
Neural Computing Research Group

Dept of Computer Science & Applied Mathematics

Aston University

Birmingham B4 7ET

United Kingdom

Tel: +44 (0)121 333 4631

Fax: +44 (0)121 333 4586

http://www.ncrg.aston.ac.uk/

Variational Markov Chain Monte

Carlo for Bayesian Smoothing of

Non-linear Diffusions

Y. Shen
Y.Shen2@aston.ac.uk

D. Cornford
d.cornford@aston.ac.uk

M. Opper
Artificial Intelligence Group, Technical University Berlin,

opperm@cs.tu-berlin.de

C. Archambeau
Department of Computer Science, University College London

C.Archambeau@cs.ucl.ac.uk

Technical Report Aston University Research Archive Monograph #8106 January 19, 2010

Submitted to Computational Statistics



Abstract

In this paper we develop set of novel Markov chain Monte Carlo algorithms for Bayesian smoothing of

partially observed non-linear diffusion processes. The sampling algorithms developed herein use a deter-

ministic approximation to the posterior distribution over paths as the proposal distribution for a mixture of

an independence and a random walk sampler. The approximating distribution is sampled by simulating an

optimized time-dependent linear diffusion process derived from the recently developed variational Gaussian

process approximation method. Flexible blocking strategies are introduced to further improve mixing, and

thus the efficiency, of the sampling algorithms. The algorithms are tested on two diffusion processes: one

with double-well potential drift and another with SINE drift. The new algorithm’s accuracy and efficiency is

compared with state-of-the-art hybrid Monte Carlo based path sampling. It is shown that in practical, finite

sample, applications the algorithm is accurate except in the presence of large observation errors and low

observation densities, which lead to a multi-modal structure in the posterior distribution over paths. More

importantly, the variational approximation assisted sampling algorithm outperforms hybrid Monte Carlo in

terms of computational efficiency, except when the diffusion process is densely observed with small errors

in which case both algorithms are equally efficient.



1 Introduction

Stochastic dynamic systems, also often referred to as diffusion processes or stochastic differential equations

(SDEs), have been used for modelling real systems in various areas ranging from physics to system biology

to environmental science (Honerkamp, 1994; Wilkinson, 2006; Miller et al, 1999). The current work was

motivated by the problem of data assimilation (Kalnay, 2003). In the data assimlation context dynamic

systems representing the evolution of the atmosphere system are partially observed by an array of different

instruments. The primary aim of data assimilation is the estimation of the current state of the system to

provide initial conditions for forecasting. Such continuous time systems are often only partially observed,

which makes likelihood based statistical inference difficult. In this paper, the inference problemwe focus on

is smoothing, that is estimation of the posterior distribution over paths in state space. From amethodological

point of view, the smoothing problem for stochastic dynamic systems has been pursued in three main

directions.

The first direction is based on solving the Kushner-Stratonovich-Pardoux (KSP) equations (Kushner, 1967;

Pardoux, 1982) which are the most general optimal solutions to the smoothing problem. However, solution

of the KSP equations is numerically intractable for even quite low-dimensional non-linear systems (Miller

et al, 1999), so various approximation strategies have been developed. In the particle approximation frame-

work (Kitagawa, 1987), the solution of the KSP equations is approximated by a discrete distribution with

random support. As proposed by Kitagawa (1996), the smoothed density, namely the posterior density,

is obtained from the combination of a forward filter and a backward filter. For linear, Gaussian systems,

the forward KSP equation reduces to the well-known Kalman-Bucy filter (Kalman and Bucy, 1961). The

smoothed estimates of mean and covariance can be calculated from the filtering results by recursion, a

method often referred to as the Kalman smoother (Jazwinski, 1970). To treat non-linear systems a num-

ber of approximation strategies have extended the Kalman smoother, for example, the ensemble Kalman

smoother which employs a moderately sized, randomly sampled, ensemble to estimate the predicted state

covariance matrix and then applies the linear Kalman updates (Evensen, 1994, 2000) and the unscented

Kalman smoother which is similar in spirit but uses an optimal deterministic sampling strategy to select the

‘ensemble ’ members (Julier et al, 2000; Wan and van der Merwe, 2001).

The second direction involves a variational approximation to the posterior process. In Archambeau et al

(2007), a linear diffusion approximation is proposed and its time varying linear drift is optimised globally.

This is explained in more detail in Sect. 2.2. In the work by Eyink et al (2004), a mean field approximation is

applied to the KSP equations and the mean field representation of possible trajectories is optimised globally,

to determine the most probable trajectory in a similar vein to 4DVAR data assimilation methods (Derber,

1989). 4DVARmethods are widely used in operational data assimilation (Rabier et al, 2000) and essentially

seek the mode of the approximate posterior smoothing distribution but do not provide any estimate of the

uncertainty about this most probably trajectory.

The third direction employs Markov Chain Monte Carlo (MCMC) methods (Andrieu et al, 2003) to sample

the posterior process, which is the focus of this paper. At each step of an MCMC simulation, a new state

is proposed and will be accepted or rejected in a probabilistic manner. For applications to continuous-time

stochastic dynamic systems, it is also often referred to as path sampling. A single-site update approach to

path sampling is adopted by Eraker (2001) in the context of parameter estimation of diffusion processes.

The author reported arbitrarily poor mixing of this basic algorithm. To achieve better mixing, two closely

related MCMC algorithms for path sampling, namely the Metropolis-adjusted Langevin (Stuart et al, 2004)

and the Hybrid Monte Carlo (HMC) algorithm (Alexander et al, 2005) have recently been proposed. Both

methods update the entire sample path at each sampling iteration while keeping the acceptance of new

paths high. This is achieved by combining the basic MCMC algorithm with a fictitious dynamics so that

the MCMC sampler proposes moves towards the regions of higher probability in the state space while

maintaining detailed balance. Another strategy to achieve better mixing in path sampling is to update one of

the sub-paths between two neighbouring observations at eachMetropolis-Hastings step leading to “blocking

strategies”. In Golightly and Wilkinson (2008), the so-called “modified diffusion bridge” approach is used



to propose candidates for such sub-paths. This method is a further development of the Brownian bridge

sampler proposed by Roberts and Stramer (2001) and Durham and Gallant (2002). Also, sequential Monte

Carlo (SMC) methods are used to implement the above blocking scheme in Golightly andWilkinson (2006)

(for the use of SMC to build efficient proposal distributions, we refer to Andrieu et al (2010)). Further, a

random blocking scheme is proposed by Elerian et al (2001). To the same end, Beskos et al (2006) have

developed a so-called “retrospective sampling” method which can simulate a wide class of diffusion bridge

processes exactly, under certain conditions on the driving noise process.

For an overview of strategies to develop efficient MCMC algorithms, we refer to the book by Liu (2001).

Recently, a new strategy combining sampling methods with variational methods was introduced by de Fre-

itas et al (2001). The starting point of this strategy is to use an optimized approximation to the posterior

distribution as a proposal distribution in a Metropolis-Hastings (MH) step. The sampling scheme is imple-

mented in an independence sampler setting. The resulting algorithm is called variational MCMC (VMC).

In the presence of approximation error, as stated by de Freitas et al (2001), the acceptance rate of those

proposals for a high-dimensional state space is likely to be very low. To control the acceptance rate, a block

sampling algorithm is proposed by de Freitas et al (2001) to update only a subset of the components of

state variables at individual MH steps. They argued that a ”variational approximation”-assisted approach to

sampling is helpful in exploring the regions of high probability efficiently, however the sampler could get

stuck in the neighbouring regions of lower probabilities as the approximate posterior is often much more

peaked than the true one. To avoid this, the algorithm is further developed by combining a Metropolis-type

sampler with the independence sampler in a probabilistic manner (de Freitas et al, 2001). This methodology

is illustrated in de Freitas et al (2001) using an example of Bayesian parameter estimation for logistic belief

networks.

In this paper, we employ the variational approximation method developed by Archambeau et al (2007)

to produce a computationally efficient sampling method. From the variational method, we obtain a time-

varying linear SDE representing the optimized Gaussian process approximation to the true posterior pro-

cess, where we emphasise this is over the full smoothing path density. From the approximate linear SDE,

we can derive any bridging process within the smoothing window exactly, which extends the blocking

strategies proposed by Golightly and Wilkinson (2008), allowing blocks of arbitrary size. To implement the

mixture strategy, we split the proposal procedure into two steps: the first step generating the driving white

noise and the second step simulating the process forward in time with generated noise. The white noise can

be generated either by direct sampling from a standard multivariate Gaussian distribution or by a random

walk MH sampler. The implementation can be seen as an adaptation of the reparameterisation strategy used

in Golightly and Wilkinson (2008) for parameter estimation, however here our aim is to produce efficient

proposals for the driving noise process.

The paper is organised as follows; Sect. 2 presents a Bayesian treatment of non-linear smoothing which is

followed by a summary of the Markov Chain Monte Carlo smoother (Alexander et al, 2005) in Sect. 2.1

and the variational Gaussian process smoother (Archambeau et al, 2007) in Sect. 2.2. The novel algorithms

are described in Sect. 3 and the performance of these algorithms is demonstrated in Sect. 4 by numerical

experiments with two stochastic dynamic systems. The paper concludes with a discussion.

2 Computational methods for Bayesian smoothing of non-linear dif-

fusions

Consider a stochastic dynamical system represented by

dx(t) = f(x, t)dt + D1/2(t)dW(t), (1)

where x(t) ∈ Rd is the state vector, D ∈ Rd×d is the so-called diffusion term, and f represents a deter-

ministic dynamical process, generally called the drift. The driving noise process is represented by a Wiener



process W(t). Note that SDE (1) is also referred to as a sub-class of diffusion processes whose diffusion

term D is independent of state x (Klöden and Platen, 1992).

The state is observed via some measurement function h(·) at discrete times, say {tk}k=1,...,M . The obser-

vations are assumed contaminated by i.i.d Gaussian noise:

yk = h(x(tk)) + R
1

2 · η (2)

where yk ∈ Rd′

is the k-th observation, R ∈ Rd′
×d′

is the covariance matrix of measurement errors, and

η represents standard multivariate Gaussian white noise.

A Bayesian approach to smoothing is typically adopted in which the posterior distribution

p(x([0, T ])|{y1, ...,yM , 0 < t1 < ... < tM < T }),
is formulated and estimated, using for example the methods described in Sect. 1. In this work the continuous-

time SDE is discretised using an explicit Euler-Maruyama scheme (Klöden and Platen, 1992). This dis-

cretisation induces an approximate non-linear discrete time model which describes a Markov chain. The

discretised version of (1) is given by

xk+1 = xk + f(xk, tk)δt + D1/2(tk)
√

δt · ξk, (3)

with tk = k · δt, k = 0, 1, ..., N , and a smoothing window from t = 0 to T = N · δt. Note that ξ k are

white noise random variables. An initial state, x0, needs to be set. There are M observations within the

smoothing window chosen at a subset of discretisation times (tkj
,yj)j=1,...,M with

{tk1
, ..., tkM

} ⊆ {t0, ..., tN}.
In the following the posterior distribution is formulated step by step. As a result of Euler-Maruyama dis-

cretisation, the prior of a diffusion process can be written as

p(x0, ....,xN ) = p(x0) · p(x1|x0) · .... · p(xN |xN−1),

where p(x0) is the prior on the initial state and p(xk+1|xk) with k = 0, ....,N −1 are the transition densities
of the diffusion process. Note that in the limit of small enough δt, those transition densities can be well

approximated by a Gaussian density and thus p(xk+1|xk) = N (xk + f(xk)δt,Dδt). Therefore, the prior
over the path, defined by the SDE is given by

p(x0, ....,xN ) ∝ p(x0) · exp(−Hdynamics),

whereHdynamics =
N−1
X

k=0

δt

2

h

xk+1 − xk

δt
− f(xk, tk)

i⊤

D
−1

h

xk+1 − xk

δt
− f(xk, tk)

i

.

Assuming the measurement noise is i.i.d. Gaussian, the likelihood is simply given by

p(y1, ...,yM |x(t0), ...,x(tN )) ∝ exp(−Hobs),

where

Hobs =
1

2

M∑

j=1

[
h(x(tkj

)) − yj

]⊤
R−1

[
h(x(tkj

)) − yj

]
. (4)

In summary, the posterior distribution of all states, i.e. p({x0, ....,xN}|{y1, ...,yM}) is given by
p(·|·) ∝ exp(log(p(x0)) −Hdynamics −Hobs). (5)

In Fig. 1, Bayesian smoothing is illustrated using an example of a one-dimensional stochastic double-well

system. This system is a diffusion process with two stable states; for details refer to Sect. 4. The reference

smoothing result is obtained using a Hybrid Monte Carlo algorithm based on the work by Alexander et al

(2005).



2.1 Hybrid Monte Carlo Methods

In HMC approaches, a molecular dynamics simulation algorithm is applied to make proposals in a MH

algorithm, for example,

X k = {xk
0 , ...,xk

N} −→ X k+1 = {xk+1

0 , ...,xk+1

N },

at step k. To make a proposal of X k+1 a fictitious deterministic system is simulated as follows

dX
dτ

= P

dP

dτ
= −∇X Ĥ(X ,P)

where P = (p0, ...,pN ) represents momentum and Ĥ is a fictitious Hamiltonian which is the sum of

potential energy Hpot and kinetic energy Hkin = 1

2

∑N
k=1

p2
k. For the posterior distribution of the non-

linear smoothing problem given in Sect. 2, the potential energy is given by

Hpot = − log[p(x0)] + Hdynamics + Hobs.

The above system is initialised by setting X (τ = 0) = Xk and sampling a random number from N (0, 1)
for each component ofP(τ = 0). After that, one integrates the system equations forward in time with time

increment δτ by using a leapfrog scheme as follows:

X ′ = X + δτP +
δτ2

2
(−∇X Ĥ)

P′ = P +
δτ

2
(−∇X Ĥ − ∇X ′Ĥ)

After J iterations, the state X (τ = Jδτ) is proposed as X k+1 which will be accepted with probability

min
{

1, exp
(

−Ĥk+1 + Ĥk
)}

.

The sequence of states generated from this mechanism is then a sample for the posterior smoothing distri-

bution, (5).

2.2 Variational Gaussian process approximation smoother

The starting point of the Variational Gaussian Process Approximation (VGPA) method (Archambeau et al,

2007) is to approximate (1) by a linear SDE:

dx(t) = fL(x, t)dt + D1/2(t)dW(t), (6)

where the time varying linear drift approximation is given by

fL(x, t) = −A(t)x(t) + b(t) . (7)

The matrix A(t) ∈ Rd×d and the vector b(t) ∈ Rd are the variational parameters to be optimised in the

procedure.

The approximation in (7) implies that the true posterior process, i.e. p(x t|y1, ...,yM ), is approximated
by a Gaussian Markov process, q(xt). Discretising the linear SDE in the same way as the true SDE, the

approximate posterior can be written as

q(x0, ....,xN ) = q(x0) ·
N−1∏

k=0

N (xk+1|xk + fL(xk)δt,Dδt) ,



where q(x0) = N (x0|m(0), S(0)). The optimal A(t) and b(t), together with the optimal marginal means
and covariances m(t) and S(t), are obtained by minimising the Kullback-Leibler (KL) divergence of q(·)
and p(·) (Archambeau et al, 2007). The variational approximation can also be derived in continuous time
using Girsanov’s change of measure theorem, however it is then still necessary to discretise the system for

computational implementation (Archambeau et al, 2008).

In Fig. 2 and Fig. 3, the VGPA smoothing method is illustrated using the same double-well example as in

Fig. 1. It can be observed from Fig. 2 that the smooth variation of the parametersA and b is interrupted by

jumps at observation times. This not only draws the mean path towards the observations but also reduces

marginal variance around those observation times, which can be seen in the upper panel of Fig. 3. The

lower panel shows that a typical realisation generated by the optimized approximate diffusion is visually

similar to the original sample path shown in Fig. 1.

3 Variational MCMC methods

In a Metropolis-Hastings algorithm (Hastings, 1970) for sampling a posterior density π(x), defined on a
general state space X , a new state x′ ∈ X is proposed according to some density q(x, x ′). The proposed
state will be accepted with probability α(x, x′), given by

α = min

{

1,
π(x′)

π(x)
· q(x′, x)

q(x, x′)

}

.

When the Metropolis-Hastings (MH) algorithm is applied to a particular Bayesian inference problem, in-

telligent proposal mechanisms are often required to make the algorithm efficient.

3.1 The variational independence sampler

In the new variational MCMC algorithms, proposals are made using the variational parametersA and b, as

well as the marginal moments m and S, from the VGPA method described in Sect. 2.2. In this setting, an

independence sampler to update the whole sample path at once is implemented as follows.

First, propose the initial state by sampling from a normal distribution specified by the marginal moments

at t = 0, i.e. x0 ∼ N (·|m0,S0); then, integrate the SDE with its time-varying linear drift, fL(x, t) =
−Atx + bt, forward in time using an Euler scheme. The implementation is thus:

x0 = m0 +
√

S0 · w0

and

xk = xk−1 + fL(x, t)δt + D1/2
√

δt · wk for k = 1, ..., N,

where w⊤ = (w0, w1, ..., wN ) is a set of realisations of white noise, which can be seen as a realisation of

the driving process of the approximate SDE. The resulting sample path is taken as a new proposal. The

acceptance rate of the independence sampler is given by,

α = min

{

1,
π(x′|{y1, ...,yM})
π(x|{y1, ...,yM}) · q(x)

q(x′)

}

.

where π(·) and q(·) are the posterior and proposal density of sample path x, respectively. For simplicity

{y1, ...,yM} is omitted in π(·) in the remainder of this section. Let q(w) denote the proposal density of
white noise w. For both original and approximate SDE, there is one-to-one relationship between x and



w and the corresponding Jacobian in the MH-ratio is cancelled due to a constant diffusion coefficient.

Accordingly,

q(x)

q(x′)
=

q(w)

q(w′)
with q(w) ∝

N∏

k=0

exp

(

−w2
k

2

)

.

The method above differs from the one proposed in Roberts and Stramer (2001) which uses an Ozaki ap-

proximation (Ozaki, 1992) to construct a linear bridge between two (noise-free) observations. In contrast,

the approximation scheme herein is not based on local Taylor expansion of the non-linear drift but opti-

mized globally, conditioning on all observations. Moreover the variational approximation derived drift is

time-varying where the bridge proposed by Roberts and Stramer (2001) has constant drift between two

observations.

The efficiency of the independence sampler depends on how well the proposal density approximates the

target measure. In this work, the proposal density is a Gaussian process approximation to the target measure.

Therefore, the efficiency of the above algorithms is determined by how far the target measure deviates from

a Gaussian one. In cases with a highly non-linear drift term in the diffusion and relatively few observations,

the above proposal mechanisms need to be further refined.

3.2 Conditional block sampling - the variational diffusion bridge

The idea of blocking helps to improve the performance of independence samplers. Simply speaking, only a

sub-path of the full sample path is proposed,

Xsub = {xk, ..., xk+L−1} ⊂ X = {x0, ..., xT }
say, at eachMH step while the remaining parts are fixed. The index k is chosen randomlywhile the sub-path

length L is a tuning parameter of the algorithm (for details see below). Due to the Markov property of the

processXt, the sub-path needs only be conditioned on xk−1 and xk+L, instead of the entire remaining path.

To implement this blocking strategy, the simulation of a time-varying, linear bridging process is required to

make proposals.

For the bridging simulation, the effective drift and diffusion term of a time-varying linear SDE are derived.

For clarity, a one-dimensional SDE is considered and the problem of simulating a bridging process is further

reduced to the following question: how to sample x t at time t with t = t′ + δt and t < T conditioning xt′

at time t′ and xT at time T ? Note that ∆t = T − t′ >> δt.

To sample xt, first compute the conditional probability

p(xt|xt′ , xT ) ∝ p(xt|xt′) · p(xT |xt) .

As the time increment δt is the one used to discretise both the original and approximate SDE by a Euler-

Maruyama scheme

p(xt|xt′) ∝ exp







− 1

2Dδt
(xt − xt′ − fL(xt′ )δt)

2

︸ ︷︷ ︸

I1







. (8)

On the other hand,

p(xT |xt) ∝ p(xt|xT ) · p(xT ).

In fact, the right side can be understood as the marginal density of x at time t for a linear SDE represented

by (6) which runs from t = T to t = 0. The moment equations of this backward linear SDE are

d

dt
ct = −Act + b



and
d

dt
dt = −2Adt − D ,

where ct and dt are the marginal mean and variance, respectively. For a bridge, the state at time T is fixed

to xT which implies cT = xT and dT = 0. Thus

p(xT |xt) ∝ exp







− 1

2dt
(xt − ct)

2

︸ ︷︷ ︸

I2







. (9)

Re-formulating I1 and I2 in (8) and (9), respectively, the effective drift and diffusion terms for the bridging

process are obtained as follows:

f
eff
L = −1 · dA + D

d + Dδt
︸ ︷︷ ︸

Aeff
t

· xt′ +
cD + bd

d + Dδt
︸ ︷︷ ︸

beff
t

(10)

and

D
eff
t = D · d

d + Dδt
. (11)

As the forward effective SDE is equivalent to the process specified by the above backward moment equa-

tions, it is clear that its realization must hit xT at time T .

In the continuous-time limit, the above effective drift- and diffusion terms are in accordance with those

derived from the corresponding Fokker-Planck equations, which are

f
eff
L = fL + σ2∂x ln p(XT |xt)

and D
eff
t = D, respectively.

In Fig. 4, block sampling is illustrated with the same stochastic double-well example as in Fig. 1. Notice

that both effectiveA and b rise sharply at the right end of the block (middle and lower panel, respectively).

In this particular example, the rise of b forces the effective mean path to evolve towards the fixed end

point. The proposed sub-path also approaches the fixed end point because the effective marginal variance

is reducing to zero due to the increase of A.

The general principle of constructing a bridging process from the approximate linear SDE has been outlined.

To implement it efficiently and correctly, the following two technical details also need to be addressed:

1. With blocking, the MH-ratio is given by

α = min

{

1,
π(x′

sub)

π(xsub)
· q(wsub)

q(w′

sub)

}

.

As stated above,w′

sub is used to proposex′

sub by integrating the effective linear SDE forward in time.

However, wsub must be re-constructed from xsub with the same SDE that generates x′

sub. Note that

wsub are different from those that are actually used to propose x sub. This is because the conditioning

has been changed;

2. To increase the acceptance rate, the proposal of x0 must be conditioned on x1. This is obtained by

sampling from a conditional Gaussian distribution as follows

N
(

m0 · S∗ + m∗ · S0

S0 + S∗
,

S0 · S∗

S0 + S∗

)



where

m∗ =
x1 − b0 · dt

1 − A0 · dt
and S∗ =

D · dt

(1 − A0 · dt)2

Numerical experiments show that the above algorithm for path sampling could have poor mixing if the

sampler gets stuck in the regions of lower probabilities. Therefore, a VGPA-assisted random walk sampler

is developed for path sampling in the following section.

3.3 The variational random walk sampler

To augment the independence sampler, a randomwalk scheme for path sampling is also developed. A trivial

implementation of such scheme would update the sample path directly, which leads to a vanishingly low

acceptance rate. Instead, the driving processw is updated using a random walk sampler, i.e.

w′

t = wt + σ · ηt.

where ηt is white noise and σ represents the step size of the random walk. Given w ′
t, a new sample path is

obtained by simulating the approximate SDE forward in time. Denote this deterministic mapping function

by fT , i.e. x
′
t = fT (w′

t). Up to a Jacobian, the joint posterior is thus given by

π(x′,w′|y) ∝ p(x) · q(w) · p(y|fT (w))

where p(x) and q(w) represents the prior density of the diffusion process and the driving process, respec-
tively. As the Jacobian is cancelled due to a constant diffusion coefficient, the resulting MH ratio is given

by

α = min

{

1,
π(x′)

π(x)
· q(w′)

q(w)

}

.

Recall that π(x) = p(x) · p(y|x = fT (w)).

The idea of a random walk in w-space is very similar to the innovation scheme proposed by Golightly

and Wilkinson (2008). In (Golightly and Wilkinson, 2008) the innovation scheme is utilised to break high

dependence between unknown diffusion parameters and missing sample paths whereas in this work the

random walk sampler helps an independence sampler to avoid getting stuck. Note that the random walk

sampler could be very slow in exploring the posterior density. Thus, a mixture strategy needs to be adopted.

3.4 The variational diffusion sampler

Finally, the independence sampler and the randomwalk sampler proposed here are combined into a mixture

transition kernel in the variational assisted MCMC algorithm devised for path sampling. This results in a

transition kernel given by

T = p · T ind + (1 − p) · T rand, with probability p,

where T ind and T rand represent the transition kernel of an independence sampler and a random walk

sampler, respectively. The complete algorithm is detailed in Algorithm 1.

4 Numerical Experiments

In this section, the variational MCMC (VMC) algorithms described in Sect. 3 are compared with the state-

of-the-art HMC method based on the implementation developed by Alexander et al (2005). HMC methods



Algorithm 1 The VMC path sampler.

1: fix block length, L, apply VGPA to estimate A and b.

2: generate a set of white noise {w0,1,...,T}
3: initialise x0 ∼ N (·|m0,S0) usingw0

4: initialise x1,...,T by usingw1,...,T to integrate dx = (−Ax + b)dt + Ddw

5: repeat

6: randomly choose block k from {1, 2, ..., T}
7: if k ≤ T − L (block fully within time window) then

8: compute effective Â, b̂ and D̂ for the block

conditioned on xk−1 and xk+L

9: compute the effective white noise ŵk+L−1

k

10: choose an independence sampler or a random walk sampler

with probability p

11: if an independence sampler is chosen then

12: generate new white noise wk+L−1

k

13: propose xk+L−1

k by integrating dx = (−Âx + b̂)dt + D̂dw

14: make a Metropolis-Hastings update for xk+L−1

k

15: else

16: generate white noise ξk+L−1

k

17: propose new wk+L−1

k by w = ŵ + ξ · step size
18: propose xk+L−1

k by integrating dx = (−Âx + b̂)dt + D̂dw

19: make a Metropolis-Hastings update forwk+L−1

k and xk+L−1

k jointly

20: end if

21: else

22: update x0 and xk,...,T applying methods similar to the above, using the original A and b from

VGPA

23: end if

24: until a sufficient number of sample paths are obtained



are used in the comparison since these are know to be amongst the most computationally efficient sampling

strategies for high dimensional problems.

4.1 Experimental setup

The algorithms are tested on two one-dimensional systems: a stochastic double-well potential system (DW)

and a SINE-drift diffusion process (SINE). Note that while the dynamic systems have a single state variable,

the discrete time state vector (path) being sampled is very high dimensional, typically around 800 to 5000

D. The systems are described by

dx = 4x(1 − x2)dt + Ddw ,

and

dx = 2πD sin(2πx)dt + Ddw ,

respectively, whereD is the diffusion variance and dw represents white-noise. As can be seen from Figs. (5,

7, 8), both systems have meta-stable states. They are x = ±1 for DW and x = ±k · 1

2
, with k ∈ N for SINE.

Note that SINE systems have an infinite number of meta-stable states. Clearly, the parameterD determines

how frequent the transition between those meta-stable states are. Two variants of DW are investigated, one

with D = 0.25 typical of rare transitions and one with D = 1.0 typical of frequent transitions. For SINE, D

is set to 0.656 so that its transition frequency is comparable with the 2nd variant of DW (about 6 transitions

in a time interval of 50 units, see Fig. 7 and Fig. 8). Note that the average exit time for DW with D = 0.25

is about 3000 time units, thus we have selected a rare transition to illustrate the worst case behaviour of the

new algorithms on this system. In this example, the time interval is set to 8 units to enable a large-scale

Monte Carlo experiment to be carried out in order to assess the variability of the numerical results. It is clear

that the mixing of the MCMC algorithms will depend on the quality of observations in terms of observation

density ρ (number of observations per time unit) as well as observation error variance R. Therefore, both

HMC and VMC are tested with 9 combinations of 3 different ρ-values and 3 differentR-values, i.e. ρ 1 = 1,

ρ2 = 2, ρ3 = 4, R1 = 0.04, R2 = 0.09, and R3 = 0.36.

The efficiency of the different MCMC algorithms is compared using their mixing properties while also

rigorously assessing the accuracy of the new algorithm. Given a fixed amount of computing time, the

mixing property is a critical measure for the computational efficiency of a particular MCMC algorithm.

The auto-correlation between subsequent samples is often used to quantify the mixing. Here, each sample

is a realisation, or sample path, of the diffusion process conditioned on the data. The auto-correlation of a

simple summary statistic of sample paths is computed as a diagnostic, namely

L =

∫ T

0

x(t)dt.

To summarise the auto-correlation function, a so-called auto-correlation time τ is defined by

τ = 1 + 2 ·
∞∑

k=1

ACF(k).

with

ACF(k) =

〈
(Lt̂− < Lt̂ >)(Lt̂+k− < Lt̂ >)

Var(L)

〉

where < · > represents the expectation and t̂ denotes algorithmic time.

The summation is truncated at lag k = 40 to minimise the impact of finite sample size errors on the estimates.

When the total computing time is fixed, the length of the Markov chains generated by different algorithms

varies. Thus the chains are sub-sampled so that the same number of sample paths are obtained from all

algorithms.



The accuracy of the new algorithm is characterised by the integrated marginal KL-divergence between its

samples and those from HMC:

KL =

∫ T

0

{∫

π̂HMC

t (xt) log
π̂HMC

t (xt)

π̂VMC

t (xt)
dxt

}

dt ,

where π̂HMC

t and π̂VMC

t are the estimates of themarginal posterior at time t computed from samples x t obtained

by HMC and VMC algorithms respectively. It is clear that the smaller this KL-divergence estimate is, the

more accurate is the algorithm. However a non-vanishing residual value of KL-divergence is expected

even for two exact algorithms due to finite sample size. Therefore, the KL-divergence estimates are also

computed for two independent sets of sample paths from HMC which are additionally used for convergence

assessment of HMC.

As seen in previous sections, both HMC and VMC have several tuning parameters: the number of molecular

dynamics steps J and the (fictitious) time increment δτ for HMC; sub-path length l used in block sampling,

step size σ used in random walk sampling, and probability p used in the mixture transition kernel for VMC.

As the computing time of a HMC algorithm increases with J , the optimal choice of J and τ is obtained by

minimising the autocorrelation measure per computing time unit based on a set of pilot experiments. The

corresponding acceptance rates vary between 60% and 70%. As reported in the literature, the optimal step

size σ is chosen so that the algorithm considered has an acceptance rate between 20% and 40%. The sample

principle applies to the choice of block size l. For the determination of the optimal p, the accuracy factor

needs to be taken into account. In both extreme cases of a purely independence sampler based scheme (p =

0) and a purely random walk sampler based scheme (p = 1), the resulting estimated distribution of sample

paths could be inaccurate given a sufficiently small sample.

Technical details of the numerical experiments are as follows. Both DW and SINE are discretised with time

increment δt = 0.01. From pilot runs, the optimal settings for the HMC tuning parameters depend strongly

on the choice of δt but varies little over different systems and different observation sets. This also applies

to other tuning parameters. In the reported experiments J = 100, δτ = 0.01, l = 100, σ = 0.025, and p =

0.01 are the fixed values used throughout. All algorithms, including HMC, are initialised by a realisation

of the approximate time-varying linear SDE from VGPA. For every data set, the amount of computing time

is fixed to that of a HMC chain of 50,000 MH updates. All chains of both HMC and VMC are then sub-

sampled to obtain 5,000 sample paths from each. The burn-in period is generally small as a result of good

initialisation and the first 100 sample paths are discarded as burn-in. An exceptional case is the data set

generated by SINE with ρ = 1 and R = 0.36. For this case, the mixing of the HMC algorithm is very poor

and its burn-in is extremely large so it is necessary to run a chain of 5,000,000 MH-updates. The VMC

chains are also adapted accordingly. All results are summarised in Tables 1 - 3. For illustration, Fig. 5, 7,

8 show three examples of both HMC and VMC results summarised by the mean paths, the 2 × standard

deviations envelopes, and the decay of the auto-correlation function.

4.2 Discussion of numerical results

The results for DW with D = 0.25 are initially discussed. From the third and fourth columns of Table 1,

it can be seen that the autocorrelation times of both MCMC algorithms, τ HMC and τV MC , decrease with

increasing observation densities, as might be expected. Mixing improves with reducing observation errors

in line with expectations. For HMC, both conditions have the effect of increasing the information provided

to the sampler from the gradients of log posterior which helps to more efficiently explore the posterior.

However, the overall trend is much more marked for HMC than VMC. VMC can improve the mixing

compared to HMC by an order of magnitude for low observation density and large observation error, i.e.

ρ = 1 and R = 0.36. In contrast, both algorithms show a comparable efficiency in cases where the process

is densely observed, i.e. ρ = 4, with lower observation errors i.e. R = 0.04 and R = 0.09. A reduction

of auto-correlation times for VMC is observed with rates ranging between 3 to 8 for the observation sets

between the above two extreme cases (for example, see Fig. 5). The VMC results are more stable across



the different Monte Carlo experiments as shown by the estimated standard deviation of the auto-correlation

times.

The accuracy of VMC is indicated by the integrated marginal KL-divergence per time unit, KL 2, shown

in the sixth column. A similar overall trend to that found in the autocorrelation times is observed. The

KL-divergence estimates decrease with improving quality of observations. From the fifth column, KL 1, it

seems that the residual (finite sample derived) KL-divergence value is not constant, fluctuating around 0.17

- 0.29 per time unit for different observation densities and sets. By comparing KL 1 and KL2, we conclude

that VMC does sample from the posterior exactly for the data sets with (ρ = 2, R = 0.04), (ρ = 4, R = 0.04),

and (ρ = 4,R = 0.09). For other data sets, their non-zeroKL-divergence values are statistically, but probably

not practically, significant. This indicates that for finite sample sizes the corresponding estimated posterior

distributions from VMC are slightly less accurate than those obtained from HMC. This is a result of the

approximation employed in the VGPA. The VGPA clearly cannot capture non-Gaussian behaviour, and

thus the approximation quality of the VGPA posterior varies, as shown by KL 3 (final column). It has been

reported that the approximate posterior obtained from variational methods is often much more narrowly

peaked compared to the true posterior. However such bias remains small except for the extreme case with

infrequent and low quality observations (ρ = 1, R = 0.36), see Fig. 6. A range of visual diagnostics were

explored to assess the reasons for the relatively poor accuracy in the VGPA and thus VMC. The main issue

is in the tails of the distribution lending further support to the idea that the variational posterior is rather

narrow, particularly in the regionswhere the true posterior is multi-modal. The presence of large observation

errors leads to multi-modality of the posterior. The right panel in Fig. 6 shows that the marginal posterior

seems to have three modes at x = 0 and x = ± 1 in the transition phase (t = 3.5) whereas the approximate

posterior from VGPA can clearly only possess a single mode, whose variance is underestimated.

For two examples of frequent transitions, i.e. DW with D = 1.0 and SINE with D = 0.656, similar results

are observed, shown in Table 2 and Table 3. However, the KL-values have increased for both cases when

compared with those of the previous example. The increase in residual KL-divergence values, KL 1, indi-

cates that this is partially the result of the larger smoothing window used in the inference. Bearing this in

mind, the results for DW with D = 1.0 are better than DW with D = 0.25 (compare Fig. 5 and Fig. 7). One

factor that can explain this improvement is the increased diffusion coefficient (D = 1.0) which also drives

the variationally optimised SDE and thus spreads the realisations from the variational diffusion bridge more

widely in state space. It should also be noted that the VGPA results, KL3, are also relatively improved in

all cases, also helping the VMC sampler.

Compared to two DW examples, the accuracy of VMC has declined for SINE (Table 3). Recall that the

SINE system has a series of meta-stable states which could make multi-modality problems more severe,

and this is a problem for both HMC (with very slow mixing) and VMC (with relatively poor accuracy).

However as the observation density and accuracy increases the VGPA attains good accuracy and the VMC

works very well (see Fig. 8).

For all three systems, good accuracy and a significant improvement in mixing are achieved in the cases

where observation densities ρ and observation errors R are either both low or both high. For higher ρ

and lower R, a slight improvement in mixing is observed accompanied by a high accuracy. For lower ρ

and higher R, an increase in mixing by an order of magnitude is seen but the accuracy is relatively poor.

When compared with the approximation error arising from VGPA, however, the relative accuracy is still

of great value, that is KL2 is always a substantial reduction from KL3. This means that the approximation

error of VGPA is significantly reduced when employing a VMC run using only a fraction of the computing

time needed for a HMC run. In practical applications this could be of great value in obtaining improved

approximations in reasonable computational time. Thus the VMC method has applicability across a wide

range of systems, and improves on the VGPA significantly in all cases.



5 Conclusions

This paper develops a novel MCMC algorithm which combines two particular MH algorithms, namely

an independence sampler and a random walk sampler, with the recently developed VGPA for Bayesian

inference in non-linear diffusions. This demonstrates that variational approximations can be combined with

MCMC methods to good effect in path sampling. We stress that the variational approximation introduced

in this paper is not the traditional fully factorising approximation, rather the approximation is over the joint

posterior distribution of the state path, which makes the variational approximation an attractive proposal

distribution for path sampling.

The basic implementation of the VMC sampling scheme is enhanced by introducing a flexible blocking

strategy to improve the performance of the variational samplers. For path sampling, the implementation of

blocking needs the simulation of a bridging process. The idea has already been applied to likelihood in-

ference in diffusion processes (Durham and Gallant, 2002; Golightly and Wilkinson, 2006). However both

previous papers made a relatively crude Gaussian approximation to the transition density of the process,

based on a modified Brownian bridge scheme. To make proposals with reasonable acceptance probabilities

the length of the blocking time interval is limited. In contrast, the novel bridging process herein is de-

rived exactly from the approximate linear diffusion which has been optimised by the VGPA method. This

sophisticated method of proposing sub-paths renders VMC an accurate and efficient sampling scheme.

As in the original VGPA framework, the VMC sampling algorithms apply only to a sub-class of diffusion

processes where the diffusion term could be time-dependent but not state-dependent. In this sub-class, there

are interesting systems to which the sophisticated framework of exact sampling, developed by Beskos et al

(2006), doesn’t apply, for instance, the stochastic double-well systems studied here.

The VMC algorithm adopts a mixture of an independence sampler and a randomwalk sampler. The switch-

ing between these two samplers is arranged in a probabilistic manner, with a pre-determined switching

probability. In the VMC framework, the independence sampler has much better mixing than the random

walk sampler so long as the former does not get stuck. If the chain becomes stuck, the randomwalk sampler

will help to maintain mixing of the chain when it is chosen. Ideally, an adaptive mixture should be devised.

Extensive experiments show that the problem of getting stuck is associated with those states which have a

very low probability with respect to the proposal densities, but have relatively significant support under the

true posterior. In order to trigger switching adaptively, a threshold of this probability could be determined

based on a pilot run. As only information about the current state is used to make any decision, there is no

risk of biasing the equilibrium distribution.

As seen in Sect. 4, the VMC algorithm outperforms HMC by mixing while obtaining good accuracy only

when both observation densities and observation errors are moderate. If the observation density is low and

the observation error is large, the marginal posterior clearly shows some multi-modal structure. This leads

to a large approximation error in the VGPA, which in turn causes lower accuracy of VMC, although HMC

methods also encounter problems with slow mixing in this case. A possible solution, which should be

explored in future work, is to adopt a tempering strategy. Simply speaking, the true posterior needs to be

tempered such that the VGPA can approximate the tempered posterior with desired accuracy. The essence

of the idea is to use the diffusion variance D as the ‘temperature’ in a tempering scheme. The algorithm

would be completed by constructing a ladder connecting the exact and approximate posteriors. We believe

such a tempering scheme could maintain the efficiency of the VMC, while also improving the accuracy.

As illustrated in (Archambeau et al, 2008), the VGPA framework gives an upper bound of the marginal

likelihood which can be used for approximate parameter estimation. A Langevin algorithm can be easily

adopted to sample from the approximate marginal likelihood. The blocking strategy developed here could

help improve the computational efficiency of such a parameter estimation algorithm. Also, in future work

the variational sampling scheme could be embedded into a MCMC algorithm for parameter inference as the

step for sampling missing paths.



We also believe these methods can be extended to cope with larger systems exploiting the variational ap-

proximation and could provide a framework for MCMC based inference in more complex, larger stochastic

dynamic systems, where methods such as HMC become computationally prohibitive. The extension of the

VMC algorithm to multivariate settings will require matrix inversion, of size equal to the state dimension,

in the construction of the variational diffusion bridge and we are currently exploring efficient methods to

implement this, including mean field approaches. In future work we plan to assess the ability of variational

approximations to provide computationally efficient mechanisms for generating proposal distributions for

blocked independence samplers, where we employ localisation in time and space to reduce the computa-

tional burden of sampling paths in very high dimensional spaces.
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Figure 1: Upper panel: a typical realisation of a stochastic double-well system with small diffusion noise.

The circles denote a set of observations obtained from this particular realisation; Lower panel:

mean path (solid line) and its 2 standard deviation envelope estimated by extensive HMC sam-

pling. For state estimation, the variance of diffusion noise is assumed known.
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Figure 2: The temporal evolution of the trendA (upper panel) and offset b (lower panel) of the approximate

diffusion process with its linear drift fL(x) = −Ax + b which is optimised by the VGPA

algorithm for the data set shown in Fig. 1.

Table 1: Comparison of the integrated autocorrelation times between two sets of sample paths from VMC

and HMC, and comparisons of the integrated KL-divergence between two independent sets of

sample paths from HMC (KL1), between VMC and HMC (KL2), and between the set of sample

paths from HMC and the estimated marginal distributions of the state, x, from VGPA (KL3). The

results are obtained from a double-well system with diffusion coefficient with D = 0.25, with T =

8 and are shown as a function of observation density ρobs and error variance R. The variability of

all above estimates are indicated by their standard deviations which were obtained by 20 Monte

Carlo repetitions of the experiments.

ρobs R τHMC τV MC KL1 KL2 KL3

1 0.04 3.67±0.37 1.31±0.22 0.20±0.01 0.41±0.09 6.19±0.67
0.09 5.98±1.04 1.37±0.21 0.22±0.01 0.61±0.24 9.74±2.76
0.36 24.23±6.54 1.91±0.46 0.29±0.02 2.46±0.83 49.46±16.72

2 0.04 1.49±0.24 1.37±0.34 0.19±0.01 0.27±0.10 2.49±0.62
0.09 3.29±0.60 1.24±0.32 0.20±0.01 0.48±0.38 5.66±2.52
0.36 10.77±3.37 1.61±0.27 0.24±0.01 0.98±0.32 16.88±5.38

4 0.04 1.11±0.12 1.32±0.27 0.17±0.01 0.20±0.01 1.40±0.19
0.09 1.41±0.17 1.10±0.21 0.18±0.01 0.21±0.02 2.09±0.31
0.36 5.48±1.12 1.43±0.19 0.22±0.02 0.91±0.85 12.13±8.25
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Figure 3: Upper panel: the mean path (solid line) and its 2 standard deviation envelope obtained from

the VGPA for the data set shown in Fig. 1; Lower panel: a typical realisation from the VGPA

posterior.

Table 2: As Table 1 but for a double-well system with diffusion coefficient with D = 1.0, T = 50.

ρobs R τHMC τV MC (KL1) (KL2) (KL3)

1 0.04 3.64 1.70 0.41 0.59 9.18

0.09 6.73 1.57 0.43 0.69 12.67

0.36 24.36 2.17 0.50 1.70 55.44

2 0.04 1.31 1.26 0.36 0.38 2.77

0.09 3.38 1.31 0.39 0.41 4.14

0.36 9.70 1.78 0.44 0.91 14.55

4 0.04 1.02 1.16 0.31 0.33 1.00

0.09 1.17 1.27 0.34 0.36 1.24

0.36 2.96 1.17 0.39 0.43 5.22
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Figure 4: An illustration of the blocking strategy for path sampling. From top to bottom: choosing a sub-

path for updating, whose ends are indicated by black circles. A proposal of this sub-path is

highlighted by the thick black line; computing the effective trend A and offset b (solid lines)

conditioned on the state, x, at both ends of the block, compared to the original A and offset b

from the VGPA (dashed lines).

Table 3: As Table 1 but for a SINE-drift system with diffusion coefficient with D = 0.656, T = 50. The
figures with ∗ are obtained from the chains which are sub-sampled with a fixed between-sample

interval 10 times longer than other figures, due to the extremely poor mixing of HMC for this

particular example. These two τ -estimates are scaled accordingly, which makes the values more

noisy. We believe the τV MC -value is closer to 1.

ρobs R τHMC τV MC (KL1) (KL2) (KL3)

1 0.04 18.88 1.07 0.57 1.75 61.82

0.09 28.74 1.10 0.46 1.22 96.64

0.36 75.7∗ 2.5∗ 0.49 6.95 393.64

2 0.04 4.43 1.10 0.26 0.94 13.90

0.09 15.18 0.91 0.45 1.17 43.58

0.36 15.51 0.77 0.47 4.83 163.44

4 0.04 1.10 1.05 0.23 0.32 4.15

0.09 1.84 1.01 0.25 0.37 6.93

0.36 7.59 0.97 0.33 2.93 102.42
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Figure 5: Comparison of marginal estimates (left) and mixing properties (right) between VMC (black) and

HMC (grey) for a double-well system with diffusion coefficient D = 0.25 and time window T =

8. Left panel: the estimate of mean path and its ±2 standard deviation envelopes for HMC and

VMC. The dots denote the observations, at a density of one per time unit, and the observation

error variance, R = 0.04. Right panel: decay of the autocorrelation function of time series of the

summary statistic L, VMC (black, triangles) and HMC (grey, circles) (see text).
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Figure 6: Comparison of HMC (Grey) and VGPA (Black) estimate of the marginal posterior of the state x

at time t = 3.5 for the examples shown in Fig. 5 and an extreme example with high observation

noise that shows a multi-modal marginal posterior (left and right panel, respectively).



0 2 4 6 8 10
−2

−1

0

1

2

t

x

A

10 12 14 16 18 20
−2

−1

0

1

2

t

x

B

20 22 24 26 28 30
−2

−1

0

1

2

t

x

C

30 32 34 36 38 40
−2

−1

0

1

2

t

x

D

40 42 44 46 48 50
−2

−1

0

1

2

t

x

E

0 5 10 15 20

0

0.5

1

steps

A
C
F

F

Figure 7: As Fig. 5 but for a double-well system with diffusion coefficient D = 1.0 and time window T =

50. Observations are made with density two per time unit and the observation error variance R

= 0.09. For clarity, the marginal estimates and observations are displayed in separate panels (A -

E) for 5 consecutive time intervals of length 10 units.
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Figure 8: As Fig. 5 but for a SINE-drift system with diffusion coefficient D = 0.656 and time window T =

50. Observations are made with density four per time unit and the observation error variance R

= 0.04. For clarity, the marginal estimates and observations are displayed in separate panels (A -

E) for 5 consecutive time intervals of length 10 units.


