violating
constraints (5)–(8). The pinch set points are expressed
probabilistically using the chance constraint. Therefore, two PGCC
form a (upper and lower) closed bounds within which the
uncertainty is defined. Consequently, the EMS which infers the
optimal control sequence in a prediction horizon at time step, k ∈
[1: 24]. The EMS effected in advance at the beginning of the
receding control horizon keeps the system within the desired
operating limits, while incorporating robustness to uncertainty, as
follows;

SOAccl
n, m(t) = SOAccl(t − 1)

+
∑x1 ∈ RS ConvFl ← x1

j (t) − ∑x2 ∈ RS ConvFl ← x2
j (t)

cl
× Δt

(1)

Fig. 1  PGCC shaping utilising DA-PoPA without uncertainty [9]
 

Fig. 2  PGCC shaping utilising DA-PoPA with load and weather
uncertainty [9]
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SOAccl
m( j)(k + 1)tr := Uc

min∑K = 1

T − 1

∑ j = 1
n f (εi(k), SOAccl

m( j)(k), Uc(k))
(4)

εFC
Gen(k) + εEL

Gen(k) ≤ 1 (5)

SOAccl
n(k1) ≅ SOAccl

m(T) (6)

SLo
l ≤ SOAccl

m(k) ≤ SUp
l (7)

Fmin ≤ FBAT ↔ Conv ≤ Fmax, Conv ∈ [FC, EL] (8)

where SLO
l  and SUp

l  are the lower and upper operational limits of the
Battery's state of charge and k1 and T are the first hour (01:00 h)
and last (24:00 h) of a 24 h (daily horizon) interval, respectively.
Uc(k) is the determined EMS resulting from PoPA minimum
energy targeting which controls the flow of power and activation of
the FC and EL. Therefore, SOAccl

m( j)(k + )tr is a transposed vector,
which comprises the posterior distribution of the state of charge of
the battery for each consumer load, sampled randomly from the
priori distribution.

The constraints in (5) prevent both FC and EL from activating
at the same instance. Equation (6) maintains the available energy
for the next day by activating EL or FC to match the energy
required during the start of the day. Additionally, (7) and (8) are the
pinch and device power rating constraints.

The PGCC targeting is exploited iteratively so as to achieve
robustness and compensate for inconsistencies between the real
and the estimated weather/load profile. The receding horizon
model predictive control (RHMPC) PoPA, hence, employs a state
feedback loop to adapt the model to the HESS. Thus, a closed loop
is utilised and the estimated and real states are compared for
discrepancy so as to achieve robustness to compensate for the
weather/load uncertainty [9]. Hence, minimising the effect of
uncertainty ΔH1,2 between the real and the estimated state of
charge and the state feedback error due to uncertainty is re-
computed as follows;

ΔH(k k) = ym(k) − yn(k k − 1) (9)

where y(k) is the output state measured at time k, and superscripts
m, nrefer to the real and the estimated state of charge, respectively.

Moreover, if ΔH1,2 is greater than the error threshold ξ at any
sampling instance, the PoPA is repeated in the predictive horizon in
order to determine the optimal control sequence from that instant
until time T. The threshold error ξ is set at 5% to reduce the
computational cost. The state of charge of the battery in the model
for PGCC re-computation is updated as follows:

If ∃ ΔH(k) > ξ, ∀k, Ym(k) := f (Yn(k k − 1)) (10)

SOAccBAT
m (k k) = SOAccBAT

m (k k − 1) ± ΔH(k) (11)

The MCS is performed on the distribution
f (εi(k), SOAccl

m( j)(k), Uc(k)) over j∈ [1: n] number of random
demand load samples, each time the PGCC is recomputed in the
prediction horizon. Furthermore, the probabilistic minimum energy
target required to satisfy the load demand with a given reliability
index for robustness is presented as follows;

The cumulative distribution function of the random variable
SOAccBAT

m  violating the lower limit is constrained by a chance
factor α1:

F(SOAccBAT
m ) = Pr[SOAccBAT

m (k) ≥ Smin] ≥ α1, α1 ∈ [0, 1] (12)

Therefore, the probability of violating the lower operating limit for
BAT is constrained as follows:

Pr[SOAccBAT
m (k) ≤ Smin] ≥ 1 − α1 (13)

Similarly, the chance of violating the upper pinch limit is as
follows:

Pr[SOAccBAT
m (k) ≥ Smax] ≤ α2, α2 ∈ [0, 1] (14)

Pr[SOAccBAT
m (k) ≤ Smax] ≥ 1 − α2 (15)

Therefore, the desired operating range for SoABAT
m (k) with respect

to the chance constraint is expressed with the inverse cumulative
distribution function (CDF) in (13):

FSOAccBAT
m

−1 (α1) ≤ f (SOAccBAT
m ) ≤ FSOAccBAT

m
−1 (1 − α2) (16)

Similarly, the probability density function equivalent of the CDF
for the desired operating region is shown in Fig. 3 and presented in
(16) and (17). The shaded portion of Fig. 3 represents the desired
operating region while the lower and upper tails.

∫
Smin

Smax
f [SoAcc]d(SoAcc) = F(S max ) − F(S min ) (17)

The decision variable Uc for the activation of the fuel cell and
electrolyser based on the pinch analysis as a consequence of
violating (2) and (3), respectively, is as follows;

Uc(k)
FBAT ← FC FSOAccBAT

m
−1 (α1) < Smin

FBAT → EL FSOAccBAT
m

−1 (1 − α2) > Smax

0 Otherwise
∀k ∈ [1:T − 2] (18)

where FSOAccBAT
m

−1 (α1, 2) is the inverse cumulative distribution of the
randomly distributed variable SoAccBAT

m (k).
Additionally, the MOES and MAE necessary for maintaining

the lower and upper pinch points, respectively, are obtained as
follows in (19) and (20), respectively:

MOSE :FBAT ← FC = Smin − FSOAccBAT
m

−1 (α1) × CBAT (19)

MAE :FBAT → EL = FSOAccBAT
m

−1 (1 − α2) − Smax × CBAT (20)

The EMS decision-making variable Uc in conjunction with the
magnitude of energy flow determined in (16) and (17) satisfy the
lower and upper pinch points with regard to the chance constraint
(9)–(11) in an adaptive receding horizon model predictive
framework. Similarly, the available electricity for the next day
(AEEND) for life-cycle preservation is determined using the upper
bound as follows:

Pr SOAccBAT
m (T) ≅ SOAccBAT

n (k1) ≥ (1 − α2) ∀T (21)

Thus, AEEND: (see (22)) . Furthermore, the power management
control sequence obtained with the MCS of the model is, therefore,

Fig. 3  Probability distribution function of the dependent random variable
SOAccBAT

m (%)
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effected in the control horizon taking the overall risk of violating
the utility pinch constraints into consideration.

4 Load demand and weather data
The historical household load demand profile with peak load of
1.5 KW and solar irradiance data corresponding to 54.9783°N,
1.6178°W are obtained from [13] and [14], respectively. The load
profile data set consists of the aggregated power demand of
uncontrollable appliances at each hourly time interval representing
consumer's usage pattern. The historical load profile data set, A (j,
k) collected over 365 days, at each hourly time step k, such that j = 
1, 2, 3…365 is partitioned into disjointed groups of A(j, k) = {A1,
A2, A3, A4} [15]. Each group of load demand data set corresponds
to the consumer's power usage pattern correlating to the four
seasons [10]. Therefore, from the consumer's historical energy
consumption profile as shown in Fig. 4, a probability distribution is
deduced. In employing the MCS, the load demands are usually
assumed to be normally distributed. However, in this work, a non-
parametric kernel density estimator is used to estimate the
underlying load demand distribution in each cluster (for each j at
time step k). Furthermore, in order to validate the proposed
approach, the actual load is randomly selected with uniform
probability from the load demand distribution corresponding to the
time instance (k). The DA PoPA and adaptive strategies utilising
the average load for each season are compared against the
proposed probabilistic PoPA method. 

5 Uncertainty analysis of the HESS
The proposed method utilising the chance constrained power pinch
for energy management is simulated in MATLAB based on 1000
samples randomly generated from a uniform distribution A(j, k).

The chance constraint factors were both set to 1% during the
simulation. Therefore, state of charge of the battery has a 98%
probability of operating within the optimal region
(30% ≤ SOAccBAT

n ≤ 90%). As shown in Fig. 5, the system PGCC
is bounded, by both the probabilistic lower and upper PGCC. The
response of the system over a period of 72 h is shown in Fig. 5.
The red and blue lines in Fig. 5 are the lower and upper predicted
PGCC based on the chance constraint. The yellow-dashed line
represents the actual response of the system. The PGCC upper
pinch violation at 40th hour accurately predicts the pinch during
the first 72 h hence the EL is activated. 

We compare three algorithms. The DA algorithm where
uncertainty is not considered, the RHMPC-PoPA algorithm where
the prediction error is corrected [9] and the MC-PoPA algorithm
where uncertainty is considered.

From Table 1, the proposed method has a total of 319 upper
pinch violations compared to the DA and RHMPC-PoPA with 603,
653. However, it has the most significant number of violations,
1374 and 1208, respectively, in both lower pinch zones (SOAcc < 
30% and 20% < SOAcc < 30%). 

Consequently, the RHMPC-PoPA has 1176 with the DA-PoPA
having the least violations of 1094. The activation of the DSL
accordingly correlates with the lower pinch violation, thus the
proposed method activated the DSL more frequently, 576 times.
Thi, however, is not significant compared to the 561 times the DSL
was activated utilising the RHMPC-PoPA.

Furthermore, despite the DA-PoPA having the lowest DSL
activation of 325 times, it does not truly reflect positive gains as
these largely result from over-charging (upper pinch violation) and
the stochastic dynamics of the actual load demand profile.
Furthermore, the DA-PoPA exhibits lower participation in the
energy recovery. The FC and EL are activated 79 and 205 times
compared the MC-PoPA (194 and 882 times) and RHMPC (213
and 724 times). Evidently, the low frequency of activation is due to

the DA targeting as the strategy does not account for energy
mismatch caused by uncertainty within the horizon.

6 Conclusion
An adaptive power pinch analysis based on MCS for energy
management of HESS, with respect to uncertainty, has been
proposed. The stochastic analysis evidently showed the proposed
method performed better in clipping the PGCC from violating the
upper pinch. The proposed method was compared to the DA and
adaptive PoPA, which utilised the average load. However, the DA
PoPA which had the most upper violation consequently had a
lowest lower pinch violation and DSL utilisation. The adaptive
PoPA had a marginally better lower pinch violation compared to
the proposed approach. Regardless of the better lower pinch

Uc k =
FBAT ← FC FSOAccBAT

m−I (1 − α2) < SOAccBAT
n (k1)

FBAT ← EL FSOAccBAT
m−I (1 − α2) > SOAccBAT

n (k1)
0 Otherwise

∀k ∈ [T − I] (22)

Fig. 4  Load demand profile showing energy consumption pattern
variability during winter

 

Fig. 5  Response of the Battery's state of charge to MC-PoPA
 

Table 1 Operational indices for 8760 h
Operational parameter EMS

DA-
PoPA

RHMPC-
PoPA

MC-
PoPA

FC attempt (cycles/year) 250 1687 2147
FC start-stop (cycles/year) 79 194 213
EL attempts (cycles/year) 205 882 724
EL start-stop (cycles/year) 205 882 717
PV start-stop (cycles/year) 7996 8031 8343
DSL start-stop (cycles/year) 325 561 576
Lower Pinch violation (counts/
year)

1094 1176 1374

Lower Pinch violation (counts/
year)20% < SOAccBAT < 30%

998 1025 1208

Upper Pinch violation(counts/
year)

764 729 417

Upper Pinch violation (counts/
year)90% < SOAccBAT < 100%

653 603 319
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violation, the DA-PoPA is arguably sufficient only if the variance
in energy target for the day is negligible and does not account for
uncertainty. Hence, future work would investigate sensitivity of the
methods with respect to several classes of load demand profiles.
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