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Abstract

The environmentally-friendly, economically-viableopuction of ethanol from cellulosic
biomass remains a major contemporary challengehMwrk has been done on the
disruption of cellulosic biomass structure, theduaction of enzymes for the conversion of
cellulose and hemicellulose into simple sugars ¢hatbe fermented by bacteria or yeast, and
the metabolic engineering of ethanol-producing obes. The results of these studies have
enabled the transition from laboratory to indusstale of cellulosic ethanol production.
Notably, however, current processes use free maroblls in batch reactors. This review
highlights the advantages of using immobilized esxdimmobilized cells together with
continuous bioreactor configurations. These devakaqts have the potential to improve both
the yield and the green credentials of celluloi@eol production in modern industrial

settings.
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1. Bioethanol production: the search for an economicéJ-viable process

Bioethanol is produced on a global scale to meetiergy requirements of the modern
transportation sector; by using renewable resodoresthanol production, the ecological and
environmental impact of drilling, transporting gmacessing fossil fuels could, in principle,
be reduced (Nagajaran, et al., 2017) (Aditiya].e2816) (de Azevedo, et al., 2017). Sugar-
and starch-based materials such as sugarcane (da B@s, et al., 2015; Duarte, et al., 2013;
Rolz & de Leon, 2011), sugar béélexiades, et al., 2016) (Icoz , et al., 2009Y),cstarch,
wheat, rye, barley, cassava (Tran, et al., 2010yAf@anapiwat, et al., 2011; Papong &
Malakul, 2010) and potato starch (Bo Young, et20(Q8) are the main feedstock for so-called
‘first-generation’ bioethanol production. The higlgar content of these crops can be
converted to bioethanol by microbial fermentati®mce small changes in bioethanol yield
have a substantial impact on the economic viakalitigs production (Gombert & van Maris,
2015), many researchers have also developed matrstbains capable of producing higher
ethanol yields than wild-type cultures (Thapa,letz015) (Khramtsov, et al., 2011). Despite
these advances, the fact that first-generationtiéo®| production uses crops that have been

diverted from the food chain has led researchesgéd non-food-based alternatives.

Forest biomass (hard- and softwood and wood chiips)prganic fraction of municipal solid
waste (MSW), agricultural residues and non-foogsrsuch as switchgrass and alfalfa are all
classified as ‘cellulosic biomass’. Second-generatiioethanol production from non-food-
based, cellulosic biomass comprises four main s{&\ask, et al., 2010): i) biomass pre-
treatment to render the cellulose susceptible tivdiysis; ii) hydrolysis to release simple
sugars that can be fermented by bacteria or y@astjcrobial fermentation and iv)

distillation (Figure 1). Although the compositioncathe carbohydrate content of cellulosic

biomass can differ depending on the biomass sub{fiable 1), a typical composition is 30-
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50% cellulose, 20-40% hemicellulose, and 10-20ghifi. Xylans are the most abundant
hemicellulose component of agricultural lignocedkit materials. To produce ethanol from
such lignocellulosic biomass, the cellulose andibeltlose must be converted to hexoses
and pentoses such as glucose, mannose, arabirtbgglase. Pre-treatment disrupts the
biomass structure by removing the lignin that prgs@nzymatic or chemical access to
cellulose. Efficient and cost-effective methodstfoe pre-treatment and hydrolyzation of
lignocellulosic biomass are needed (Kawaguchil.e2@16). Various physical, chemical and
biological pre-treatment processes have been deeeélfor this purpose in the last few
decades (Aita, et al., 2011) (Alvira, et al., 20@@arrasco, et al., 2011) (Chen, et al., 2008).
In addition to these processes, new technologies asi thermomechanical instantaneous
controlled pressure drop (DIC) pre-treatment hanlmeveloped to improve enzymatic
saccharification and shorten the pre-treatmenttdurgMessaoudi, et al., 2015) (Smichi, et
al., 2018). The separated lignin can be used asldd run an ethanol plant, but to improve
economic feasibility, a portion of the lignin neg¢dse converted to higher-values chemicals
(Wertz, et al., 2018). In order to reduce the cdgiroduction, various strategies such as
finding the cheapest renewable source and optigpaincess conditions have been assessed
(Stephen, et al., 2012) (Wen, et al., 2015) (dgJenal., 2017); in these studies, the main
economic obstacle to cost-competitive cellulosafiel production appeared to be the cost of
conversion rather than the cost of the feedstogkdl-et al., 2017). Li and Gi (Li & Ge,

2017) developed a system-level cost model for lmeia biofuel production and investigated
the relationships between process characterigtigsygstem performance; they reported that
by changing the feedstock particle size, acid cotragon, pre-treatment temperature and the
duration of the enzymatic hydrolysis and fermentaprocesses, the total cost could be
reduced by 12.8% without any loss in ethanol yiPlishduction of cellulosic ethanol also

generated less Ghan fossil fuel sources (Christian, 2015). Evesutih these studies



92 demonstrate that there is a higher productionfoosgtecond- than first-generation bioethanol,

93 this may change as the cost of biomass reduceky@y2017).

94  Wheat and rice are two agricultural crops thatpsogluced world-wide for food and are

95 responsible for generating the majority of ligndalelsic waste biomass. The abundance of
96 these waste materials and their high cellulosehemadicellulose content makes them suitable
97 for ethanol production. Wheat straw, which can piced104 Gl of bioethanol, is very

98 favourable in Europe (Kim & Dale, 2004). The anngiabal production of rice straw is 731
99  million tons and its estimated bioethanol produti®205 Gl. In Asia, 667.6 million tonnes

100 of rice straw are produced annually (Saini, et2415).

101  Algae are able to metabolize various waste strdarmgswaste water and carbon dioxide

102  generated by industrial applications) and prodwadaable products such as lipids (which can
103  be used for biodiesel production) and carbohydr@tesch can be processed to ethanol)

104 (Menetrez, 2012). Furthermore, due to the absehlignin, algal carbohydrates can be used
105  for bioethanol production after a relatively eaagcharification process (Lee & Lee, 2016).
106  Hence, microalgae have received considerable sitasea potential feedstock for bioethanol

107  production.

108 Seaweed (macroalgae) have a lower lipid and higgadrohydrate content than microalgae
109 (Nhat, et al., 2018). Similar to microalgae, seadvée not need land and freshwater for

110  cultivation (Xu, et al., 2014). Besides their usagea food, different species of seaweed have
111  been used to produce some industrial products, asieliginate, agar, carrageenan and liquid
112  fertilizers. The total industrial consumption ofsesed is greater than 1,500,000 tonnes/year
113 (Jensen, 1993). In 2009, 30,500 tonnes ofLduyinariaspp. was harvested only for alginate
114  production (Bixler & Porse, 2011). Ge at. al., (6tal., 2011) reported that, after alginate

115  extraction, the remaining floating residuelLaiminaria japonicacan be used for ethanol
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production. They reported that, under optimal cbads of dilute sulfuric acid pre-treatment
(0.1%, wiw at 2TC, for 1h) followed by enzymatic hydrolysis (witellobiase and cellulase
at 50°C, pH 4.8, for 48h), 277.5 mg of glucose (whichlddae used for ethanol production)

was obtained from 1g of floating residue.

The USA and Brazil are the primary producers otthianol. In 2009, USA produced 39.5 x
10° | of ethanol using corn while Brazil produced 3Q® | of ethanol using sugarcane as a
feedstock (Saini, et al., 2015). Since these feetstcompete with food, they are unsuitable
to meet the increasing demand for fuels becautieeaiegative impact on biodiversity (Hahn-
Hagerdal, et al., 2006). To produce more sustéreid economical bioethanol, large scale
bioethanol production from cellulosic biomass isded. Biofuel policies in the USA and EU
are promoting developments for the generation lfilosic biofuels worldwide

(Gnansounou, 2010). GranBio, a Brazilian biotetbgyp company constructed the first
commercial-scale cellulosic ethanol factory that haapacity to produce 82 million litres of
ethanol per annum from cellulosic feedstock; ittethproduction in September 2014
(GranBio, 2017). The majority of cellulosic ethaptdnts in Europe are still at pilot or
demonstration stages. Table 2 shows the operatiigtalcapacity of cellulosic ethanol plants

in Europe.

During the last two decades, many organisms haee begineered to increase the
performance of cellulolytic enzymes required fag ttydrolysis step of a second-generation
process (Elkins, et al., 2010) (Wu & Arnold, 20{Bjudeau, et al., 2014). However, a
significant effort is still required to lower thest contribution of cellulolytic enzyme
production to the total production cost of bioetblgiKlein-Marcuschamer, et al., 2011). The
National Renewable Energy Laboratory (NREL) lowettesl cost of cellulosic ethanol from

about $10/gallon to $2.15/gallon in ten years kyere engineering (Christian, 2015). Low
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enzyme costs can also be attributed to the reaehmjh grants given to the enzyme
producers Novozymes and Genencor (now a subsidfddyPont) by the US DOE in 2001
(Niiler, 2001). Recently, Lux Research, a US-basetinology consultancy firm, investigated
the cost of lignocellulosic ethanol production frgm different cellulosic feedstocks (corn
stover, empty fruit bunches, sugarcane bagassarcarng straw, wheat straw and wood) and
three pre-treatment processes (dilute acid, ste@hoson and alkali). They concluded that
lowering feedstock cost is the most important stegellulosic ethanol achieving cost parity

with first-generation ethanol (Yu, 2016).

Recently, new technologies to fractionate MSW amravert the cheap organic fraction to
ethanol have been investigated: following enzymsdiccharification of dilute-acid- and
steam-pre-treated biodegradable MSW fractionst hl.€Li, et al., 2007) produced glucose
from MSW with a yield of 72.80%. Kalogo et al. (go, et al., 2007) developed a model to
estimate the life-cycle energy use of a MSW-to-etthdacility and reported net fossil fuel
energy savings of 397-1830 MJ/MT (Mega Joules p#idl Tonnes) MSW compared to net
fossil fuel energy consumption of 177-577 MJ/MT M3V landfilling the waste. Recently,
Fiberight LLC, started to produce second generatioathanol by converting the organic

fraction of MSW at industrial scale (Schwab, et 2016).

Third-generation bioethanol production uses phaottistic algae as a feedstock. Unlike
lignocellulosic biomass, algal cells contain nditble lignin. However, algal feedstock does
require pre-treatment, saccharification and feregm (Fathima, et al., 2016). Microalgal
biomass treated with 0.5 g/Per gram dry biomass was used to improve enzymatic
saccharification yields; it was reported that 80Rtotal algal carbohydrate could be
converted to glucose using ozone pre-treatmenigkSn & Gurol, 2017). Currently, the
conversion of algae to ethanol is still at the digpment stage (EI-Mashad, 2015) (Bin

Hossain, et al., 2015).



165 2. Microorganisms used for cellulosic ethanol productin

166  Microbial fermentation, the main step of bioethapdduction, is conversion of sugars into
167  ethanol and carbon dioxide with the help of fernmenmicroorganisms. The microorganisms
168 used in a fermentation process are selected dependon the specific carbohydrate content
169  of the biomassSaccharomyces cerevisjaghich is capable of converting glucose to ethanol
170  and is the most commonly-employed yeast in cellalethanol production (Azhar, et al.,

171 2017), cannot convert pentoses to ethanol. Consdgusome other natural yeasts and

172  bacteria capable of fermenting pentoses to ethzana been used on pentose-rich feedstocks
173  toincrease the ethanol yield (Table 3). Pentosadating microorganisms can be used as a
174  pure culture or as a co-culture with hexose-feringnhicroorganisms (Karagoz & Ozkan,
175  2014). Pure cultures and co-cultures can be emg@lmybatch, fed-batch or continuous

176  fermentation processes. Continuous processes greatfimportance in the biofuel industry
177  (Skupin & Metzger, 2017) because they can haveigesiutcomes compared with batch or
178  fed-batch processes (Thani, et al., 2016): ethamdlother by-products are continuously

179 removed meaning that high bioethanol yields carebehed at high concentrations of both

180 cells and carbon source (Santos, et al., 2015).

181  S. cerevisiagthe yeast most commonly used for fermentatios,ld&en used in bread and
182  beer production since ancient times (Gallone,.eRll6).S. cerevisiaeautilizes the fructose
183  diphosphate pathway in order to breakdown gludbsgeby producing two molecules of

184  pyruvate from one molecule of glucose. The nettreads as follows:

Glucose + 2Pi + 2ADP + 2NAD* - 2Pyruvate + 2ATP + 2NADH + 2H* + H,0

185  Lignocellulosic biomass, upon pretreatment and evaic hydrolysis, generates a mixture
186  of hexose and pentose sugars such as glucoseexglabinose and galactose (Cotta, 2012).

187  AlthoughS.cerevisiaecannot transform xylose to ethanol, in the preserixylose
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isomerase, xylose is converted to xylulose, whih loe fermented b$. cerevisiaeln
addition,Candida shehate&cheffersomyces stipismdPachysolen tannophilusan ferment
xylose as part of their natural metabolism (Abbile 1996). In all cases, these yeasts
transform xylose to xylulose, allowing its utilizat in ethanol production via the pentose

phosphate pathway.

S. stipitiscan produce ethanol by fermenting glucose, xyloseethobiose (a disaccharide
consisting of two glucose units irpa-4 glycosidic linkage obtained from the partial
hydrolysis of cellulose), forming few by-productdahn-Hagerdal, et al., 1994) (Grio, et al.,
2010). Moreover, this yeast species does not regit&imin supplementation (Agbogbo, et
al., 2006). Slinger et al. (Slinger, et al., 199@ported that xylose concentrations above 40
g/L and ethanol concentrations above 64 g/L inbtbthe growth o8. stipitiscells.S. stipitis
exhibits a higher affinity for glucose than for age (Weierstall, et al., 1999); cells
preferentially convert glucose to ethanol (Agboggtaal., 2006). Increasing ethanol
concentrations in the medium inhibits xylose fertaéon (Karagoz & Ozkan, 2014). The
oxygen concentration in the medium also influenggi$ol production and thus ethanol
production (du Preez, 1994); the efficiency of atiigroduction bys. stipitiscells is
enhanced with decreasing oxygen concentration, e@sesthanol production halts in
anaerobic conditions because of poor xylose tramgBouinenberg, et al., 1984) (Ligthelm,
et al., 1988). Studies performed under anaeromditions did not report the presence of
xylitol or ethanol production, but demonstrated ttells could reproduce. In limited oxygen
concentrations (microaerobic conditions), cell ogluction was found to be low, but xylitol
and ethanol production was observed to increaseift al., 1989) (Laplace, et al., 1991).
For yeast species that ferment xylose such a8pitis andC. shehateathe glucose uptake

rate is far greater than the rate of xylose uptd@kerefore, the presence of high glucose
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concentrations in the medium will inhibit the wdtion of xylose until the glucose

concentration declines.

Processes that simultaneously use more than omearganism are often more challenging
than ones using single species; this is becauserngpetition between microorganisms that
typically have different metabolic requirementsn&yronous fermentation processes using
Zymomonas mobiliandS. stipitis (Fu, et al., 2009) d&. stipitis andS. cerevisiag(Grootjen,

et al., 1990) (Taniguchi, et al., 1997) have besaduo produce ethanol from xylose and
glucosesS. stipitiscan efficiently transform xylose to ethanol, wHiecerevisiaés pre-
eminent in producing ethanol from glucose. For thason, studies related to the concurrent
use ofS.stipitis andS. cerevisiaeells have recently gained popularity (Yadav, et2011)
(Wan, et al., 2011) (De Bari, et al., 2013) (Hamyal., 2013) (Santosh, et al., 2017)

(Ntaikou, et al., 2018).

It is clear that a major technical hurdle to comwerlignocellulose to ethanol is finding
appropriate microorganisms for fermentation of datlkose and pentose sugars. A number of
recombinant microorganisms includiggcherichia coliKlebsiella oxytocaZ. mobilisandS.
cerevisiaeéhave been developed over last decades with tHeofEmenting both hexose and
pentose sugars to ethanol simultaneously (Cotte2)2@ellulolytic, ethanol-producing
microorganisms have been also engineered for iscrgaheir ethanol tolerance and yield of
ethanol productionC. cellulolyticumandC. thermocellunstrains able to ferment crystalline
cellulose to ethanol with yields close to 60% adf theoretical maximum were obtained with
genetic modifications. Yeast cells engineered éaration of free cellulases or the display of
a minicellulosome were able to convert crystalte#iulose to ethanol (Argyros, et al., 2011)
(Li, et al., 2012) (Fan, et al., 2012). However, édoonomically sustainable cellulosic
bioethanol production with recombinant strainstiar progress in metabolic engineering of

these microorganisms is needed (Mazzoli, 2012).

10
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3. Can microbial immobilization improve fermentation yields in continuous

processes?

Many microorganisms are able to adhere to diffesenfiaces in nature; immobilization is a
technique that mimics this phenomenon (Kourkowdta)., 2004). In principle, a continuous
process that uses immobilized cells will requitevaer reaction volume than a batch process,
thereby reducing costs (Tran, et al., 2015). Imifiezttion has been demonstrated to enhance
reactor productivity, ease the separation of dedis the bulk liquid and facilitate continuous
operation over a prolonged period (Behera & Ray520Most ethanol production processes
are limited by a low ethanol production rate togethith recyclability and separation
problems with respect to the microorganism beiregdu#n continuous systems, utilization of
immobilized cells enables higher cell densitiedhwitthe bioreactor. Continuous fermentation
processes with immobilized cells have the potetdiahcrease ethanol production and reduce
production costs (lvannova, et al., 2011). Sevesgarch groups have focused on whole-cell
immobilization as an alternative to existing midedllermentation processes (Karagoz &
Ozkan, 2014) (Karagoz, et al., 2009) (Amutha & Gaghkaran, 2001) (Baptista, et al., 2006)

(Behera, et al., 2010) (El-Dalatony, et al., 2016).

Support materials such as gels (Ramakrishna & Braa, 1999), porous cellulose (Sakurai,
et al., 2000), natural sponge (Ogbonna, et al.1pGyarose (Nigam, et al., 1998), alginate
(Grootjen, et al., 1990) and carrageenan (Nortbal.£1995) have all been investigated for
cell immobilization. Table 4 shows examples of ioitization materials used for ethanol

production.

Immobilization techniques can be divided into foategories: (i) immobilization on solid
carrier surfaces; (ii) entrapment within a porouenix; (iii) mechanical containment behind

barriers; and (4) cell flocculation (aggregatioriglre 2). Porous gel matrices, such as

11
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calcium alginate (¢H24CaQg), have been widely used to entrap cells and olbiigim
biomass loadings for fermentation. Even thoughsthgcture of calcium alginate beads can
be destabilized in the presence of acid or dutwegdiffusion of gases, such as £O
immobilization with calcium alginate beads is orfiehe most widely-used immobilization
techniques for bioethanol production (Duarte, et2113). The immobilization &.
cerevisiaehas been performed by entrapment in calcium algiftatoptimization of ethanol
production by varying alginic acid concentratioral size, glucose concentration,
temperature and hardening time (Mishra, et al. 62040n-toxicsynthetic polymers such as
polyvinylalcohol (Nurhayati, et al., 2014) and pdlf?E polymer (synthesized using high
internal phase emulsions) (Karagoz, et al., 2009 pHdernative candidates for industrial
applications. The structure of the support matenmal the immobilization method influence
cell physiology and reproduction, mass transpadgpct quality, bioreactor design and
therefore the process economy (Rychtera, et é8.7)1&ourkoutas, et al., 2004) (Branyik, et
al., 2001) (Branyik, et al., 2005) (Verbelen, et 2006). Due to the high cell densities that
can be achieved, processes using immobilized cafidoe more productive than those using
suspension-state cultures. Furthermore, due togilih and concentration gradients inside
support materials, immobilized yeast cells are ntolerant to ethanol and exhibit a lower
degree of substrate inhibition compared with freksqQun, et al., 2002). Nicolic et al.
(Nikolic, et al., 2010) studied the effect of imnil@ation on the production of bioethanol
from corn meal hydrolyzates. They reported that ohilization ofS. cerevisia@ar.
ellipsoideuausing calcium alginate beads resulted in cells waitlelevated tolerance to higher
substrate and product concentrations comparedfveghcellsdue to diffusion and lower
concentrations in the core of the beads. Substratiition was detected at an initial glucose
concentration of 200 g/L for immobilized cells, whas free cells were inhibited at 176 g/L.

De Bari et al. (De Bari, et al., 2013) demonsttateat immobilization of stipitisin a silica-

12
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hydrogel increased the relative consumption rateylufse to glucose 2—6-fold depending on
the composition of the fermentation medium. Howette final yields obtained with the
immobilized cells were not significantly differefnom those using free cells. On the contrary,
Amutha and Gunasekaran (Amutha & Gunasekaran, 2@pbjyted that when they used co-
immobilizedSaccharomyces diastatitamdZymomonas mobilisultures to produce ethanol
from liquefied cassava starch, a higher ethanddl i 38 g/g) was obtained than with free-
state cells (0.33 g/g). Notably, due to the highutaa biomass inside the support material,
fermentation processes can be terminated earltarimimobilized cells, meaning that the
process duration is shorter. It has also been wbdehat cells retain their activity during
multiple consecutive batches or continuous processigh functional stability, high cell
density, easy separation, and resistance to con&dilom are the most important advantages of

using immobilized cells in a bioreactor (Asenjo &Mhuk, 1995).

4. Immobilized cells in continuous culture

In batch systems, microorganisms are inoculatedartlosed vessel containing a defined
volume of growth medium. No nutritional supporagded and no product is removed until
the planned fermentation is complete. After inotiatg the cells replicate at a rate specific to
their species. The concentrations of substratdseigrowth medium decline, toxic
metabolites accumulate and environmental conditfertgs pH, oxygen concentration) change
over time, which can result in the suppression @fobial growth and fermentation. Classical
batch fermentations often suffer nutritional rettoins and therefore low cell densities;
optimal cell density is a primary factor in achmyihigh volume productivity (Ramakrishna

& Prakasham, 1999).

In continuous systems, regular input of nutriemd harvesting of cells and products occurs.

Substrates are fed into the reactor at a definedardration and flow rate. The number of

13
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cells in the reactor is balanced by their remoxv@if the bioreactor; some may be returned to
the vessel if required. Most ethanol productioncpeses are limited by a low ethanol
production rate together with recyclability and aepion problems with respect to the
microorganism being used. In continuous systembzatton of immobilized cells enables

higher cell densities within the bioreactor.

Immobilized cells have been used for ethanol prodadn different reactor configurations.
Figure 3 shows classical reactor configurationsudng immobilized cells. A continuous
stirred tank bioreactor is a cylindrical vesselhnatmotor driven central shaft supporting the
agitator. Through the sparger, air or other gaasesransferred to the medium. The DO
concentration can be adjusted by controlling tireestspeed. Due to their commercial
availability, continuous-stirred tank reactors haeen widely used on a laboratory scale.
Yatmaz et al. (Yatmaz, et al., 2013) produced athfxaom carob pod extract using
immobilizedS. cerevisiaecells in a stirred tank bioreactor. When they u@#dcalcium
alginate to immobilize cells, they achieved 46%aath production yields in fewer than 24 h
and were able to reuse the immobilized cells upveotimes. In another study, the self-
flocculating yeast strain KF-7 was used for contunsl ethanol fermentation of molasses-
derived sugars in a stirred tank reactor. The aatbperated the bioprocess for more than one
month and achieved up to 87% of theoretical ethgietd and 6.6 g/L/h productivity (Tang,
et al., 2010). However, at high agitation rates whitization materials can be disrupted or

destroyed by the physical forces of stirred tardedmctors.

In a flow-through column reactor, agitation canemsured by the liquid and gaansfer
through a column. A packed-bed reactor consistsaflumn packed with immobilized
materials through which medium flows continuoushgiothese matrices. Compared to
stirred tank bioreactors, flow-through column adhed-bed reactors have poor mixing

conditions. It is rather difficult to control thédpof packed bed bioreactors by the addition of

14
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acid or alkali. However, these configurations awfgrred for bioprocessing technology
involving product-inhibited reactions (Jha, 201u¢ts as ethanol production; they are the
most studied processes employing immobilized celtbe literature (Table 4). In packed-bed
and fluidized-bed reactors, substrate passes thriinegimmobilized cells at a constant rate.
Such reactors have advantages including ease wingitand high reaction rates. Particle
catalysts that are placed in the reactor haveldyagpecific surface area for solid-liquid
interaction

(Asenjo & Merchuk, 1995). With such reactors, ipassible to achieve good interactions
between the solid and liquid phases and a reversydtem when heat and mass transfer are
required. Unlike suspended systems, highly-denbeaecentrations can be achieved.
Packed-bed reactors have been used to produceokthancontinuous system usifg
cerevisiaadmmobilized on a calcium alginate bed (Linko & koy 1981) or a microporous
hydrophobic polymer matrix (Karagoz, et al., 2008gtmaz et al. (Yatmaz, et al., 2013)
immobilizedS. cerevisiaecells on calcium alginate beads in a stirred taiokeactor and
produced 40.19 g/L ethanol from carob pod extra8tE g/L/h. In another study,
Kluyveromyces marxiareells entrapped with calcium alginate were usegréaluce ethanol
from whey permeate in a continuous fluidized-beatter at a dilution rate of 0.3'h6.01

g/L/h ethanol was produced (Sabrina, et al., 20Idble 5 shows the ethanol productivities
and process conditions of previous studies perfdwith different support materials and
organisms. Higher ethanol productivities are obsgémwith the use of novel support materials

in immobilized cell reactors.

A rotating bed bioreactor has a similar structora stirred-tank bioreactor. A basket that
separates the immobilized material from the cultneslium spins on a central shaft. Rotating
bed bioreactors have good fluid mixing conditiond are associated with lower mechanical

and hydrodynamic shear stresses compared to stang&dbioreactor (Reichardt, et al., 2013).

15



360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

Despite their potential to provide high mass transfficiencies, rotating-bed bioreactors
have not been widely used in bioethanol productiarly studies using this reactor
configuration produced ethanol at a dilution r&t€.8 h*, giving an ethanol productivity of
7.1 g/L/h (Del Borghi, et al., 1985). However, moeeent studies on this reactor
configuration have focused on bioprocesses usimgahbilized enzymes (Sheelu, et al., 2008)

(Wang, et al., 2011) (Xu, et al., 2017).

Co-fermentation can be easily performed by the immiization of two or more different

strains capable of fermenting different sugarsfddént cultures can be co-immobilized
together on the same support material or separatetiifferent materials meaning that the
different environmental needs of different strasas be satisfied in the same vessel. Even
though mixed cultures are widely used in biofueldarction (Antonopoulou, et al., 2008),

only a few studies have focused on ethanol prodaoatith co-immobilized cultures

(Grootjen, et al., 1990) (Pornkamol & Friedrich1B). Even fewer studies have investigated
co-immobilized cells in continuous bioreactors (&b & Srienc, 2010) (de Almeida & de
Franceschi de Angelis, 016) (Karagoz & Ozkan, 20léwever, the success of these studies

suggests the potential of this approach (Chen, 2011

Grootjen et al. (Grootjen, et al., 1990) trap@edtipitis cells within alginate beads and
evaluated their fermentation capacity in a medi@mgosed of glucose and xylose with free
S cerevisiaecells. Due to mass transfer restrictioBsstipitis cells trapped in alginate beads
experience reduced local glucose concentrationgheardfore consume xylose. This same co-
immobilization strategy has been used to producanet from wheat straw hydrolysate in a
packed-bed reactor. The ethanol productivity ofraoobilizedS. cerevisia@andS. stipitis

was compared with individually immobilizegl cerevisia@ndsS. stipitiscells. The study
showed that higher ethanol production rates coalddhieved by using co-immobiliz&d

cerevisiaeandsS. stipitisand that 73.92% of the xylose in the hydrolysa#s wonsumed to
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produce 41.68 g/L day ethanol at a hydraulic redertime (HRT) of 6 h (Karagoz & Ozkan,
2014). In another study (Pornkamol & Friedrich1@)) ethanologenik. coli strains
developed to selectively consume pentoses or hexuesee immobilized and co-immobilized
in calcium alginate beads. It was reported thag2.2h ethanol was produced by co-
immobilized cells, which is higher than the ethamduction rate (1.6 g/L.h) obtained from

single cultures.

5. Challenges for large scale ethanol production witimmobilized cells in

continuous processes

A variety of immobilized cell bioreactors has belaveloped to optimize fermentation
processes. Immobilized cells are currently beiregusdustrially for vinegar, organic and
amino acid production, as well as in wastewatattnent (Zhu, 2007). There are also
successful applications of immobilized systemsandairy industry (Koutinas, et al., 2009)

(Champagne, et al., 1994) (Groboillot, et al., 994

Verbelen et.al. (2006) reviewed continuous ethgmotuction with immobilized yeast cells
for beer production. The first continuous fermeotaisystem appeared in the 1960s, but few
systems grew up to industrial scale, indicatinghécal and qualitative pitfalls associated
with this technology (Verbelen et al., 2006). Géisand packed bed reactors were used for
the purpose of beer fermentation in continuousesyst It is reported that continuous ethanol
production processes may create some problemsefegrbdge production, since preventing
contamination and keeping flavour quality are intaot issues for this industry. Branyik
et.al., (2005) reviewed continuous fermentationtesys based on immobilized cell
technology for beer production. They noted that ohitized cell systems were condemned to
failure for several reasons including engineerimgbjems associated with excess biomass,
problems with C®@ removal, optimization of operating conditions awbbgging and

channelling of the reactor. However, design of meactors, understanding the behaviour of
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immobilized cells and applications of novel carrigaterials, provided a new stimulus to

improve and apply immobilized cell systems at atustrial scale (Branyik, et al., 2005).

Although production of alcoholic beverages is n@uaject of this review, the obstacles and
challenges are very similar in the bioethanol aadydindustries in terms of the use of
immobilized cells for production. Moreno Garciaakt (2018) discuss future perspectives for
yeast cell immobilization for alcoholic wine ferntations. They reported that there are not
many applications for winemaking at an industreadl. Difficulty in upgrading, inefficient
adherence of the cells to current immobilizatiorterials, investment problems and a lack of
knowledge on the use of immobilized yeasts for ladtic fermentation are listed as reasons.
Novel and cheap immobilization materials are regdrds a main solution for the production
of ethanol using immobilized systems. One novehnietogy is the use of filamentous fungi
as an immobilization material (Garcia Martinez €t2@11). Ethanol fermentation for the
transportation sector may benefit from continudaihsueol production technologies since some
requirements, such as aroma quality, are not algolbor the lignocellulosic bioethanol

production sector.

Use of immobilized cells in industrial processes geeat potential to eliminate continuous
centrifugation for cell recycling, which can briagditional savings in the construction and
operation of industrial units. As outlined in tineview with examples from laboratory scale
studies, the use of continuous systems with imesallyeasts could achieve more
economical bioethanol production in industry. Thare few examples of the use of
continuous ethanol production in industry (Xie ket 999; Carvalho Neto et al., 1990).
Vasconcelos et. al. (2004) studied ethanol produoatiith yeast cells immobilized on sugar
cane stalks at pilot scale. They reported thaticoatis immobilized cell reactors allow

working with high dilution rates which increasesguctivity.
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Chang et.al. (2014) used sweet sorghum bagasseiasrebbilization carrier for acetone-
butanol-ethanol fermentation IGfostridium acetobutycunihey reported that the
fermentation period of the immobilized cell systemars almost 28.4% shorter and the
productivity was 1.68 times higher than a free sgdtem (Chang, et al., 2014). Similarly,
Diez-Antolinez et.al (2018) screened different yeaml immobilization materials for ethanol
production from cheese whey permeate. They repdtinetdGlass Rasching rings and alumina
beads showed stable performance over 1,000 hadalding ethanol titers of 60 g/L, which
substantially reduced yeast cultivation costs (BAemlinez, et al., 2018). The economic
benefits associated with cell immobilization andyaing, such as increased yields and
productivities and lower capital costs due to strarésidence times should encourage
researchers to do further, detailed techno-econamatyses. In the literature, there is a
current scarcity of economic analyses comparing &md immobilized cell systems. Mussatto
et.al. (2015) used SuperPro Designer v8.5 simulaadtware to evaluate and compare the
economic aspects of free and immobilized cell fertaons for fructooligasaccharide (FOS)
production. When they calculated the profit marfginper kg of FOS produced, they found a
25.8% higher profit margin value for immobilizedlsgy/stems and lower fermenter,
centrifuge and filtration costs. Furthermore, tiseynpared key economic parameters such as
the return of investment, payback time and netgmegalue, reporting that immobilized
systems are economically more advantageous tharcélesystems (Mussatto, et al., 2015).
Although there are many reports on the advantafjesllammobilization and few techno-
economic analyses supporting their use, it mustdted that the great majority of studies on
immobilized cells have been performed at laboraseate (lvannova, et al., 2011).
Limitations on the application of immobilized csilstems on an industrial scale are mainly
attributed to mass transfer limitations within gwgports (Zur, et al., 2016). Separation and

reuse of immobilized cells is not the only conciennlarge scale processes; porous structures
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of some matrices may cause diffusion of the patitigand various metabolic products into the
matrix, which limits continuous reuse of the mag¢Bayat, et al., 2015).

Inadequate immobilization may negatively affectqass yields and economics. The type
of support material, amount of the cells, conceiunaand quality of nutrients and
temperature and hydraulics of the system are trst mportant parameters affecting the
immobilization of cells (Zacheus, et al., 2000).sbstion of cells reduces product purity,
while growth of aerobic cells may be inhibited aftemobilization (Wang, et al., 2018).
Some immobilization methods, such as entrapmdotyddigh mechanical strength, but also
have disadvantages such as cell leakage and difflisaitations (Martins, et al., 2013). As an
alternative to the entrapment of whole cells intpreate beads, a recently-developed concept
of ‘teabag catalysis’, entrapping cells into conéas of polyvinylidene difluoride membrane
(cut-off 0.2 um) inside a spin column reactor Hasmn high recyclability even under
challenging micro-aqueous conditions (Wachtmei&t&other, 2016).

For bioethanol production, the effect of feedstoakd pre-treatment technologies on techno-
economics has been widely studied (Tao, et al.1p@Mickson, et al., 2018) (Mupondwa, et
al., 2018). However, in the literature, there tklaf detailed cost analysis on immobilized
cells and process types for bioethanol product#@outlined above there are many factors to
be considered which may prevent investment intoatifized cell systems at an industrial
scale. To make a realistic economic comparisomesf $tate versus immobilized cells, each
process should be evaluated individually to alloes¢onsideration of all relevant parameters
including fermentation type (continuous or batckteyns), reactor configuration, type of

matrix and the microorganisms used for fermentation
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6. Conclusion

The conversion of cellulosic biomass to ethanol basn studied in depth over the last
decades (Aditiya, et al., 2016). Various pre-treatintechniques (Mosier, et al., 2005),
different enzyme cocktails (Klyosov, 1990) and dera#ly engineered cells (Abreu-

Cavalheiro & Monteiro, 2013) have been used ondewange of non-food-based biomass to
produce bioethanol. Despite these improvementhjlgsic bioethanol production cannot yet

compete economically with fossil fuel production.

Improving fermentation performance by ensuringroptin mass transfer conditions is still a
significant challenge (Verbelen, et al., 2006). latnization and co-immobilization of cells
show great potential for cellulosic ethanol produtdue to high productivity rates, lower
contamination risks and stability of the resultemtures. Mass transfer limitations and
heterogeneous environmental conditions inside patmaterial generate a new solution to
work with mixed cultures with different charactéies. Co-immobilization of mixed cultures
converting hexoses and pentoses to ethanol in axmnady be the key to solve one of the
most important issues in cellulosic ethanol promurctLiterature reports suggest that by using
immobilized or co-immobilized cultures in continbioreactors, efficient and rapid
conversion of mixed sugars to ethanol can be aelielio sustain optimum conditions for
different cultures concurrently, different suppatscustomized heterogeneous materials can
be used. Although there are still some obstaclekafge scale bioethanol production by
immobilized cells in continuous reactors, effoite®gld be concentrated on improving this
technology, which will contribute to next-generatioiorefineries and industrial cellulosic

ethanol production plants.
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Figure Captions

Figure 1. Process flow diagram for cellulosic ethlgaroduction, from the beginning

(biomass) to the end (fuel)

Figure 2. Whole cell immobilization methods: adsimnp, electrostatic binding, covalent
binding, entrapment, self-flocculation and mechahtontainment (adapted from

(Kourkoutas, et al., 2004))

Figure 3.Different types of bioreactors suitable for immated cells:1- stirred tank reactor,

2- flow-through column reacto8- fixed-bed column reacto4- rotating-bed reactor

Table Captions

Table 1. Carbohydrate content of typical celluldsmmasses

Table 2. Operational cellulosic ethanol plants imdpe, adapted from (Bacovsky, et al.,

2013)

Table 3. Microorganisms that have high potentalcellulosic ethanol production (adapted
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Table 1. Carbohydrate content of typical cellulosic biomasses

Biomass Cellulose Hemicellulose Lignin Reference
content (%) content (%) content (%)

Alfdfa 30.4-31.1 17.6-17.7 13.3-14.5 (Dien, et a., 2011)

Barley straw 36.6-39.1 21.1-25.7 15.2-22.4 (Yang, et d., 2015)
(Duque, et d., 2014)

Corn stover 37.0-37.5 18.5-28.9 19.4-22.1 (Saha, Qureshi,
Kennedy, & Cotta,
2015) (Yu, et d., 2016)

Grass 31.85-38.51 31.13-42.61 3.10-5.64 (Wongwatanapai boon,
etd., 2012)

Hardwood 40.0-55.0 24.0-40.0 18.0-25.0 (Sun & Cheng, 2002)

stems

Microalgae 50-7.3* n.a (Rodjaroen, Juntawong,
Mahakhant, &
Miyamoto, 2007) (Kim,
et a., 2006)

Organic 57** n.a (Nwohi, et a., 2015)

fraction of

MSW

Rapeseed 37.0-44.6 19.6-20.0 18.0-20.0 (Lu, Zhang, &

straw Angelidaki, 2009)
(Karagoz, Rocha, &
Ozkan, 2012)

Rice straw 38.4-42.54 21.8-24.51 9.16-16.2 (Zhu, et al., 2015)
(Akhtar & Goyal, 2017)

Rye straw 33.12-37 22.24-40 19.8-22 (Sun & Cheng, 2002)

(Smuga-Kogut, et al.,
2017)




Seaweed

Softwood
stems

Sugarcane
bagasse

Switchgrass

Wheat straw

30.0%**

45.0-50.0

43.02-50.43

28.24-35.13

30.2-48.57

2.2***

25.0-35.0

18.95-25.20

20.25-26.96

22.3-27.70

25.0-35.0

17.02-22.87

15.46-21.15

8.17-17.0

(Ge, Wang, & Mou,
2011)

(Sun & Cheng, 2002)

(Santosh, Ashtavinayak,
Amol, & Sanjay, 2017)

(Dougherty, et al., 2014)
(Keshwani & Cheng,
2009)

(Saha, Iten, Cotta, &
Wu, 2005) (Ballesteros,
Negro, Oliva, Cabanas,
& Manzanares, 2006)

* Starch content after oil extraction

**Glucan content of total solid

***Composition of floating residue after alginate extraction process

n.a indicates data are not available.




Table 2. Operational cellulosic ethanol plants in Europe, adapted from (Bacovsky,

Ludwiczek, Ognissanto, & Worgetter, 2013)

Company

Aaborg
University

Abengoa

Beta Renewables

BioAgra

ECN

Inbicon

PROCETHOL 2G

SEKAB/EPAB

TNO

Weyland AS

L ocation

Bornholm
(Denmark)

Babilaf uent
(Spain)
Crescentino

(Italy)

Goswinnowice
(Polad)

Petten
(Netherlands)

Kaundborg
(Denmark)

Pomacle
(France)

Ornskoldsvik
(Sweeden)

Zeist

(Netherlands)

Bergen
(Norway)

Plant type

Pilot

Demo

Commercial

Demo

Pilot

Demo

Pilot

Pilot

Pilot

Pilot

Start-
up

2009

2008

2013

2014

2008

2009

2011

2004

2002

2010

Feedstock

Wheat straw

Straw and
municipal
residues

Wheat straw

Wheat straw and
corn stover

Clean wood and
demolition
wood

Wheat straw

Woody and
agricultural by-
products,
residues, energy
corps

Wood chips and
agricultural
wastes

Wheat straw,
grass, corn
stover, bagasse,
wood chips

Various
feedstock,
mostly spruce
and pine

Output
(tly)

11

400

60,000

50,000

346

4300

2700

160

100

158




Table 3. Microorganisms that have high potential for cellulosic ethanol production (adapted

from (Zabed, Sahu, N, & Farug, 2016))

Microorganism

Candida shehatae

Clostridium
thermocellum

Pachysolen
tannophilus

Saccharomyces
cerevisae

Shefferomyces
stipitis (Pichia
stipitis)

Zymomonas mobilis

Characteristics  Contribution

Facultative Fermentation
anaerobic yeast

Anaerobic Fermentation
thermophilic and hydrolysis
bacteria

Facultative Fermentation
anaerobic yeast

Facultative Fermentation
anaerobic yeast

Facultative Fermentation
anaerobic yeast

Gram negative Fermentation
bacterium

Major feature

Able to ferment xylose
Rapid xylose conversion

Produces cellulases and
hemicellulases and converts
cellulosic biomass to sugar

Direct production of ethanol from
cellulose

Ableto ferment xylose

Robust and well-studied
microorganism

Studied to ferment various
lignocellulosic hydrolysates
High ethanal yield

Good tolerance to inhibitors and
osmotic pressure

Efficient conversion of xyloseto
ethanol

Low by-product formation

Higher ethanol productivity,
compared to S. cerevisiae
Low biomassyield and high
ethanol yidd




Table 4. Immobilization materials used for ethanol production

I mmobilization
Material

Calcium aginate

Mesoporous silica

Pectin beads

Plastic-composite
supports

I mmobilized culture

Saccharomyces
cerevisiae var
ellipsoideus
Saccharomyces
cerevisae

Saccharomyces
cerevisae

Zymomonas mobilis

Zymomonas mobilis

Saccharomyces
cerevisae

Substrate

Corn meal

Mahula
flowers

Cane
mol asses

Glucose

Glucose

Glucose

Yield

(9/9)

0.55

0.48

0.46

0.47

0.45

0.5

Reusability

n.a

Min. 3 cycles

n.a

Min. 10 cycles

n.a

n.a

Fermentation type

Batch fermentation in

flasks

Repeated batch

fermentation in flasks

Continuous

fermentation in 5x90

cm tubular column
reactor

Repeated batch

fermentation in flasks

(500 ml working
volume)

Continuous

fermentation in 350

ml expanded bed
column reactor

Repeated batch and

continuous
fermentationin a

biofilm reactor with a
total externa surface

Fer mentation
time

38h

9% h

25 days

24 h*

16 h

60 days

Reference

(Nikolic,
Mojovic, Rakin,
& Pgjin, 2009)

(Behera, Kar,
Mohanty, & Ray,
2010)

(Ghorbani,
Younes, Sari, &
Nagjafpour, 2011)

(Niu, et al., 2013)

(Kesava, Panda,
& Rakshit, 1995)

(Demirci,
Pometto, & Ho,
1997)




Poly(vinyl acohol)
cryogel

Wild sugarcane
stalks

Pachysolen
tannophilus

Saccharomyces
cerevisae

Crude 0.46
glyceral

wild 0.43
sugarcane

Min.16 cycles

Min. 8 cycles

areaof 60 cm?

Repeated batch
fermentation in flasks
(100 ml working
volume)

Repeated batch
fermentation in flasks
(300 ml working
volume)

15-24 h*

36 h*

(Stepanov &
Efremenko, 2017)

(Chandel, Narasu,
Chandrasekhar,
Manikyam, &
Rao, 2009)

* Fermentation time in each batch

n.a. indicates data are not available.
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Table 5. Immobilized cell reactors used for ethanol production

Feedstock

Acid-
pretreated
bagasse

Crude
glyceral

Diluted
waste
mol asses

D-xylose

Sugar
concentration

(gL)

25

180

50

Immobilization
support

Polyvinyl
acohol

Calcium aginate

Polyvinyl
alcohal cryogel

Self-flocculation

Alginate beads
treated with
AI(NO3)3

Immobilized
micr oor ganism

Zymomonas
mobilis

Pachysolen
tannophilus

Saccharomyces
cerevisae KF-7

Clavispora
opuntiae

Process/ Reactor

type/Working
volume

Batch/flask/250ml

Continuous/flow-

through column
reactor/850ml

Continuous/stirred
tank reactor/2000ml

Continuous/packed-
bed reactor/350ml

Dilution Effluent

rate

(1/h)

0.062

0.083

0.31

ethanol
concentration

(/L)

5.53

5.44

8.2

80

9.49*

Ethanol
productivity
(g/L/n)

131

127

0.63

6.6

3.10

Reference

(Wirawan,
Cheng, Kao,
Lee, &
Chang, 2012)

(Stepanov &
Efremenko,
2017)

(Tang, et d.,
2010)

(Nigam,
Mandal, &
Singh,
Continuous
Ethanal
Production
from D-
xylose Il
Using
Immobilized
Cellsof
Clavispora




Glucose

Glucose

Glucose and
xylose

Microalgal
biomass

Oilseed rape
straw
hydrolysate

Pineapple
cannery
waste

100

125

22.25

82.3

Polyurethane
foam cubes

Fe,Os;-modified

polyvinyl
alcohol

K-carrageenan

Cacium aginate

Lentikat O discs

K-carrageenan

Saccharomyces
cerevisae

Zymomonas
mobilis
Zymomonas

mobilis

Saccharomyces
cerevisae

Saccharomyces
cerevisae

Saccharomyces
cerevisae

Continuous/fluidised-
bed column
reactor/1000-5000ml

Bespoke continuous
fermenter/200ml

Continuous/fluidised-
bed column
reactor/900ml

Repeated-batch/
flask/270ml

Continuous packed-
bed column
reactor/69ml

Continuous packed-
bed reactor/350ml

0.4

0.5

0.5

0.5

1.5

40

62.18

30.5

9.7

25.8*

285

16

31.09

15.3

0.22

12.88

42.8

opunitae,
2015)

(Baptista, et
al., 2006)

(Nurhayati,
Cheng,
Nagarajana,
& Chang,
2016)
(Krishnan,
Blanco,
Shattuck,
Nghiem, &
Davison,
2000)

(El-Dalatony,
et a., 2016)

(Mathew,
Crook,
Chaney, &
Humphries,
2014)
(Nigam,
Continuous
ethanol
production
from
pineapple
cannery
waste using
immobilized
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yeast cells,

2000)
Saccharomyces
Wheat straw 30 . . cerevisiae and Continuous/packed- 1.333 (Karagoz &
hydrolysate Calcium alginate Shefferomyces bed reactor/180ml 4442 98 Ozkan, 2014)
stipitis

* Data produced from paper
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-Cellulosic ethanol production needs application of new technologies for competing with gasoline
- Cell immobilization technologies improve bioethanol productivity

-Ethanol yield in different processes is affected by the reactor configurations



