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ABSTRACT 

 

All-atom model of an MS2 bacteriophage particle without its genome (the capsid) was 

built using high resolution cryo-EM measurements as initial conformation. The structural 

characteristics of the capsid and the dynamics of the surrounding solution were examined using 

Molecular Dynamics simulation. The model demonstrates the overall preservation of the cryo-

EM structure of the capsid at physiological conditions (room temperature and ions composition). 

The formation of a dense anion layer near the inner surface and a diffuse cation layer near the 

outer surface of the capsid was detected. The flow of water molecules and ions across the capsid 

through its pores were quantified, which was considerable for water and substantial for ions. 
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1. Introduction 

 

State-of-the-art computers can model very large biomolecular systems of millions of 

atoms in size (organelles, cellular membranes, entire viruses, etc) at atomistic resolution [1-3]. 

The required initial molecular structure of the biomolecule itself, the 3D coordinates for all 

atoms in the system, is derived from high resolution experimental techniques such as X-ray 

crystallography and cryo-electron microscopy (cryo-EM). All-atom Molecular Dynamics (MD) 

computer models can provide information about, and unique insights into, complex biomolecular 

systems, which it is impossible to obtain by any other means. For example, the reconstruction of 

the parts of the molecular system, such as highly flexible regions, that cannot be revealed 

experimentally, provides an understanding of dynamics at physiological temperature. 

Importantly, while until recently X-ray crystallography was the main source of molecular 

structures, nowadays cryo-EM measurements provide information of comparable resolution but 

with a critical advantage of being able to measure asymmetric structures.  

Simulation of viruses is most realistic because, in contrast to other large biomolecular 

systems, viruses are self-contained biological units which exist in isolation from the rest of the 

organism (although they cannot reproduce in isolation). Computer models of cellular organelles, 

for example, necessarily consider only part of the system that interacts with the rest of the cell 

via complicated, poorly understood mechanisms making comparison with the experimental 

results difficult. For viruses, interaction with aqueous solution is the only external force that 

defines the structure and dynamics and modelling of water is well developed in MD. Despite the 

substantial computing resources needed for such simulation, the number of viruses simulated at 

all-atom resolution is growing (see the review on all known simulations up to date [4]). 

We have recently built the MD model of a virus capsid PCV2, which is the smallest 

known non-satellite virus (it does not need another virus for reproduction) [5-7]. Here we report 

on MD modelling of a well-known bacteriophage that infects E. coli, the (+)ssRNA phage MS2. 

This virus is a perfect candidate for such all-atom simulations as it is small (it has a short 
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genome of 3569 nt), its icosahedral capsid is only marginally larger than PCV2 (27 nm vs 23 

nm) but it is much more extensively investigated using various molecular biology and biophysics 

methods [8-10]. 

The molecular structure of the MS2 capsid has been measured recently with atomistic 

resolution providing not only the structure of the symmetric parts of the capsid, but also several 

proteins that are different from the rest of the capsid, making it asymmetric [11]. The most recent 

publication even provides parts of the genome resolved at atomistic level and most of the 

genome at the resolution allowing to fit its backbone [12]. We are, thus, at a unique position of 

being able to build a very realistic MD model of the virus capsid including its asymmetric parts 

that are known to play an important biological role in infecting bacteria. 

The MS2 capsid mostly consists of multiple copies of one protein 129 amino acid 

residues long. The protein adopts three different conformations, denoted A, B, and C, which 

form two kinds of dimers: asymmetric AB and symmetric CC. The capsid is composed of 59 AB 

and 30 CC dimers. Finally, there is a 393 residues long maturation protein embedded in the 

capsid wall [13]. The capsid forms an impenetrable wall with pores that allow water and ion 

transport.  

We have used this information to develop the MD model of the capsid and analyse a 

number of its structural and dynamic properties. We have not included the genome in the model, 

however this work is in progress and the results will be the subject of our subsequent 

publications. 

 

2. Simulation details 

 

2.1 Assembling the capsid model 

Our capsid model is based on the cryo-EM structure 5TC1 from the Protein Data Bank 

[13]. It contains i) three coat protein monomers, forming a triangle-shaped block; ii) the 

maturation protein, of a sequence different from the rest of the capsid proteins; and iii) 5 

monomers located near the maturation protein, whose structure is deformed by the maturation 

protein. Among these monomers, there is a gap in structure information in one of them (denoted 

chain G in the PDB file), that is the coordinates of the residues 68–77 are missing, probably 

because of their flexible or disordered structure. Furthermore, there are also 4 gaps in the 

maturation protein (63 residues in total). 

The details of the assembling procedure are presented in Supplementary Information. 

GROMACS 5.1 simulation package was used for all tasks [14]. The simulation cell is shown in 

Fig. 1.  
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Figure 1. The capsid model in a rhombic dodecahedron shaped simulation box. Several coat 

proteins are coloured highlighting the pentamer enclosing the pore (green, orange, blue and red 

molecules) and the trimer block (green, orange, blue, red, purple, and yellow molecules). Ions 

and water molecules are not shown for clarity. 

 

2.2 Simulation protocol 

The simulations were preformed using AMBER03 force field and TIP3P water model. 

The total number of atoms in the system was 3528811 including 1057725 water molecules. 

First, the energy minimisation of the system was done using the steepest descent 

algorithm. Then, 5 ns equilibration run was carried out. The heavy atoms of the capsid were 

restrained to their initial positions except for the reconstructed missing sequence, which was 

allowed to adopt the optimal structure. Simulation annealing technique was used, the initial 

temperature was set to 100 K and during the first 200 ps it was gradually raised to 298 K and this 

value was kept for the rest of the run. After equilibration a productive run of 50 ns long was 

carried out without restraints.  

In all runs 3D periodic boundary conditions were imposed, the temperature was 

controlled by velocity-rescale thermostat with time constant of 1 ps, the time step was 2 fs, all 

bonds were constrained with LINCS algorithm, the electrostatic interactions were computed with 

the PME method (cut-off for direct sum was at 1 nm), while van der Waals interactions were cut-

off at 1 nm. 

 

3. Results and discussion 

 

3.1 Structure 

 The basic indicator of the stability of the structure is the time evolution of its root mean 

square deviation (RMSD) from the initial configuration. The graphs for the whole capsid and its 

backbones only are shown in Fig. 2A. Both RMSD’s increased for 20 ns and then reached a 

plateau at a small value (~0.27 nm) indicating no considerable displacements from the initial 

structure. The same is demonstrated by the time evolution of the capsid’s radius of gyration (Fig. 

2B), it essentially stops growing after 20 ns showing ~0.15 nm increase at the end of the 

simulation compared to the cryo-EM structure. 

 

 
 A B 

Figure 2. A: RMSD of the whole capsid (black) and its backbone (red) from the initial structure. 

B: The radius of gyration of the capsid. 

 

 It is interesting to inspect the average displacement of individual amino acid residues 

from their initial positions, Fig. 3. All residues have similar low average displacement (in terms 

of RMSD) with notable exceptions being residues 13-15 with the values of ~0.8 nm. These 
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residues are located on the outer surface far from the pores and they are exposed to the outside 

solution, which makes them relatively more mobile (Fig. 4). 

 

 
Figure 3. RMSD of individual residues averaged across 89 coat protein dimers. 

 

 
Figure 4. The location of residues 13–15 having the largest displacement from the cryo-EM 

structure (orange) and 75–78 forming the FG loop (green, see text). 

 

 From the biological point of view, the secondary structure (SS) of the coat protein is 

important. MD simulation allows verifying whether the SS at the cryo-EM conditions is 

preserved at room temperature. For this, we used the DSSP 2.0.4 software [15]. 

We computed the ‘average’ secondary structures of A-, B-, and C-kind coat protein 

monomers over all copies in i) the cryo-EM configuration, ii) the configuration after the 

restrained run (that is the initial conformation for the productive one), iii) a series of intermediate 

configurations at 5–45 ns, and iv) the final configuration, Fig. 5. Specifically, for each 1-129 

amino acid residue the SS that is the most populated in monomers was determined; and the 

sequence of 129 single-residue SS’es formed the ‘average’ SS. In total, in the final configuration 

16% (A-kind monomers) and 13% (B- and C-kind monomers) of amino acid residues changed 

their average SS after 50 ns of simulation compared to the cryo-EM conformation. 

A crucial region of the coat protein is the so-called FG loop (residues 75-78, Fig. 5) that 

plays a key role in the self-assembly of the capsid [16]. Its secondary structure in A- and C-kind 

monomers is identical and different from that in B-kind ones. The inspection shows that the SS 

of this interval in B-kind monomers stayed unchanged during the whole simulation, while in 

both A- and C-kind ones, a reversible modification at residues 74–75 occurs. However, the 

adjacent interval 79–81 or 79–82 has stably restructured in A- and B-kind monomers, 

respectively. 
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Figure 5. Capsid averaged secondary structures of A-, B-, and C-kind coat protein monomers at 

different simulation times. For each monomer kind, the first row (underlined) corresponds to the 

cryo-EM configuration. The FG loop is indicated. 

 

3.2 Ions distribution 

 The MS2 capsid is a highly charged particle. Therefore, the formation of an electric 

double layer in salt solution is expected. We computed the distribution of the ions around the 

capsid in terms of the radial distributions functions (RDF’s) with respect to the capsid COM, Fig. 

6. The RDF’s on the intervals 10–30 ns and 30–50 ns were essentially identical proving that the 

equilibrium distribution of the ions was reached. 

Apparently, Cl– ions form a distinct layer near the inner surface with the average density 

2.1 times higher than in the inner solution. Surprisingly, Na+ ions have very low concentration 

near the negative outer surface (~1.3 times). This is different compared to PCV2, where twofold 

increase is observed [7]. A small peak at 12.6 nm is formed by the ions located in pores 

impregnated in the wall or located near the wall at concave regions, while the larger peak at 14.2 

nm is made of ions near the convex regions and ions in the solution several water layers away 

from the surface. Thus, the whole virus-like particle (VLP) would behave as negatively charged, 

that corresponds to the experimental data showing negative zeta-potential values of MS2 VLP’s 

[17-19]. The total charge of the capsid together with the ions (after 50 ns) is -20 e, if the ions 

inside a 15 nm radius sphere around the capsid COM are counted. This number equals to -83 and 

-138, if 14.5 nm and 14 nm spheres are taken, respectively. These rough estimates can be useful 

for interpreting the experimental zeta-potential values in terms of the location of the slipping 

surface. 
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Figure 6. Radial distribution functions of Na+ (red) and Cl– ions (green) with respect to the 

capsid COM computed over the production run. 

 

3.3 Water and ion flows through the capsid 

The ability to allow or block the flow of water molecules and ions is an important 

property of a biomolecular wall. Therefore, it is interesting to examine the capsid wall in this 

respect. MD provides direct way to quantitatively estimate the movement of solution across the 

wall. 

The algorithm similar to our previous work [6], which was based on the work of Andoh 

et al. [1], was used. Because the MS2 capsid shape is much closer to a spherical layer than that 

of PCV2 capsid, the boundary between the interior and the outside solution can be defined 

simply as a certain distance from the COM. 

An atom was considered as located in the interior if its distance to the capsid COM was 

less than 11.7 nm, and it was located in the outer solution if the distance was more than 12.7 nm. 

These numbers were deduced from visual examination of the capsid in VMD to match the 

average radii of inner and outer surfaces. The 1 nm buffer zone was introduced to exclude the 

molecules staying in the pores and to count only the molecules actually transferred through the 

capsid wall. Using this criterion the lists of indices of water molecules and ions located inside 

were formed. The particles inside (outside) the capsid at a time moment and outside (inside) at 

another time moment were considered to have left (entered) the capsid; and the sum of the left 

and entered particles gave the net flow across the wall during the time interval between the 

considered moments.  

The calculation of transported particles was performed independently on five 10 ns 

intervals of the trajectory (0–10 ns, 10–20 ns, etc.). The average and standard deviation were 

computed on the obtained numbers; the results for the 0–10 ns interval appeared somewhat 

different (most likely because of residual equilibration), thus, they were excluded from the 

sampling. The graphs for the last interval (40–50 ns) are shown in Fig. 7; graphs for other 

intervals are very similar. 

There is an intense flow of water molecules across the wall, reaching (5800±85) 

molecules per ns. The magnitude of the value does not depend significantly on the buffer 

thickness: the flow equals to 5970±80 or 5630±85 molecules per ns if the buffer zone is placed at 

12–12.5 nm or 11.5–13 nm, respectively. In the first 15 ns, ~6800 water molecules left the capsid 

interior, while after that time the ingoing and outgoing flows became mutually compensating.  

The total flow of ions is considerable, too, reaching 4.5±0.5 Na+ and 4.9±0.4 Cl– ions per 

ns. For Cl– and, to less extent, for Na+ the outgoing flow is somewhat stronger than the ingoing 

one: after 50 ns, the content of the ions inside changed by –37 for Cl– and –12 for Na+. 

The situation is completely opposite to the PCV2 capsid, where water transport was 70 

times lower, and ions transport was negligible [6]. This is explained by the larger pore diameter 

in the MS2 capsid, reaching approximately 15 nm in size. 
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Figure 7. A: The number of water molecules that entered (red) or left (blue) the capsid interior 

compared to the structure at 40 ns, the sum of entered and left (black) and its linear fit (grey). B: 

The number of Na+ (orange) or Cl– (green) ions crossed the capsid wall in both directions 

compared to the initial structure, and its linear fit. 

 

4. Conclusions 

 

We have built an MD model of entire MS2 capsid, including its asymmetric parts (the 

maturation protein and several deformed proteins around) and one subsequence missing in the 

experimental data. After initial adjustment, the atomistic structure of the capsid at room 

temperature and in physiological solution was found stable and it remained largely the same as 

the measured cryo-EM structure with a small exception of three residues located on the outer 

surface.  

We have analysed several structural and dynamics properties of the capsid that is 

impossible to deduce experimentally. The distribution of ions inside and outside the capsid 

revealed a pronounced layer of chloride ions at the inner surface, while the sodium ions formed a 

surprisingly diffuse layer at the outside surface of the capsid. Finally, the pores in the capsid wall 

sustain substantial transport of water and ions in both directions. 
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