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Thesis Summary

High Throughput Screening (HTS) is an effective means to determine the chemical com-
pounds which are efficient on a given biological target. The experiments are carried out
using a standard format, the 96-well plate, where six wells are controls whose expected
values are known. However the measurement techniques are subject to variation which
renders the assessment of an experiment difficult. In the context of quality control of
an industrial task, a novelty detection method can be employed to determine abnormal
or unusual outputs where the novel points can be defined as the observations which
have extreme values compared to other measures observed under the same experimen-
tal conditions. The new method proposes to screen an additional set of three plates
featuring only control wells which constitue the reference data to compare the plates.
This set of plates is used to estimate the distribution of the control values. In the first
place, a Gaussian Mixture Model is trained with the EM algorithm. A point is declared
‘novel’ if its probability is below a novelty threshold. The technique is compared to a
traditional approach of outlier detection. The choice of this threshold is investigated

together with alternative approaches to the problem.

Novelty detection, outliers, Mixture Models, EM algorithm,

Keywords: !
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Chapter 1

Introduction

The success of a drug discovery process depends entirely on its capacity either to find
new chemical entities or to reveal unknown characteristics of some existing molecules.
High Throughput Screening (HTS) offers an empirical means to identify novel com-
pounds which act efficiently against a given therapeutic target.

This chapter provides an introduction to HTS to supply the necessary background
and understand the quality control of this method. Details can be found in [BKRWIT].
The second part focuses on the control wells which are the means of assessing plate
quality. We show how the problem of HTS quality control will be tackled using these
wells. This final section outlines the practical constraints which should be taken into

consideration and gives an overview of this thesis.

1.1 High Throughput Screening

C'ombinatorial chemistry makes use of automated and miniaturised devices to screen
simultaneously a large number of mixtures. Indeed, recent progress in technologies

such as bioassays, robotics, computation and data handling now enables large series of

experiments, involving tests of thousands or millions of molecules. HTS takes advantage

of these advances so that comprehensive collections of compounds can be screened in

order to find relevant biological activity. The efficiency of the method relies on the
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Figure 1.1: High Throughput Screening Process

volume of data generated by this technology. Therefore, the more quickly relevant
information is found, the more efficient the method. Typically, drug discovery groups
examine growing numbers of samples to determine the few compounds, called ‘lead
compounds’, that will progress to the next round of screening, and eventually to the

development of a pharmaceutical agent of commercial value.

1.1.1 The HTS process

The HTS process summarised in Figure 1.1 can be divided into five successive steps:

compounds supply, assay, data capture, data analysis and sample follow-up.

Compounds supply

Automation is developed as much as possible so as to increase throughput; thus a
standard format is required for conveying small liquid samples. The most common is
the 96-well plate, each well having a volume capacity of up to 2ml. This type of plate
—_ a5 well as the other formats : 48, 384 and higher — is also called ‘microtitre plate’

or ‘microplate’ because of the small volume of mixture required for each well.

Vast libraries of compounds held by pharmaceutical companies, as the largest source

of new potential lead compounds, constitute the basis of the HTS process. Indeed, au-

tomated methods enable the relatively rapid synthesis of impressive libraries of com-

pounds. The dry samples are provided in tubes formatted for the microtitre plate

tormat and dissolved afterwards. These are placed for storage into a liquid sample

10



CHAPTER 1. INTRODUCTION

bank, source of all compounds for HTS.

Assay and data capture

Compared to traditional experiments on a few samples, an assay for HTS has its own
requirements. For instance, the handling steps should be limited and the solvent’s
compatibility ensured. In addition, the difference of incubation time! between the mi-
croplates of the beginning of a screen and those of the end has to be evaluated by
control wells on each plate. The variation which may occur from one plate or one assay

to another will be discussed in greater length in Chapter 4.

Various hardware items are involved in the manipulation and the analysis of the

96-well plates for HTS:

e The liquid handling and assay assembly are carried out by manual pipetting
devices (fast but restrictive — the same volume is distributed to all the wells —
and prone to error) or robotic sample process (accurate and versatile but still

slow).

o The separation includes the filtration equipment to harvest the contents of a plate

(essentially manual) and the plate washers.

e Signal detection instruments measure the radiometric, fluometric, colorimetric or

luminometric activity to estimate the chemical activity of the mixtures. These

measures form the data on which this study is based.

The signal measures are saved in databases to be checked and assessed for a reliable

interpretation of the data.

1The period during which the various compounds of the mixture remain active.

11
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Data analysis

Partly computerised, the data analysis is the key step of the HTS process and will be

described thoroughly in Section 1.2.1. It has two goals:

o The assay validation ensures the accuracy and the validity of the data with respect

to the assay specification,

e The decision making determines the ‘hits’ — mixtures whose activity is consid-

ered to be significant — of the assay.

Both operations are manual and conducted by means of a data graphical representa-
tion. The assay validation is possible thanks to special wells on each plate dedicated to -
the control of the assay. The decision making aims at the selection of the wells whose
activity is greater than a threshold fixed by the operator. A sample decision interface
permits the simultaneous view of a wide range of data in order to assess the bioactivity

of a sample to take decisions about its future.

Computer controls are necessary throughout the HTS process including instrument
controls (integrated software controls for robots or external computers for liquid han-
dling) and data capture (bespoke programming of the plate reading devices). The
contribution of computing systems is more significant in data management, since the
capacity to deal with large amounts of data remains the keystone of combinatorial

chemistry. Indeed, only powerful databases can manage the massive quantity of infor-

mation generated by the screening.

Sample follow-up

The samples whose activity 1s revealed by HTS as active on a given target influence

the choice of compounds for further screening in order to maximise the chances of

finding a mixture of biological efficiency. On the last stage, they are submitted to

lead optimisation which aims at improving the efficiency of the compounds. Contrary

12
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to H'TS, this optimisation relies on an existing knowledge base and is performed on
small samples which need not be as robust as those of mass screening. If its activity is
estimated sufficient, the lead compound is finally validated and added to the company

library and database as active towards the target.

1.1.2 Controls and assessment of the assay

To prevent any variation in the analysis of the test sample activity and establish the

validity of the assay, control positions are always present on each plate. Typically, they

consist of:
e a maximum well (100% of activity) ;
e a minimum well (0% of activity);

e a standard well (= 50% of activity) .

The controls are generally analysed using softwares which offer different views of
the data (graphical and tabular views of the control results). The assistance of a
graphical representation of these controls is convenient for the operator and appears
to be very efficient to compare controls of the same assay and allow assessment of the
experiment. This assessment consists of the de-selection of the controls that reveal
anomalous results. These controls can also be effective at detecting rogue plates or
handling mistakes. However, ‘t should be noted that this manual data assessment 1s
fairly subjective and may vary from one operator to another. After validation, active

samples of the screen can be determined to be submitted to further studies.

1.1.3 Advantages and disadvantages

The main advantage of HT'S over traditional chemical schemes is that little information

on the structure of the compound is necessary to perform the screening; hence its

applicability to any molecular target. In addition, the record of successes as well as

failures in databases can be utilised to design further experiments.

13
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The obvious drawback of such an empirical search is that it can be time consuming;
hence the need of efficiency. Moreover, the inherent variation of measurement tech-
niques may induce false hits which must be rejected further on. Finally, éhe range of
prospect for a laboratory is limited by the chemical diversity of its own library since the

likelihood of finding a new compound by this method depends entirely on the selection

of mixture to screen.

The increasing number of screens demands substantial improvements in the HTS
process. Besides, as the pressure to find novel therapeutics increases, the cost effective-
ness and the speed of HTS become all the more crucial. From this point of view, the
introduction of computing systefns such as quality control software within an integrated

HTS facility may contribute to render the process as efficient as possible.

1.2 Controls and analysis

This section concentrates on data analysis from the viewpoint of the quality control of
HTS. To begin with, we present an example of data analysis together with the problems
to be solved for this quality control. In the second place, the data which constitute the

basis of this study are described.

1.2.1 An example of data analysis

This part introduces a naive example of data analysis for standard plates. Although

simplified, it places this work in its biochemical background.

It is generally considered that the data analysis starts with the control well checking

even if its object is basically to provide reliable data to the actual data analysis. As
stated in Section 1.1.2, the operator inspects a graphical representation of the control
data to assess the assay and to detect would-be handling mistakes (such as insertion of

an incorrect volume of substrate) or rogue plates. Once spotted, these control values

14
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Normal well

Minimum control well

Standard control well

Maximum control well

Figure 1.2: Normal HTS plate

can be de-selected which ends the assessment of the assay. The rejected control values

will thereby not be taken into account for the detection of the ‘hits’.

Suppose one wishes to detect a novel enzyme inhibitor, an active compound which
prevents the action of an enzyme receptor. Each plate is provided with 90 different
substrates (each mixture featuring 20 dry samples) and 6 control substrates (Figure 1.2)

where:

e the enzyme causes its normal reaction in a completely uninhibited manner (max-

imum controls: D1, D7);
o the enzyme is fully inhibited, though present (minimum controls: D2, DJ);

e the enzyme is partially inhibited by a compound whose activity on this enzyme

is known to be ‘average’ (standard controls: D3, D9).

For a given screen, all the control wells of the same type (mazimum, minimum or stan-

dard) of all the plates contain the same mizture.

Because of the variation within an assay, it is important to measure accurately the

maximum and minimum activity of this enzyme in the solution: that is to say, to fix

15
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CHAPTER I. INTRODUCTION

the bouncaries 0% and 100% of Figure 1.3 in order to evaluate the actual inhibition
of the enzyme receptor. The minimum and maximum controls are intended for both
quality control and calculation of these boundaries. The; role of the standard controls
1s restricted to the quality control.

Ideally, all the maximum (respectively minimum and standard) control values of all
the plates for a given screen should be the same since they contain exactly the same
solution and measure the same activity. Practically, the activity boundaries (0% and
100%) are estimated as the mean of a selection of controls (respectively minimum and
maximum controls) of the assay®. This selection is achieved by visual inspection on
a graphical representation of the control data similar to Figure 1.4. If the operator
considers that a value of a control deviates significantly from the mean of this control,
this value can be de-selected. The mean of this control is re-calculated (without the
control which was removed). These controls are then checked again regarding this new
mean and so on, until all the points are thought to be correct, hence assessment of
the assay. The standard deviations (denoted in dash lines) computed for the minimum
and maximum controls help the operator to decide whether a point should be kept®.
This procedure determining whether a given point is an ‘outlier’ s obviously greatly
subjective. Once this task completed for the two controls, the value for the minimum
(maximum) activity defining the boundaries 0% (100%) is taken as the average value
of those assessed. In other words, the de-selection of a point, say a maximum, affects
the analysis in the sense that the value of this control does not influence the computing
of the average of the maximum values which gives the estimation for the maximum

activity of a compound (i.e. the minimum activity for the receptor).

Concerning the first part of this data analysis, we should insist on the fact that if a

single point (a control well) 1s de-selected, there is no consequence whatsoever on the

2The screening procedure is generally spread over several differgn? date; for it i(s too long to l3e
conducted in a row. In this case, the quality control and the analysis is carried out assay by assay’.
3We shall see in Section 2.1 that the use of these standard deviation error bars which assumes the

a .

normality of the data can be put into question.
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remaining wells of this plate as far as the data analvsis is concerned other than the
modification of the activity boundaries. Otherwise stated. if a control is de-selected.
no action in practice is taken over other values of the plate even if this may indicate
that something has gone wrong with it. On the other hand, if all the six controls are

suspicious the corresponding plate can be de-selected.

After assessment, the operator sets a threshold above which the wells are considered
as ‘hits’ (as indicated in Figure 1.3, for a 60% threshold*). If the shape of this diagram is
consistent with what can be expected for an average screen (according to the operators,
a ‘Gaussian shaped’ plot centred in 50% of activity) the validity of the assay is assessed.
The contents of these wells are then stored in the database as being relevant towards

the enzyme and will be submitted to further tests.

1.2.2 Other plate formats

Other types of format than the standard 96-well plate can be involved in HTS. This

section presents the ICsq plates and the Totals & NSB plates®.

The IC5o plates are generally employed after a comprehensive screening on normal
plates that resulted in the detection of a few lead compounds to determine their op-
timum concentration. On the ICso plates, the same compounds are disposed on two
successive columns from A3 to Al2 in different concentrations (Figure 1.5) whereas
the first two columns are dedicated to the controls (maximum and minimum). The
data analysis is conducted similarly as in Section 1.2.1 to determine the hits, which
correspond in this case to the compounds offering the best activity regarding the target

together with the optimum concentration.

The Totals & NSB plates are generated especially for this study. The 96-well plate

4Tn Figure 1.3, some wells may even have a negative activity with respect to the target .(in .the
previous e\:ample’ the corresponding compound would activate the receptor 'mstead. of m?ub}tmg it).
5 Totals for ‘to,ta.lly inhibited’ (the minimum controls) and NSB for ‘Non Specific Binding’ (the

maximum controls).
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1.3.1 Aims

This work is aimed at measuring the variance in the HTS data. To do so, we focus
on the detection of unusual values of the control wells mentioned in Section 1.1.2 to
determine the points which could be de-selected. This task can be regarded as a novelty
detection problem in the context of probability density estimation. In other words, the
underlying density function of the control well values can be modelled so as to detect
unlikely values (called ‘novel points’ or ‘outliers’). It implies the formalisation of this
‘novelty criterion’ to provide a quantitative measurement of this novelty in numeric
(and therefore objective) terms. The software to be provided should point out these

outliers and give a numeric evaluation of this novelty.

Requirements

The method for assessing the quality of the HTS data should fulfil the following con-

straints:

e it should not be computationally expensive even if the time for learning and test-

ing is not crucial. Typically a procedure which takes a few minutes is acceptable;

e as noted above, the control system must pin-point the abnormal plates of the
screen; a measure of ‘abnormality’ should be provided for both the plates and

the wells so that the latter can be ordered with respect to this measure;

e the software must produce outputs which can be easily understood and thereby

avoid the “black box trauma” of neural computing;

e the method should leave a possibility of automation; it should be designed as a

help for the operator who will validate the results of the detection but allows the
eventuality of running without any intervention.

We shall refer frequently to these requirements throughout this thesis to justify the

decisions that will be taken concerning the novelty detection method.
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1.3.2 Approach

Each HTS screen is performed with respect to a given target so the control values of
two different screens have a priori a different distribution. As a result. from a practical
point of view, the approach consisting in ‘learning’ the distribution of these values
requires the screening of three additional plates (the ‘Total & NSB plates’ or control
plates) for each screen. These very plates are used to train and validate a model for
the underlying distribution of the control values. The control values of the normal
HTS plates which are ‘unlikely’ according to this model (the probability density) are
declared ‘novel’ (and have to be pin-pointed to the operator as being ‘unusual’ ). In
terms of handling, the additional plates necessitate little extra work: a typical run for

HTS features more than 200 plates.

1.3.3 Overview

This thesis consists of four parts. The second chapter presents preliminary works on
some HTS data and is divided into three distinct sections. Through popular statistical
tests, the first section shows that these data are poorly represented by a single Gaussian.
Tn the second section, standard statistical methods whereby the problem of abnormality
detection can be tackled are described. Attention is drawn to the difficulty of using such
techniques for the purpose of HTS quality control. Finally, we study the correlation
between the three controls: minima, maxima and standards.

The third chapter reviews in detail the model inference framework. First, we define
the probability density model involved, Gaussian Mixture Models, and the technique
for its training, the Ezpectation-Mazimisation algorithm. Second, the data selection is

examined and we deal with the problem of choosing a proper novelty threshold for the

density. The third part investigates the choice of the model parameters.

The fourth chapter is concerned with the application of this framework. The first

part applies a model to the novelty detection of an HTS screen by learning the distribu-

tion of the minima and the maxima. An alternative approach to novelty detection, the

21
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“Adaptive Mixture Model'. employing the same density model but a dynamic learning
procedure is outlined and tested on the same screen. The strengths and weaknesses of
the two methods in the context of routine use are discussed. Once a plate is declared
novel because of unusual control values, the next step is to spot its abnormal compo-
nents. The third part treats this problem thanks to the conditional densities of the
model previously described. The last part of this chapter is dedicated to the inclusion
of the standards in the model.

The results produced in this chapter concern Screen 2 (Appendix A.1). For obvious
practical reasons, it was not possible to present in detail the results of the novelty
detection on all the screens referenced in Appendix A. This screen was chosen because
it features the smallest daily variation (see Section 4.5) and is therefore close to the
type of data which could be provided by a automated screening device.

In the final chapter, we present a summary of the study and reflect on additional

questions which may constitute an extension of those treated hereatter.

This work is aimed at providing a robust method helping an operator to take a more
reliable decision. Bearing in mind the constraints mentioned above, it implies that
however appealing or theoretically elegant a method can be, the one and only criterion

for choosing or discarding i should remain its practical efficiency.

QW]
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Chapter 2

Preliminary study

As the training and the validation of the model rely on the control plates, we start
with a one-dimensional study of these values.

The quality control of HTS is generally performed cornparir'lg the controls (minima
and maxima) with one standard deviation from their respective means. This procedure
implicitly assumes the normality of the data. The first part of this chapter investigates
this hypothesis by testing the normality! of the controls. The traditional approach
of outlier detection is described and applied to the HTS data. Finally, we test the

independence of the three controls and examine the implications of the results regarding

the HTS control procedure.

21 Goodness-of-fit tests for Gaussian distribution

The two following standard procedures, 2 and Kolmogorov-Smirnov, test the goodness-
of-fit on a Gaussian distribution (comparing the observed and expected distribution of
Figure 2.1). Both sections present briefly the tests and the results obtained when ap-

plied on the HTS controls. For the following sections, 7 denotes the size of the sample

. : ) ol ¢ . ) < : El : . ~
1'\We should be cautious with the term ‘normality’ since n01mal'and .Ge?uss1’an are widely con
sidered as synonymous (but some may restrict the former to Gaussian distribution with zero mean
M >

i ' ' . oo we shall prefer ‘Gaussian’ to ‘normal’ to prevent
and unit variance). To describe such a dlstnb’utlon,‘ p ussian’ fo norna 2 >ven
confusion with the ‘normal’ plates. However, 10 Section 2.1, the denomination ‘normality” as in “not-
mality test”refers to ‘the condition of being Gaussian’. The word has no implication whatsoever so

C

far as the ‘novelty’ or ‘abnormality’ of the plates are concerned.
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Figure 2.1: Observed and expected distribution (single Gaussian) of the controls
(Screen 2)

and k the number of clusters (or bins) of the test.
The two tests-of-fit on a Gaussian distribution are performed using the means [t and

the variances 62 computed in Table 2.1. Both of them test the following hypotheses:

Hy: the sample is drawn from the normal distribution with mean i and variance 7.

Hy: the sample is not drawn from the normal distribution with mean i and variance o2

The samples consist of three screens referenced in Appendices A.1.1, A.2.2 and A.3.2.

Each of them features three control plates (144 minimum wells, 144 maximum wells).

2.1.1  ? test '

The x? test can compare two binned samples to test whether they are drawn from the

same distribution. Because 1t remains one of the most popular goodness-ot-ﬁt tests, 1t

is used frequently to compare two densities drawn from continuous variables. This is
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Parameters estimation | Minimum plates || Maximum plates W
| i gt i g
Screen 2 56.1528 | 3.0710 || 1095.1 | 54.5483
Screen 1 (1b) 95.93 122.7 || 3462.9 | 169.1
Screen 9 27.32 9.04 575.1 74.16

a . . o~ 1 n . .
The mean is estimated by i = - 57 | v; where n is the size of the
sample

be . . ~
Similarly, for the variance we have: 7 = \/711_—1 S (e —R)?

Table 2.1: Parameters estimation for statistical tests

the reason why the x? test is applied on the HTS control data to test their normality.

Since both controls are continuous variables, the clustering is arbitrary.

Principle

Let O; be the number of events observed in the :* bin and E; the expected number

E (0i—Ei)?
E;

according to the known distribution. The test statistic x* = iy has an

approximate x? distribution if:
1. no expected frequency is smaller than 1;

9 no more than a fifth of the expected frequencies are smaller than 5.

L.

It may be necessary to combine bins in order to satisfy these conditions (see [MGHSY]

for detail). The number of degrees of freedom v is given by the number of bins minus

the number of constraints. The number of constraints is the number of estimated

parameters plus one.

Application

. k 3 . L Af
Since these two parameters are estimates and the sum 2= O; is fixed, the number of

degrees of freedom v is k —1 - 9 where k is the number of bins for the test.

[N
[
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I'hese bins have equal width and divide the interval [min(control), max(control)] (orig-

: e N
inally) into 25 clusters. Table 2.2 shows the results obtained for the \? statistic.

2 ) . 1
L Y test Minimum controls Maximum controls
Degrees of freedom v 11 (14 bins) 20 (23 bins)
""0/ = 07 1 (7
Critical values® 7 1% o L%
19.67 | 24.72 31.41 | 37.56
X Sereen 2 19.7573 35.7496

Conclusion Some evidence for non-normality | Some evidence for non-normality

12 (15 bins)

Degrees of freedom v

14 (17 bins)

2
XScreen 9

5% 1% i :

Critical values ° 0 5% 1%
23.68 | 29.14 21.02 | 26.21

27.9242 24.4020

Some evidence for non-normality

Conclusion Some evidence for non-normality
Degrees of freedom v 4 (7 bins) 13 (16 bins)
o 5% | 1% 5% 1%
Critical values —
9.48 | 13.27 22.36 | 27.68
Coreon 1 186.4604 22.7099

Conclusion

Normality rejected

Some evidence for non-normality

A significance level of & =1% g
of 99% (the critical values for 5
rejects the normality for the SiX samp

way.

% are lower than those for 1%

ives a confidence level, probability of failing to reject Ho when Ho is true
). The dual test (a significance level of 99%

les. The Kolmogorov-Smirnov tests will be carried out in the sam

Table 2.2: y? tests on maximum and minimum controls

Note: the different numbers of bins are due t

the requirements of the x* test on small expected frequencies. The value of the X5ereen 1

statistic is due to the presence of a great number of outliers in the co

26

o the combinations necessary to satisfy

ntrol plates.
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2.1.2 Kolmogorov-Smirnov test

['he Kolmogorov-Smirnov test can be applied to unbinned distributions that are func-
tion of a single independent variable; thus it is particularly suitable for continuous
variables such as the HTS control values. It can be more reliable than the \? test in

such cases since no arbitrary categories are required.

Principle

The test is based on the cumulative distribution function S, given by

Su(e) = ~#y e By <a} .

The Kolmogorov-Smirnov statistic D is defined as the maximum value of the abso-
lute difference between the the cumulative distribution function S, and the expected

distribution function £

D= max [S.(z)—=F(z)] . | (2.1)

—00<LT <0

Application

The value F in = of equation (2.1) is given by the distribution function of the Gaussian

of mean 7i and standard deviation d: F(z) = [0 —F exp{—%%%l;}dy. Table 2.3

2mo?

shows the results of the test on HTS control values.

2.1.3 Conclusion

The \? rejects the normality of the data and the Kolmogorov-Smirnov test gives mixed

results for the same hypothesis. It suggests that the implicit assumption of normality

is not sufficient to carry out the quality control of the data. The following chapters

investigate some more complex models for the variation of the control values to 1mprove

the representation of the data provided by a single Gaussian model.
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Nolmogorov-Smirnov test Minimum controls Maximum controls
Critical values® o i 5% 1%
0.11132 | 0.1357 0.11132 1 0.1357

Dsereen 2 0.0567 0.0580
Conclusion Normality accepted Normality accepted
Dscreen 1 0.1154 0.0370
Conclusion Some evidence for non-normality | Normality accepted
Dscreen 9 0.2615 0.0650
Conclusion Normality rejected Normality accepted

“For sample size n>100, the critical value D, can be found to be

Dy = i’;ﬁb—%), where o < 1 is the significance level of the test.

Table 2.3: Kolmogorov-Smirnov tests on max and min controls

2.2  QOutlier detection

Before explaining why the control plates can be used for density inference, it proves
interesting to mention in the first place statistical techniques for dealing with the
possible presence of outliers in the HTS data. This section shows how the problem

would be tackled by standard methods to detect outliers in the univariate case and the

limitations of such an approach.

221 A methodology for univariate problem

A standard approach of outlier detection proposes a two-step procedure:

1. Use points, sequence, box, or normal quantile-quantile plots to spot extreme

observations;

2. Apply statistical tests for outliers (also called ‘discordancy tests’) with an ap-

propriate significance level to determine whether the points selected in 1 differ

significantly from the rest of the sample.
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There 1s a plethora of tests available for outlier testing - [BLT8] describes 22 tests
- 1 . ) . . . ‘
for the Gaussian case only - depending on various assumptions such as normality.

It should be noted that most of the techniques involved in outlier detection are

derived under the assumption of an underlving Gaussian density.

2.2.2 Quantile-quantile plots

We first define the plots mentioned above in the step 1. The quantile-quantile plots
can compare two samples suspected to be drawn from the same distribution.

Let {yi}iz12...n and {z;}iz12,.m two ordered samples with n < m. For each data
fraction f; = i/n in the smaller sample, @'(f;) (called ‘interpolated quantile’) for the

largest sample is defined as:

T; fn=m ,
(1 — g)zk + g4y otherwise

where h = (m + 1)f;, k is the integer portion ofhand g =h—k (it m <k, 2'(fi) =
z(m)).
The quantile-quantile consists in plotting Q,(f:) = yi versus Qx(fi) = '(fi)

i = 1,2,...,n. If the two samples are identical, all the plotted points lie on the

same line.

The standard normal quantile—quantile plot consists in plotting y; versus ¢ snv(fi)s

0.14).

where fi = (1 — 2)/(n + }) and Qsn(f) = £91(S%M = (1= f)
In the general case, the normal quantile-quantile plot for a sample of mean x and

variance o is derived from s~ by Qn(f) = oQsn T K-

. . . ‘2
Unusual trends or clustering on the plot may highlight outliers.

antile-quantile plots is taken into account for consis-

2 . . . u
- ween the two normal q ‘ ; .
e the ioratue a line remains a line after a linear transforma-

tency with the literature but is not actually necessary;
tion, an outlier remains an outlier.
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2.2.3 Grubbs tests

[his part presents a simple method based on the Grubbs's statistics Ly and £y to test

if a subset of a sample {2;};=1 ., is formed of outliers. The test should proceed as

{ollows:
1. Sort the data {z;}i=1 . » 10 {yiticr 0
N <Y <oy

2. (a) If the k largest values in the data set are suspected as outliers:

1 n—k
L= —Y (v — 1) (2.2)
Syy =1
where:
and
Syy = Z(yi - '!7)2
1=1

(b) Conclude that the group of k observations are outliers if the calculated value

of L is less than the critical value® for Ly Grubbs test statistics®.

3. (a) Similarly, if the k most extreme values are suspected as outliers (some are

the largest while others are the smallest ones)

P= Z 7 (23)

yy =1

where:
o z; is the y; corresponding, to the 7t* smallest |y; — 7&l;
e 75 average of the y: corresponding to the n — & smallest deviations.

4 and N5 in [BL78] p91 and pp304-306 for the critical values.
he consider the statistic —\}—é’: (or ESD for Exztreme Studentiz ed

f this method being comparable to the use of the second

3Gee the tests referenced N
4 Alternative approach suggests t
Deviate); the strong points and drawbacks o
order (—t:—ii, we chose to present the latter.
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(b) Conclude that the group of & observations are outliers if the calculated value

of Ey is less than the critical value for £ Crubbs test statistics.

Ihe limitations and situations where Grubbs tests may fail are discussed in the

next section.

2.2.4 QOutlier detection in the context of HI'S control

This section demonstrates the outlier detection on the HTS data. We discuss the
results and underline the weak points of the method in the context of HTS quality

control.

Application to HTS controls

The methodology described in Section 2.2.1 is applied on Screen 2. Scatter plots and
normal quantile-quantile plots in Figure 2.2 suide the analysis. These plots highlight
various suspiciously extreme values. The following controls (marked in Figure 2.2) are

chosen to test their abnormality®:

Minimum controls: 66(D2), 95(D6) (Figure 2.2(a));
Maximum controls: 95(D1), 95(D7) (Figure 2.2(b));
Standard controls: 128(D3), 95(D9) (Figure 2.2(c));

For the standards, one may choose a third point pointed up ‘222’ in Figure 2.2(c)

which corresponds to the control D3 of the plate 95 but let us keep it apart for argu-

ment’s sake.

Table 2.4 shows the results obtained for this outlier detection test.

5As in Section'1.2.1, we note “66(D2)’ the first minimum control (D2) of the plate 66.
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CHAPTER 2. PRELIMINARY STUDY
Comments on the discordancy tests

L. The procedure requires judgement on the part of the analyst: it is necessary
to choose a set of outliers. As a consequence, the test may prove positive even
though some of the extreme values of the sample are left aside. Looking back
at the standard control 95(D3) in Figure 2.2(c), it would have been sensible to
include it in the test set since it differs only slightly from one of the controls
tested, the standard control 95(D9). Nevertheless the test succeeded. In a semi-
automated method, the former control would not have been detected if such a

mistake had been done.

9. The test is sensitive to other outliers: the test may not be conclusive because of
the presence of other extreme values in the n — k values considered as ‘normal’.
This problem is known as ‘masking’. It explains why the test on the maximum
controls is not positive. The two controls 95(D1), 95(DT) arise naturally in the
point plot of Figure 2.2(b), yet these outliers are masked by the relatively high
values of the first 40 plates. The difference between these plates and the rest of
the screen will be debated more thoroughly in subsequent chapters. The design
of the test (a subset tested for abnormality with respect to the rest of the sample)
implies that the failure of a test does not necessarily mean that the chosen points

are not outliers but rather that these are not the only ones.

More generally, if two points happen to be different from the sample by an order

of magnitude, each point will appear both on the numerator and the denominator of

equations (2.2) and (2.3). As a result, the corresponding test will not be significant.

This is the reason why the procedure making use of graphs Is generally reckoned more

reliable for outlier detection.

The choice of a proper value for k, the number of outliers to be tested, is obviously

crucial. One might not have been worried about choosing more outliers than necessary,
cul.
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Discordancy test || Min 66(D2) 95(D6) | Max 93(D1) 95(D7) | Std 128(D3) 95(D9)
=07, 5 ~ (7 d - (1 4 (e
Critical values o 1 o % % 1%
0.833 | 0.802 0.833 | 0.302 0.821 | 0.794
test statistic 0.5518 0.8134 0.6903
Conclusion Positive Some ervidence Positive

Table 2.4: Discordancy tests

had the validation been carried out manually. The problem is that in the case of the

discordancy tests, such a choice would make the test fail. Oun the other hand, if too

few outliers are chosen for testing, the test might succeed in the case of large samples

despite leaving extreme values undetected as was the case for the standard 95(D3).

Potential problems in applying the tests

The application of outlier detection in the context of a quality control of HTS data

highlighted the following problems:

e The method is not based on a density estimation so no description of the data is

provided in terms of probability;

e In particular, no measure of novelty

outliers detected;

e This procedure is greatly subje

L to be tested for; in addition the ‘manual’

of automation.

e The analysis is more complex in the multivariate case

visualisation in a 6-dimensio

nal space is not as easy);
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2.3 Correlation tests

T .

T'his section presents a popular test for correlation between two random varviables X
and Y from which tv "y .

¢ hich two samples {2;}i-; ., and {y:}i=1.., have been drawn. It is based on
Pearson’s r (or sample correlation coefficient) and is applied on the three HTS controls,

minima, maxima and standards, of the normal plates.

2.3.1 Principle and application to the controls

The tests of existence of a correlation between the various controls are based on Pear-
son’s sample correlation coefficient given by:

_ Swy

\/SzzSyy

where s;y = == Vi (i — §)(zi — T) and Sze = Lsn (x; — )% (if » = 1 there

n—1 = n—1

T =

exists a linear dependence between X and X). The statistic 1s given by:

r(n — ‘2)1/2

t =
(1 __ 1"2)1/2

cou(X,Y)

vt ) Tt can be assessed
var(X)var(Y)

and tests the nullity of the correlation coefficient p =
as a Student cumulative statistic®.

This statistic tests the following alternative:

Hy: X andY are not correlated (p =0);

Hy: X and Y are correlated (p #0).

The results are shown in Table 2.5.

2.3.2 Comments

As expected, the controls of the 96-well plate are all mutually correlated.

8cf [MGHS9] p440 for example.
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-
[ndependence tests min/max min/std max/std
t-statistic +.10 2.93 9.69
Critical values t., 2.576 2576 2.576
Conclusion Independence rejected | Independence rejected | [ndependence rejected

Table 2.5: Correlation tests (significance level 0.5% )

There is a strong correlation between maximum and standard controls. If we recall

that there is no difference between the standards and the normal plates’ , this strong

correlation shows that it makes sense (‘statistically speaking’) to rely on the controls

to assess the quality of the data collected: an unusual variation of the controls would

denote an unusual variation of the whole plate.

A significant difference exists between the correlation of maxima and standards and

the two other statistics. These two controls may be more sensitive to the experimental

conditions than the minima.

"The only difference between a standard

standard is known (cf Section 1.1.2).
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Chapter 3

Novelty detection

Novelty detection aims at determining abnormal or unusual outputs of any industrial
task. In the context of the quality control of an experimental scheme, ‘novel” points
can be defined as the observations which have unusual values compared to other data
observed under the same experimental conditions. So far as HTS is concerned, the
novel control wells should be studied since they may reveal experimental conditions
which may not be those that were intended and therefore should not be taken into
account in the activity boundary computation (Section 1.2.1).

From a probabilistic point of view, if the distribution of ‘normal values’ is known,
a novel point is the one which s ‘unlikely’ for this distribution. Precisely, a point is

declared ‘novel’ if its probability is below a novelty threshold to be determined. As a

result, this chapter focuses on:

e modelling the distribution of normal controls;

e defining the ‘novelty threshold’.

In this chapter, we motivate the choice of the density model, Gaussian mixture

models, and describe the probability density inference technique, the Ezxpectation-
b K

Magimisation algorithm. In the second place, we show how this model can be trained

on the three control plates. The choice of the novelty threshold is then discussed to-

gether with its implications regarding the HTS quality control. Finally, we consider
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he possibility of . :
the possibility of data pre-processing and determine the parameters of the model.

3.1 Probability density estimation

This section presents an overview of the techniques used to infer the density of the HTS
control values. A density model, the mixture model. is introduced and we describe how
the parameters of this model can be estimated by the Expectation-Maximisation or EM

algorithm 1n the Gaussian case. Details can be found in [Bis95).

3.1.1 Mixture models

A mixture model represents the underlying density function p(x) of the data as a linear

combination of M basis functions:

M
p(x) = > P)p(xI) (3.1)
j=1 .
where P(j) and p(x|j) are respectively the priors (or ‘mixing coefficients’) and the

likelihood that x is from component j.

The priors should satisfy the constraints:

0< P s,

Z?/il P()=1".
The components p(x|j) of the rixture are normalised so that: [ p(x|j)dx =1, 7,
are chosen to be Gaussian density

j =1,...,M. The component densities p(x[7)

functions:

L - _l — . -1 —_ 4T}’ 3.3
P(XU):WG-\P{ 5(x = 1) (x = 1) (3.3)

4
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where p; and X; are respectively the mean and the covariance matrix of the compo-
nent j. The problem of density estimation is therefore to determine the parameters of
the model: {P(j)s/'l’ja X5, 0 =1,....M}. This tvpe of model is generally known as
‘(Gaussian mixture model’.

The elements of the covariance matrix model ¥ = [Tkl iy 4 ave intended to model
the covariance! cov(Xy, X)) = E[(Xy — EX;) (X, — £X))] of the underlying random vari-

ables Xy, X) (it is therefore symmetric). Those commonly used for mixture models can

be divided into three different types presented here together with their main properties:
1. Full covariance matrix:

e no constraint on the model;

e the number of parameters is d(d + 1)/2 and the inversion of 3 in equation

(3.3) is difficult (computationally expensive);
e the curves of equal density values are ellipses without any constraint on their
directions.
2. Diagonal matrix Diag(oi,... ,03) where the o; are not necessary equal:
e ignores the possible correlation between variables (the covariance cov( Xy, Xx)
for k # | ‘is modelled by 07);
e the number of parameters is d, the inversion of % 1s easy;

e the curves of equal density values are ellipses whose axis directions are given

0
1 : 0
by the standard basis vectors (? :) o (‘the axis of the graph’).
0 1
LO_.

3. o] where o is a real positive number and I the identity matrix:

LE[X] is the expectation of X.
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* constrains the elements of the diagonal to be equal and the others to be

nought;

e the number of parameters is equal to |. the inversion of ¥ is trivial:
e 1t 1s generally used on centred data:

o the curves of equal density values are circles.

The choice of the covariance matrix used for novelty detection will be discussed in

detail in Section 3.5.2.

3.1.2 EM algorithm

The Ezpectation-Mazimisation or EM algorithm provides a effective means to deter-
mine the parameters of a mixture model. This section presents briefly this iterative

algorithm and the initialisation used.

The updating relations

Suppose we want to find a mixture model (3.1) which describes the distribution of a

data set T = {Xn}n=1,. N Where Xp = (w(ln), . ,l’((in)) is a d-dimensional vector.

Most of the techniques for determining the parameters of a Gaussian mixture model

rely on the maximisation the likelihood of the parameters: £ = [To_; p(x™) i.e. min-

imising the negative likelihood error given by:

N M
Fo-ing=-3 IS PUICC)] (34

J=1

To simplify the notation, let 0 be the set of parameters to be determined:

9= (P(j) 1 Zin 7 =1, M}

Let Q(8,0') = &E[ln £]0'], function of the observed data {Xn}fn=1,...N- The EM algorithm

starts from an initialisation p(©) and alternates two steps:
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E-step: Find Q(0.6°) = &[in £16°14);
M-step: Choose 0™ to maximise Q(4,0°4).

The maximisation of the likelihood £ (M-step) is obtained gradually at each iter-
ation (new) by conditioning the expectation (E-step) on the values of the parameters
of the former (old). If we recall the expression of E. this is equivalent to choosing
"¢ for minimising the expectation E[E]0°Y] leading to a new error £™¢¥. In the case

of mixture model (3.1), it can be shown? that the new error admits the upper bound

given by:

Frev < Eold . i % Pold(jlxn)ln{Pnew(j)pnew(xn\j) (3 5)
= pold(xn)pozd(ﬂxn) ’ e

n=1j=1
As the E-step maximise the expectation conditioned on the old parameters (B2 is
fixed), we wish to minimise the second term of (3.5), which will lead to a minimum
unless E™Y is already a minimum.
In the case of Gaussian mixture, the value of 7% = {P™(7) , uj*", DI ES
1,..., M} can be expressed as a function of 6214 = { Po'(5), 3, E?ld, jg=1,...,M}.
For & = Diag(c?,...,0}) (the choice of such a covariance matrix is justified in
Section 3.2) the minimum of the second term of (3.5) is obtained by differentiation

with respect to the parameters P(35), #;, a?)‘ This leads to the updating relations:

nPoz’d AN\ .
e = ZnPZUPIRE (3.6)
J S Pl (51x")
old( 5|~ (n) _ (12
() ey = S P (5] l)(i(?t i pe) ’ 3.1)
‘ S5 x)
1 ldy -1 m E
\NEW — . Po X , (?)8)
P(j) N; (71x")

for t = 1 d;j = 1....M. Proof and details can be found in [Bis95] for the case

Y = ¢?] (change the expression of equation (3.7)).
2Using equation (3.4) and Jensen’s inequality: In <Zj /\j;vj> > 3, A n(eg) if A 2 0 and

2o =1 (See [Bis95) for example).
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Starting values

The performance of the EM algorithm for minimising the error (3.1) can depend on
the starting points of the updating equations (3.6). (3.7) and (3.8) . In the training
- ’ (@]

procedure, the parameters are initialised to \L[ for P(j) for all j. The centres ji; are

chosen randomly in the interval [min(7) max(7)] and the variance as:

min | g = g5 il

As far as the implementation is concerned, the method checks the values of 3;
at each step of the EM-algorithm using the Linpack reciprocal condition estimator in

order to avoid ill-conditioned matrices.

3.1.3 Why Mixture Models?

Several theoretical arguments can be provided to justify the choice of mixture model as
the structure for density inference. First, the models (3.1) have the universal approxi-
mation property: they can fit any probability density. Another powerful consequence
of using Gaussian mixtures defined by the equations (3.1), (3.2) and (3.3) is that 1t

becomes straightforward to compute the conditional densities because these remain

Gaussian (cf Section 4.4.1).

From a practical point of view, the mixture models were preferred to other proba-
bility density estimators such as Parzen windows estimator because of their speed in

evaluating the density at a new data point, which should be regarded as an asset in a

routine use.

A drawback is the extra time necessary for training when compared to Parzen

windows estimator, for example. In particular, the main critics argue on the slow
, >

convergence of the EM ‘f the mixture components are not well separated [XJ95]. This

relatively slow convergence should not be considered as a problem since in practice, the

control of HTS is not on-line: the extra plates and the standard plates are generally

screened on different days Furthermore, even 1 an automated procedure, the model

492
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can be trained on the control plates while the normal plates are being screened. This
training is a matter of a few minutes in this case which clearly fulfild the requirements
settled in Section 1.3.1. As a result, the learning time is not a crucial issue® as long as
it remains in this order of magnitude. Moreover other non-lincar optimisation methods
such as gradient based methods are expected to perform poorly on such an ill-separated
mixture [XJ95].

The EM algorithm may not be suitable for problems involving several clusters when
the starting points do not separate sufficiently the group means. In such a situation,
the EM can converge to an inappropriate local minimum for the error (3.4) as reported
in ([Rip96], p208) and therefore a poor local maximum for £. In the case of the HTS
controls, the nature of the data, a measure of activify for wells containing the same
mixture, does not suggest separated clusters. The examination of the data provided
confirms this intuition (see Figure 3.3 for example). As a result, the complexity M to
be determined in Section 3.5.1 does not aim at distinguishing distinct clusters but at
determining a more accurate description of the data’.

The following advantages of the EM overdraw the drawbacks:

e the EM provides a monotonic convergence without the need to set a learning

rate,;

e the EM gives low computational overhead?®.

3The implementation in Matlab of the learning procedure which will be des.cribed in Sect.ion 33
takes 2min 36s on a Sparc (Sundd) for the data of Screen 2 (206 plates, Appendix A.1) which is quite

acceptable in the context of the ATS control since the quality control is not intended to be carriec

out straight after the screening. Moreover this relatively fast training would permit the integration of
(=]

i i trol system.
the novelty detection scheme mto an automated con .
1As rne}rlltioned in Section 2.1, the distribution of the control values of HTS can hardly be considered

as Gaussian (unimodal) Nevertheless the density function is not well separated so that clusters can

not be characterised. . t
5The software is expected to run on mICro-compu ers.
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3.2 Number of components

The choice of M, the number of basis functions in the model (3.1) 1s known to be

difficult [LB88]. The available tests for testing the number of components of a mixture

model can be divided into two categories:

o the tests based on the likelihood ratio test® are the most common (using boot-

strapping for example as in [Lac87]),
o the tests based on moment estimators [FL94].

The first problem is that there exists no criterion to determine the optimal choice for
the number of components M. Indeed, the tests mentioned above can compare two
models in order to choose between 1 and 2 components. Besides, all the tests rely on
the hypothesis of homoscedasticity (the basis functions have equal variance) which is
not necessarily compatible with the the EM algorithm.

So far, the problem of an adequate choice of number of basis functions in its gener-
ality remains unsolved from a theoretical point of view. This is the reason why for this

study, the choice of the number of components in the basis is empirical (Section 3.5.1).

3.3 Training and validation procedure

This section explains the procedure for determining a probability density model which

describes the distribution of the HTS control values. Cross validation is used to avoid

the number of components of a model can be formulated in terms of

6 1ding
The problem of deciding H, for 2 different values (or number) of

likelihood maximisation: suppose we have an alternative Ho,
arameters. Hy is rejected if :
’ max £(8) < maxL(f).
GIHD elHl
The likelihood ratio test uses the statistic:

% maxg|Ho [,(9)

= —_—— AN

maxg| g, £(8)

which is the case only with serious restrictions on H;), critical

| istri i * is known
If the distribution of A* is kn ( < 1, can be tested versus H1.

values can be determined and the hypothese
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ver-fitting the ‘ VNSNS .
0 g the data. The criterion for selection among several models is discussed in

the second part.

3.3.1 Cross validation

The minimisation of the error (3.4) on a single set 7 does not ensure a good performance
of the model when presented new data. To find the model which has the best prediction
on new data the learning procedure for density inference we proceed by cross-validation.
The Gaussian mixture model is trained and validated on the sets whose construction
is detailed in Figure 3.1. As they constitute the reference regarding the distribution
of the controls, the data formed by the control values of the three first plates generate
both the training and the validation set. The set C' of 2-tuples, random permutation

of the control values, is split into two sets Cy and Ca:

o C, is used to generate the training set: a set of 4-tuples T is created randomly

from Cj;
e (5 is used to generate randomly 4-tuples’ for the validation set V.

This procedure is repeated ten times. A more complex cross validation procedure for
generating training and validation sets can be considered. One might choose to divide
C into ten subsets, using nine of them for training and evaluating the error on the last
one. Such a procedure can be repeated ten times by changing the validation set for one
of the nine training sets (see [Bis95] p374 for example). In practice, this alternative
gives similar results on the generalisatioﬁ error as the one previously mentioned. As a

result, we chose the simplest cross validation procedure.

i 1 1 . The 4-tuples refer

longing to a d-dimensional space (d cqmponents) r

: fnal HTS plates exposed in Section 1.2.2: (D2,D1,D8,DT7) =
6-tuples will be considered when the standard controls are

{ the form (minl,maxl,stdl,ming,mafcg, std2) (Sec-

TWe call ‘d-tuple’ a vector be
to the 2 Totals and 2 NSBs of the nor
(miny, mazy, mina, mazs). Similarly,
included to the procedure to create vectors O
tion 4.5).
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m: min controts

M: Max controls

T Truining sct

m| M mMlimiM

Sampling
72 co aluces N i -+
control values Generate 4-tuples

.
[4-4 control values
N

Validation sct

miMim(M

Generate 4-tuples

T2 control valu@s ———— = — - == == = - =& . e e mm e o mm e —— - - === === -—

Figure 3.1: Training and Validation set generation

3.3.2 Selection criterion

One of the ten models computed by the procedure indicated 1n Section 3.3.1 must be
chosen according to what is considered to be ‘a good model’. The best fit with respect
to the generalisation error Is kept: our choice will be the probability density which

provides the best description of the validation set distribution (the one which gives the

smallest error (3.4) on V).

A different criterion of choice among those ten models can be considered. One may

select the model inducing the smallest number of novel points in the validation set

(using as novelty boundary the smallest value of the density function on the training

set). These two strategies differ n principle. The first one prefers the best description

of the data. The second, focusing on novelty detection, implies that the training set

is ‘perfect’ so that the fewest elements should be abnormal.. Therefore a good model

would be the one that rejects few points. In practice, the two strategies give similar

results on detecting novelty on the screen test, HTS Screen Number 2.
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3.4 How is the novelty threshold defined?

The advantage of using a novelty threshold is that it ensures the detection to be car-
ried out systematically; regarding the second requirement exposed in Section L.3.1, it
constitutes an objective criterion for deciding whether a point is unusual. We choose
to cdefine the novelty threshold as the minimum value of the density function of the
validation set. It implies that the controls of the normal plates which have a smaller
probability than the smallest probability of the controls of the control plates are de-
clared novel.

Instead of using the training set to fix this novelty threshold, another possibility
would be to compute its value as a significance test. Using a set of points sampled from
the density function, a value for the threshold corresponding to, say, a 95% novelty
rate can be determined (i.e. to set the novelty threshold to the 95t percentile of
the density function). In this case, we would expect to find ten ‘abnormal’ plates on
a ‘normal’ screen (normal plates classified as abnormal by chance). This alternative
takes acdvantage of the probabilistic description of the data provided by the probability
density. This would have been impossible with the standard statistical technicques
described in Section 2.2. Finally, such a choice of threshold is intuitive and easily

interpreted. In this respect, it follows the third constraint of Section 1.3.1.

3.5 Model parameters selection

3.5.1 Choice of M: size of the basis
The difficulty concerning the number of basis functions mentioned in Section 3.2 re-

. ion © is the value of M7?”. This section
quires an empirical answer to the question “what 1s th

explains why the value of M is set to 2.

As described in Section 3.3.1, cross validation is used to find a model for each

: ol plates (288 wells) that is to say
complexity. The data set was made of three control p ( )
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3x48 = 144 minimum controls and 144 maximum controls (Screen 2, Appendix A.1.1).

First, a single Gaussian density is fitted to the data x — {x'}i=1 144, using the

estimators p = £[x] and ¥ = &[(x - 1)), For the complexity M = 2.... .6, the
parameters of the Gaussian Mixture Models are obtained by the EM algorithm using
the equations (3.6), (3.7) and (3.8) and the initialisation indicated in Section 3.1.2.
The first set is used to train the model using re-sampling. The generalisation error
of this model is found on the 144 points validation set. This procedure was used ten
times for each complexity. Figure 3.2 shows the negative log-likelihood error for the
different values of M.

The curve of the error on the validation set clearly shows the improvement between

the single Gaussian and the 2 mixture model but does not decrease significantly for

higher values. As a result, the model complexity M is set to 2.

3.5.2 Choice of 3: ¢%I vs. Diag(d?,...,07)

In order to choose the structure of the covariance matrix X and a possible data pre-

processing, three different procedures are tested:
1. Train the model on raw data with X = Diag(c?,...,05);
9 Train the model on raw data with 3 = ol

3 Train the model on centred data with ¥ = 2.

The generalisation error (negative log-likelihood on the validation set) is then com-

puted for the three cases. The mixture is composed of 2 Gaussians and trained using

the same procedure as in Section 3.5.1.

Ta‘ble 3.1 presents the average of the generalisation error for ten runs. The results

for the centred data includes the correction term induced by the normalisation (cf Ap-

pendix C).
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The full covariance matrix described in Section 3.1.1 1s not tested. As noted in

this section, this structure is computationally expensive because it leatures d(d + 1)/2
parameters instead of d for the diagonal case. In the case of the 96-well plate {(d = 4.5
or 6), it implies 10 parameters instead of 4. If the method is extended to the [Cso plates
exposed in Section 1.2.2 which features 2x 8 = 16 controls, it means 16(16+1)/2 = 136
instead of 16 parameters. In addition, the computation of the inverse of the covariance
matrix is very difficult in the general case of a full covariance matrix. As this inverse
should be computed once at each iteration of the algorithm, it makes the use of a
full covariance matrix all the more expensive. As a result, this matrix structure is
inappropriate from a practical point of view.

Another reason for using only diagonal matrices such as the three structures above
stated, will become clear when we shall use the conditional densities to spot the un-
usual wells (see Section 4.5). In the case of diagonal matrices (the marginal variables
are mutually independent regarding the model), the conditional densities of a multi-
dimensional Caussian are straightforward; even if they remain Gaussian, they would

require extra calculation if the correlation between the variables were taken into ac-

count.

Diag(o?,02) | oI | Centred data

Error 589.9229 734.7716 590.5702

Table 3.1: Generalisation error

As expected the model with 2 = o] performs poorly on the raw data because of

. _ 2
the different variances of the two controls. The performance of the model 3 = ¢*I on

centred data and the performance of the model Diag(c},03) on raw data are similar.

: ' ‘nine ti - ch other.
Their respective training times are close to ea

The model for novelty detection on HTS was trained on raw data with the matrix

' : 2 * majn reasons:
Diag(c?,... o};) for four main

o1
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['he small dimension of the problem (4 and 5/6 in the last stage of the project)

does not require pre-processing which can be necessary in high dimension prob-

lems;

The complexity of the model can be largely determined by the transformation
applied to the data and should be avoided if possible [NCCRT97]. The normali-

sation involves a loss of information in the data, which may alter the model;

In particular, the normalisation imposes an extra constraint on the ratio between
the two axis of the ellipsis of Figure 3.3 (given by %L, where the 7; are the standard

deviations used for normalisation);

Because of this small dimension, the use of Diag(c?,... ,o3) for X is not compu-
tationally expensive when compared to 3 = o?l: the gain of the latter in terms

of memory allocation and speed is not significant.



Chapter 4

Application

This Chapter presents the results obtained by the novelty detection techniques de-
scribed in Chapter 3 on HTS data.

In the second place, an alternative method is introduced: the ‘Adaptive Mixture
Model’, whereby the number of components of the mixture can be determined during
training. This method is tested on the same screen to compare it to the first approach.

Third, since we are not only interested in spotting rogue plates but also unusual
well values, we demonstrate how the conditional densities of the mixture model enable
to distinguish within the 4-tuple which component may be abnormal.

Finally, we include the last two controls, the standards, in the novelty detection

technique.

4.1 Novelty detection on Screen2

The novelty detection method has been applied on Screen 2 to detect novel plates (the

ICso plates were not used for the tests).

The novelty threshold is defined as the minimum of the likelihood function on the

validation set. The alternative proposed 11 Section 3.4 gives similar results for a 1%

rejection region.

Figure 4.1-4.4 show the results obtained for this screen. The normal plates are
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ordered from 1 to 206 (which correspond to the reference 6-211 in Appendix A.L.1).

The first and the second graphs from top represent respectively the values of the

maximum and the minimum wells in a similar way to that used in practice for assessing
a screen'. On these graphs, the stars "** denote the first maximum and minimum
controls (D1 and D2 in Figure 1.2) of the 96-well plate. The plus *+ denote the
maximum D7 and the minimum DS.

The third plot is the negative logarithm of the likelihood? of the corresponding
4-tuples and the dotted line represents the novelty threshold above which a point is
declared novel. This graph can be seen as a measure of the novelty of the plate: the

higher this value, the more the corresponding plate differs from those which have been

learnt from the control plates (the ‘more novel’ the plate is)®.

The novelty detection on the Screen Number 2 declared 73 plates as novel out of 206
plates. The results day by day are summarised in Table 4.1. To compare these results
to the manual HTS control, the rejection of a plate does not imply here that all four
controls D1, D2, D7 and D8 are ‘abnormal’ (and would be de-selected in the visual
inspection described in Section 1.1.2) but only that at least one component of this 4-
tuple is unusual or perhaps that no single value is strictly unusual, but the combination

of values is. The question of determining which control(s) is abnormal among the four

will be raised in Section 4.4.

IThe dotted lines of each graph represent Z, T+ 0, and T — o, used to guide the operator in a real

HTS analysis. BT ) :
2The v};lue p(z) taken by a density function p for a point z is generally called the ‘likelihood’ of this

point as mentioned in Chapter 3. Since it can be interpreted as an error (the smalle_r the likelihood,
the greater the error), it Is convenient to consider _log(p(z)) which has values in t.he interval {0, +€io)
he graph has been resized; the circles ‘o’ on the third graph (plate 71n

3 i f analysis, t : ]
For convemence of anay lues of the negative log-likelihood lying out of the boundaries

Figure 4.1 for example) correspond to va
and therefore denote ‘very novel’ plates
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Date Total number of plates | Number of rejected plates | Proportion
28/11/96 40 38 95%
06/11/96 40 4 10%
13/11/96 11 9 18%
07/11/96 40 6 15%
12/11/96 40 17 42%
13/11/96 35 6 17%

Table 4.1: Proportion of rejected plates per day (assay)

* Rejected control (D1 or D2)
+ Rejected control (D7 or D8)
X Accepted plates

~
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Figure 4.1: Novelty detection on HTS screen: plates 1 to 52.
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Figure 4.2: Novelty detection on HTS screen: plates 53 to 104.
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Figure 4.3: Novelty detection on HTS screen: plates 105 to 156.
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Figure 4.4: Novelty detection on HTS screen: plates 157 to 206.
4.2 Discussion

The first remark is that the number of plates declared novel is high (35%). Among
the first 41 plates (first assay), all but 2 are declared novel. Indeed, the values of the
maximum controls of Figure 4.1 are much greater for the plates 1-40 than those of
the other plates while the minimum controls have similar values. According to the

Appendix A.1.1, these plates belong to the same assay (were screened on the same
day). This variation is due to a systematic difference in the experimental procedure;

the period between dilution and screening was longer for this assay than for the others

jon i : ing to higher maximum
of the same screen so that the reaction 1s more advanced leading to hig a

control values for those plates. It explains the dissimilarities between the proportions

of rejected plates per assay shown in Table 4.1. If the first assay is omitted, the pro-

portion of rejected plates falls to 19%.
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In order to illustr R
lustrate the fact that a combination of values can be rejected whereas

the control values may be acceptable separately, we can compare the plate 91 with the

plates 89 and 85 of Figure 4.2. The maximum controls of the plate 91 are similar to

those of the plate 89 so are the minimum controls of the plate 91 to those of the plate

85; 1t 1s the combination of the four values of the plate 91 which is unusual.

It can be noticed that in Figure 4.1-4.4, some plates may have been rejected al-
though they seem to be similar to accepted ones. In Figure 4.3, for example, the plates
113 and 139 have comparable control values whereas the latter is accepted and the
former rejected. The third plot in Figure 4.3 explains this singularity. The two plates
have similar novelty values close to the threshold; the first one happens to be above
the threshold and the second below. The fact remains that in every method making
use of a threshold, such borderline cases occur systematically. Because the software 1s
intended to highlight the control values which are unusual in order to help the oper-

ator make a decision, these points around the threshold should not be considered as

problematic.

4.3 Adaptive Mixture Model for novelty detection

In view of the difficulty of determining the number of components of a mixture model,

an adaptive algorithm for Gaussian mixtures was tested. Detail can be found in [RT94].

The method is based on a stochastic estimation of the parameters of the Gaussian

together with a growth criterion for the number of components based on the minimum

Mahalanobis distance*. Once the training completed, the novelty detection is based

on the same criterion.

: : 1 matrix & considered in Section 3.1.1, the
"For the Gaussian den51;cy of meE.iH o arclldt}:m;gﬁ:lc:nobis distance from x to p.
quantity A% = (x — p)TE™ (x— p) is called the
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4.3.1 Training procedure

The algorithm uses “reinfor s
S = ntorcement lear 27 S N .
learning®” to maximise the log-likelihood S log ()

over all x; in the training set. The iterative procedure is defined as follows:

My T+ [ P(gx)x; — /'Lj_.t]
(1= cn) + e P(j1x:) ’ ey

Xt at{P(j\Xt)(Xt - I"‘j,t)(xt - I"‘j.t)T - %54
(1 — o) + a P (j]%:) ’

Hjita

Yt = P=1, . M, (42)

where x; is a vector randomly chosen in 7 and «; a learning coefficient. The proof
by a gradient descent that equations (4.1) and (4.2) converge to a minimum of the
error (3.4) can be found in [RT94]. Similarly to the EM algorithm, there is no real
restriction on the type of the covariance matrix . The method was implemented with
a full covariance matrix.

The main characteristic of the method relies on its using the same threshold noted
€mar Tor training and novelty detection, representing the maximum value of a training
growth threshold ¢;.

In Section 3.3, the number of components of the basis was fixed and determined
empirically by cross validation. The basis of the ‘Adaptive Mixture Model’ to the
contrary grows dynamically. At a given time t during the training, if the corresponding
X, is not properly represented by the model (i.¢. is ‘novel’ for the model) a new function
is added to the basis (Figure 4.5).

The test value for growth s Jefined as the greatest activation within the network:

/\(Xt) = ma,X{\Ij(Xt;[J/j’t+1,2j,t+l)a ] = 1" . 711/[} ) t Z 1 (43)

— T : - .
where U(x; t, $) = €xp [_ %(x DY Yx —p) } The I’l’ll:‘(tUle model grows by one

Caussian according to the criterion:

‘ ing wi itic’ '] learning
' ng 1 1 lled ‘learning with a critic.. It describes a g
5 Reinforcement learning is also sometimes ca 18 . e eat

rocedu ,f which gives a feedback from the environment saying whether .the re‘sult 1sf ughthm wlongt,

pTl is d %e iti wghich is the common acceptance of reinforcement learning, differs from t elpresgn

1 1 . o

USHS IC etlll11 . of the adaptive mixture model it is characterised according to [RT94] by the learning
e. In the case b

‘ foh ¢ ” thi onse.
parameter o in equations (4.1) and (4.2) which “cools” this resp
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<& — growth
Ax) (4.4)

> € — nogrowth .

The growth criterion (4.4) can be reformulated using (4.3) as the smallest Mahalanobis

distance between x and the elements of the basis:

min {(Xt — )7 (xe — ,uj)T, 7=1,... ,M} > Q. (4.3)

with Q¢ = 21n(1/¢;). In other words, the basis grows if the current vector x; is too far,
in the Mahalanobis distance sense, from the nearest centre.
The growth threshold 0 < & < €mas is initially set as ¢g = 0 and monotonically

increases with time® according to:
. t
€ = NN § €maz; Cmaz [ (46)
Te

where 7. is an integer to be chosen between 1 and the number of iterations of the
algorithm (in most cases we used 7. = N where N is the size of the sample). The

novelty criterion for a vector X of the test set becomes:

< €mazr — X 18 novel
M) (4.7)

> €nar  — X 18 nOL novel .

4.3.2 Network growth

If A(x;) < €, the new centre and covariance matrix are defined as:

e = Xt (4.8)

1
(21\/[+1)k1 = 5HETT[C]1 l,k‘f—l,...,d ) (49)

where C = (a1 — Nz)z—l(ﬂMﬂ — p,l)T and 8y =11k = ] and 0 otherwise. The
- M+

priors are all set to Pi(y) = Ml:;» g=1. M+ 1.

istency with the increase of ¢;. The condition (4.4) does

ons ]
grow at the first step of the algorithm.

6The initial value g is chosen only for ¢
ty, and must

not apply for ¢t = 0 where the basis 1s emp
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€ Ncw input vector

O Previous input vector

® Basis function centre

No growth

Growth

Figure 4.5: Network growth based on Mahalanobis distance for a 2-dimensional data
space :

It can be noticed that the priors P;(j) remain the same throughout the training.
In that respect, the learning procedure does not provide an ‘optimal’ choice for the
number of Gaussians for describing the probability density (we would expect to update
the P,(j) as well as p; and %;). However, the ‘right’ (possibly minimum) number of

Gaussians in the basis is not crucial for novelty detection.

4.3.3 Local cooling

The problem of the lack of adaptation for the recently added basis function can be dealt

with by allowing both the adaptation gain and the time to be vectors (o = [ev, . .. , am]T
and t = [ty,...,ty]7 ) and:
(670 .
= (1.10)

The parameter o which appears in equation (4.1) and (4.2) is analogous to a learning

rate. It governs the influence of the vector x; in the updating of g, 3. o/ T gives the
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Figure 4.6: Novelty detection on HTS screen: plates 1 to 52.

initial value of o (for the first updating after addition of a function to the basis). With
a M-dimensional time ¢, the parameter o is the same for the updating of two distinct
functions of the basis. Thus, the updating equations (4.1) and (4.2) are consistent

between the first and the last added basis function.

4.3.4 Application

The Adaptive Mixture Model algorithm 1s applied on Screen 2 for novelty detection

with the parameters: €mas = 1071° 7, = N (so that & reaches its maximum value
after one iteration through the training data), ap = 0.7 and 7, = 1. The results of the

detection are shown on Figure 4.6-4.9.

59 plates are declared novel. The training was performed in 4min 20s on a Sparc

(Sun4d) with the parameters and leads to a 9 function basis.
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Figure 4.7: Novelty detection on HTS screen: plates 53 to 104.
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Figure 4.8: Novelty detection on HTS screen: plates 105 to 156.
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control value
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Figure 4.9: Novelty detection on HTS screen: plates 157 to 206.
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Figure 4.10: Basis growth during the training
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4.3.5 Discussion

First of all, the tests show that the procedure tends to over-fit the data as under-
lined in Figure 4.6-4.9 (to be compared with the results of Figure 4.1-1.-4). The model
complexity determination in Section 3.5.1 showed that a 2 CGaussian mixture model
gives a good representation of the data whereas a more complex model does not pro-
vide significant improvement regarding the negative log-likelihood error. However, it
should be emphasised that the Adaptive Mixture Model do not aim strictly at a good
representation of the data in terms of probability but to the model which rejects the
smallest number of point in the training set.

The method is slow but some reservations have to be brought since the algorithm in
our case is implemented using full covariance matrices (in [RT94] the covariance matri-
ces are diagonal). In addition, the fixed value 1/M for the priors induces a rapid growth
of the basis and the evolution of the basis is highly dependent on the ordering of the
training points. As a result the calculation becomes computationally intensive’. The
cost of the training is certainly more due to the size of the basis rather than the actual
complexity of the algorithm: the evaluation of the likelihood of a point with respect

to a mixture model is more expensive for a 50 function basis than for a 2 function basis.

Secondly, one may argue that the stochastic approach may be justified in [RT94]
since the case study concerns sleep phases whereas so far as the HTS screen is con-
cerned the order of the plates is not important. It should be noticed that in the case
study of [RT94] the learning procedure of the adaptive mixture is applied 44 times

on the training data; even though the phenomenon is ‘naturally’ time-dependent, the

learning procedure takes actually no account of this property. Moreover, experiments

show that for the HTS data, the number of rejected points can vary significantly (they

A version of the adaptive algorithm where the priors are updated as in the EM algo?ith.m bv the
updating relation P(j)i+1 = P(j): +ay(P(jix:) —P(i)) (gee [RT94]) was also tested. This dumms.hes
significantly the growth (by a third in average); §9me priors may tgnd ’to 0 (and the correspondmg
Gaussians de facto useless in the model). A possibility to overcome this difficulty could bg to w1thdr§w
the corresponding Gaussians of the model according to a ﬁ:\'ed prior tl}reshold but require the choice
a such a value which is precisely what we wanted to avoid in this Section.
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can double) with the ordering of the training set.

Another drawback of fixed mixing coefficients P(j) is that such an algorithm does
not reach for a optimal value for the number of basis functions to properly describe
the distribution of the training set and as a consequence can not replace the methods
mentioned in Section 3.2. Though not a problem in principle so far as novelty detection
is concerned, the growing number of basis functions results in expensive and useless

calculations which should be avoided in practice.

Finally, the main drawback is precisely that the novelty threshold is used for train-
ing and test since it constitutes the growth criterion. In other words, if the novelty
threshold is changed during the test procedure, the detection is not consistent any
more (if the threshold is lowered in the test procedure, the novelty detection model is
more susceptible to novel points of the test set than to points in training set). In the
prospect of an automated scheme such a constraint is not acceptable. In the case of
the HTS data, the threshold €pqc must be very small to prevent the basis from an ex-
cessively rapid growth which would induce an intractable computation. Figure 4.10(a)
shows the network growth during the training . Figure 4.10(b) underlines the problem
of the choice of a suitable parameter for €maz. When set to the value chosen in [RT94],

the basis grows to 50 functions; the training part takes 13min 21s on the same machine.

With regard to the practical restrictions of Section 1.3.1 we should stress that the
choice of the parameter €mqaz a8 the threshold for growth may prove delicate for the
operator. One might find much easier indeed to set a threshold on a probability density
as in Section 3.4 than to choose a suitable value for a growth based on a Mahalanobis
distance. Besides, the selection of a threshold before the training is not necessarily an
asset in the context of a quality control (we ignore @ priori the ‘quality’ of a screen).

In view of the same restrictions, determining the threshold a posterior: according to
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the probability density leaves a certain control on the novelty detection procedure to

the operator and prevents the ‘black box trauma’ mentioned in the introduction.

4.4 From plates to wells

The material covered in the first part of this chapter has concentrated on the four
control wells to determine the unusual plates. The joint distribution and a suitable
novelty threshold provide an effective means to determine the novel plates in a HTS
screen. In practice the operator concentrates on well values rather than plates to spot
abnormal control values. The main focus in the next part of this text is on locating
these unusual control wells using conditional densities. The technique is applied on

Screen 2.

4.4.1 Conditional densities

The problem can be described more generally. Suppose two continuous random vari-
ables by X,Y drawn from two distinct distributions px, py- How can values taken by
X and Y be compared in terms of probability? As far as HTS is concerned in particu-
lar, it is important to determine which component(s) of the vector (z1,...,xq4) is the

most unlikely (i.e. which wells of the controls is the most ‘abnormal’).

In this case, we choose the distribution function to order the components of the
d-tuples regarding their ‘novelty’. To compare these components we need the distri-
bution of each component X; conditioned on the other d — 1 components p( X | X, ...
, Xiz1, Xit1, ... ,Xq). Since the model is a mixture of Gaussians of diagonal covari-

ance matrix (the X; are independent) these conditional distributions are the marginals

1

whose density is given by p(y) = WQXP{—

(y;;;')z} which is the projection of p(z)

on the axis 1.

The measure of the ‘contribution’ of the component ; to the rejection of the vector
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x = (T1,... T ... ,24) 15 given by:

Ax(@i) = min{ Fy (2;). 1 — Fx, ()} (+.11)

where:

Fy (@) = P(X; <) /w ./ / Py ya)dyy ... dyy

._/ px, (y)dy .. /_ Px,( dy/ px,(y)dy
:LJWM@- (4.12)

The closer to zero Ax(z;) is, the ‘more novel’ the 7;; well value.

This measure is justified empirically since we are interested in the extreme values
of the distribution function, close to 0 and 1. This would not provide a proper means
of comparison for values between the centres in the case of a distribution including two
distinct clusters for example.

The computation of the conditional densities of a d-dimensional joint density 1s
straightforward: the properties of multivariate normal distributions are easily extended
to Gaussian mixture models (the conditional probabilities remain Gaussian). This cal-

culation would not have been as simple with a full covariance matrix (cf Section 3.5.2).

4.4.2 Results

The measure (4.11) is applied for on Screen 2 with:

z; 1
%) = /—CO \/2na?

The results are shown in Table 4.2 (The first 40 plates are omitted).

2
— [ . .
exp{——-————(y 9;2 ) by, i=1...4

Table 4.3 summarises the results in terms of number of wells rejected per plate for

a 5% rejection region (the first 40 plates are omitted). The conditional densities are

shown in Figure 4.11.

The analysis of such a measure does not provide new information about the vari-

ation of the controls but similarly as the log—likelihood for the plates, such a measure
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41 || 2.56e+01
55 || 2.92e+01
66 |1 4.98e+01
83 || 2.76e+01
85 || 2.43e+01
91 || 2.73e+01
95 |1 3.51e+02
96 || 3.95e+01
107 || 2.63e+01
124 || 3.08e+01
133 || 4.07e+01
134 || 2.55e+01
136 || 4.86e+01
137 || 2.47e+01
142 || 2.44e+01
143 || 4.30e+01
144 || 4.29e+01
147 1] 7.25e+01
148 || 4.03e+01
149 |] 4.30e+01
1562 || 2.46e+01
163 || 3.80e+01
154 || 3.17e+01
166 |] 2.99e+01
157 || 2.44e+01
168 || 2.77e+01
159 || 2.62e+01
163 || 2.76e+01
166 || 2.69e+01
176 || 3.65e+01
186 || 2.67e+01
188 || 3.63e+01
193 || 2.60e+01
194 || 2.49e+01
202 || 3.59e+01
203 || 2.84e+01
204 || 2.97e+01
206 || 2.99e+01

.7e-03
.3e-06
.5e-04
.1e-06
.0e-04

|m+ min2 [M+ Max2 |
Im+ 6.5e-02 [M+ 3.5e-01 |
[m+ 2.2e-01 [M+ 8.1e-02 |
Im+ 6.5e-02 [M+ 3.1e-01 [
Nlm+ 2.2e-01  |M+ 3.5e-01 |
Im+ 4.7e~-01  |[M+ 9.6e-02 |
fm+ 2.2e-01  |M+ 8.1e-02 |
Nim+ 1.1e-13 N|M+ 8.6e-12 N/
Nlim+ 3.3e-01 IM+ 2.7e-05 N|
Im+ 4.9e-03 N|M+ 1.3e-01 |
Im+ 1.1e-02 N|M+ 1.9e-07 N|
Im+ 7.2e-07 NIM+ 9.0e-08 N|
Im+ 2.2e-01  [M+ 4.0e-07 N|
Nim+ 1.3e-01 [M+ 5.0e-11 NI
Im+ 5.9e-05 N|M+ 3.9e-01 l
Im+ 6.5e-04 NIM+ 1.1e-01 I
Im+ 6.5¢-04 N|M+ 1.5e-01 |
|m+ 3.5e-09 N|M+ 1.9e-07 N
Im+ 5.9e-05 NIM+ 2.8e-04 N|
fm+ 1.9e-03 NIM+ 4.1e-01 |
Im+ 1.4e-01 |M+ 1.3e-02 N|
|m+ 1.1e-02 N|M+ 1.6e-01 l
Im+ 2.1e-04 N|M+ 1.5e-01 |
Im+ 1.5e~05 N|M+ 4.6e-01 |
Jm+ 1.4e-01 |M+ 1.0e-01 |
|m+ 3.2e-05 N|M+ 1.6e-01 |
N|m+ 8.5e~02  |M+ 4.3e-01 I
Im+ 1.1e-02 N|M+ 2.3e-01 |
|m+ 1.3e-03 NIM+ 3.2e-01 |
|m+ 1.9e-03 N|M+ 4.6e-01 |
Im+ 6.5e~04 N|M+ 2.4e-02 N|
|m+ 4.7e-02 |M+ 4.9e-02 |
Im+ 3.4e-07 NIM+ 1.2e-01 [
|m+ 1.4e-01  [M+ 4.9e-02 |
Im+ 4.7e-02 |M+ 5.3e-02 |
Im+ 1.9e-03 NIM+ 2.9e-02 |
lm+ 1.4e-01 |M+ 8.4e-02 |
Im+ 4.7e-02  |[M+ 1.2e-01 |
|m+ 8.5e-02 |M+ 8.9e-02 |

Table 4.2: Results of contribution measure on Screen 2 (N denotes wells
of novelty given by the equation (4.11), is below 5%).
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Figure 4.11: Conditional distributions (the stars '* denote the centres of the basis

functions)
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number of wells | number of plates | proportion
1 13 17 %
2 53 68 %
3 11 4 %
¢4 L 1 %

Table 4.3: Repartition of rejected wells for 5 %

enables to quantify the novelty of a well. For instance, a visual inspection of the re-
jected plate 156 in Figure 4.3 would suggest an analysis such as “the min * (D2) is
suspicious whereas the others seem correct”; the conditional densities provide an ob-
jective measure with the corresponding controls m* flagged ‘N’. In a word, the measure
enables to order the wells of the rejected plates in terms of novelty.

If the method was used automatically to reject the unusual values for the standard

wells, 156 wells out of 824 would be rejected (18.9 %).

4.5 The standard controls

This section undertakes the final stage of this study: the inclusion of the standard
controls in the novelty detection.

As the HTS data come mainly from enzyme assays and research of potential in-
hibitors or activators, the first part of this section provides a brief summary of the
behaviour of such assays. The problems for the HTS controls that arise from this
behaviour are described and in particular those of the standard controls. We finally

discuss the possibilities to solve them and the results obtalned.

4.5.1 Variation of the controls

] 1 1 y / X1 ntl'OlS
:Il SeCtiOIl 4.7 W 1 e Cant dlffelence between the maximau (0]
J:..../, e mentloned th Slgn]ﬁ m ¢

of the first assay (first 40 plates) and the rest of Screen 2. This variation was attributed
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to biological variance; in other words, the experimental conditions of the two assavs

were different. For instance, the concentrations of substrate. the time of reaction or the

temperature may vary from one assay to the other which induce a svstematic difference

hetween assay measures.

The enzyme assays

An enzyme is a biological catalyst. It enhances the rate of a chemical reaction. The
activity of an enzyme can be measured by the rate of product formation during the re-
action. Figure 4.12 shows schematically a typical curve obtained when the time-course
of product formation (the result of the chemical reaction enhanced by the enzyme)
is determined. The rate of the reaction at a given time is given by the derivative of
this function. Initially, this rate is constant (the time-course is linear) but after a time
which depends on the reaction, the rate decreases. This decline may be due to vari-
ous reasons such as a fall of the substrate concentration, the approach of the reaction

equilibrium or more generally some changes in the assay conditions.

[Product]

(Substrate
utilisation)

Time

Figure 4.12: Progress curve of an enzyme-catalysed reaction

Since the HTS assay should not be run under these limiting conditions (the non-

linear part of the curve on Figure 4.12), the controls (the standards and the maximum

controls) which reveal such conditions should be flagged as novel.
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The case of the standards

(lontrary to the maximum controls the standard controls variation does not depend
only on the factors mentioned above. Ideally. the activation (4.13) should remain
the same throughout the assay, whatever the time, the temperature or the substrate
concentration. However, for some reactions, the incubation time may be too long for
the reaction to remain on the proportional area of the reaction curve on Figure 4.12 so
that the assertion of a constant activation is no longer true. This variation is clear on

the standard controls of Screen 2 (Figure 4.13(a)).

04
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(a) Standard controls (b) Activations

Figure 4.13: Standard controls and activations (Screen 2)

Five distinct regions emerge from this graph (1-40, 41-80, 81-91, 92-171, 172-206)
which correspond to different assays (see Appendix A.1.1) denoting an important vari-

ation in the experimental conditions.

How to deal with variation?

It has been suggested that the ‘non-stationarity’ of the standard controls can be re-

moved by differencing with the maximum controls (respectively the minimum controls)

because they share the same evolution during the linear part in Figure 4.12. Thus we

form the activation:
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o Std — my
Activation = —L—ml (£.13)
Maz — min o
Similarly, we define the inhibition of a standard control:
_ Max — S
Inhibition = Mar = 5td (4.14)
Maz — min ‘

Without day to day assay variation, this ratio should remain ‘constant’. Qtherwise
it denotes a difference in the experimental procedure and the corresponding plate should

be detected.

4.5.2 Applications

As previously emphasised, the difficulty in analysing the standard controls comes from
their high variability. This section presents three ways of learning the density function
of the standards: using directly the standards of the control plates, relying on the
normal pl.ates or transforming the data of the control plates for learning.

The strong points and drawbacks are described for these three approaches.

First possibility: standards, minima and maxima alike

The first possibility to take into account the standard controls for novelty detection of
HTS is similar to that exposed for the minimum and maximum controls. An additional
plate of standard controls can be used as reference to learn the distribution of the raw
data. The problem with such an approach 1s illustrated in Figure 4.14.

The modelled distribution can not be expected to be a good description of the con-
trol values because it does not take into consideration the variation of the controls for

the whole screen. Indeed, the distribution of the control values on the control plates is

significantly different from that of the normal plates as shown in the histograms.

The problem in using the same method is the following. Comparing minima from

the control plates to the corresponding controls of the normal plates makes sense: the
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Figure 4.14: Standard controls 1D distribution (Screen 2)

variation is mainly due to handling mistakes (empty wells, double substrate inserted...)
and measurement variation. If enough care is taken when screening the control plates,
they can provide a ‘description of normality’ to detect the outliers in the normal plates.
The problem with the standards comes partly from the fact that we artificially create
6-tuples from the control plates for the sake of the learning procedure. On the normal
plates, the standard and maximum controls are significantly correlated (Section 2.3).
As a consequence, if, a standard has an unusually high or low value depending on
the experimental conditions, one might suggest that this variation can be removed by
differencing with the maxima (inhibition) since maxima and standard controls are very
likely to vary in the same way (see Section 2.3). On the control plates though, the
maximum and the standard controls can not be expected to be correlated the way they
are in the normal plates so that this time variation should be removed by computing
the inhibition.

Furthermore, the variation which is due to different days of screening, thus differ-

ent experimental conditions, is very unlikely to appear on control plates screened on a

single day.

o . . 59 8 i SCT 2
If a method similar to the one indicated in Section 3.3 8 is applied on Screen 2,

lates’ (6-tuples) constitute the validation set, the training

80 At ; i ions; 144 ¢
Cross validation with 10 iterations; p £ 72 3-tuples (min, max, standards).

is generated by re-sampling 144 ‘plates’ from a basis o
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Figure 4.15: Transformed controls (Screen 2)

185 plates are declared novel (198 for the 95" percentile) because of this difference.
The computation of the activation or inhibition does not remove this variation as

can be noticed on Figures 4.15(a) and 4.15(b)°.

An alternative: learning the normal plates directly

The second possibility to deal with the standard controls is to model the distribution

of the standards (via inhibition) on the normal plates.

The main drawback is that potential outliers are present in the training set therefore

the model inference may be altered.

If the number of outliers on a given screen Is small, the novelty detection does

not suffer since their presence will not modify significantly the model. Therefore their

probability remains low and they can still be flagged as ‘abnormal’. Typically, handling

mistakes would be detected if they concerned only a few plates or a few wells. However,

if an unusual variation occurs on a larger scale, their probability according to the model

or the plate 128 is greater than 100% (resp. smaller

®The inhibition (res tivation) com uted f :
p. activation p e -
than 0%). For thii plate the standard control is higher than the maximum control (which most

certainly due to a handling mistake).
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is higher and this variation in the standard values can not be flagoed as abnormal. For
i (ol g n LI cl.

example, if a problem occurs with a ~ instr : '
ple, measurement instrument throughout an assay, it

would not be detected.

Finally, from a practical point of view, one of the weaknesses of this procedure is

that the quality control of the data cannot start before the whole screen is completed.

If the learning proceeds on the normal plates using two random selections of 103
plates to constitute the training and the validation set (and cross validation with ten
runs), 3 plates are declared novel (20 plates if the novelty threshold is set to the 95

percentile).

Where the standards can make the difference...

A third possibility to deal with the problem of the standards is the following: instead of
considering the two standard controls for a given plate, one may consider the absolute

value of their difference. This can be justified considering three remarks:

e for a given plate, two standard controls whose values remain on the linear part
of the curve in Figure 4.12 do not reveal an ‘abnormality’; we can model the
tolerated gap between those controls (the ‘degree of freedom’ on this line of

the standard value). This gap can be modelled regardless of the experimental

conditions using the control plates;

o the variance of the measures above is already taken into consideration by the

maximum and minimum controls therefore the information provided by the stan-

dards in this respect is redundant;
e sensible to consider an unsigned measure of this difference; if a

he control D3 and D9 (D3 = D9 + D),

e it seems mor
gap D is estimated as normal between t
it makes sense to accept the symmetric situation (D9 = D3 + D) as acceptable

as well.
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In terms of quality control and regarding the constraints settled in Section 1.3.1

our replacement of the two standards by their difference in the model is not a problem

since these wells are used only for the controls contrary to the maximum and minimum

controls for which it is important to keep the original values; it is one purpose of the
assessment to discard abnormal values of these controls for the activation boundary
computation (Section 1.1.2).

One may argue that if a significant variation occurs for the two controls, the dif-
ference of the two is not necessarily abnormal. In such a case, that difference would
10

appear on the other controls as well™, so that the corresponding plate would be flagged

as novel all the same. As a consequence, this transformation of the controls should
not be considered as a problem but rather as a means of extracting relevant and non
redundant information from them.

The results of the novelty detection after pre-processing are shown on Figure 4.16-
4.19 (the notations are the same as in Figure 4.1-4.4). The third graph represents the
value of the difference between D3 and D9.

62 plates out of 206 are declared novel.

The last column of Table 4.4 shows the contribution of the standards to the novelty
detection procedure. Indeed points declared normal by the detection using only four
controls (Section 4.1) can be rejected when the standards are taken into account (col-

umn ‘Diff’ in Table 4.4). In particular, the plates 128 and 198 seem to be acceptable

so far as the maximum and the minimum controls are concerned (both were accepted

in Section 4.1). Yet the examination of the difference between the two standard con-

trols reveals that there is clearly a significant difference between the observed and the

expected values which would require further examination of these plates.

The same procedure could have been applied on the maximum and the minimum

controls. Remember we want the plate variation due to systematic changes 1n the

YRemember the maximum and the standard controls are highly correlated (Section 2.3).
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ol log%i}fi_lljﬁ_ffl M Maxi I+ min2 M+ Max2 ID  Diff |
66 || 4.08e+01 ||m* 3 6e:08 NIM* 2.6e-01  |m+ 7.4e-02  |M+ 2.8e-01 | D 4.7e-01 |
95 || 1.94e+02 |Im* 3.6e-08 N[M* 2.8e-04 Nim+ 1.9e-12 N|M+ 3.56-09 ¥ D 2.2
96 || 3.51e+01 |[m* 1.8e-03 N|M* 8.8¢-04 N|m+ 4.1e-01 |[M+ 1'1e-04 N| D 1456“01 |
. .5e-01 |
124 || 3.15e+01 [lm* 4.8e-02  |M* 2.9e-01 |m+ 2.1e-02 N|M+ 2.8¢-06 N| D 4.0e-01 |
128 || 6.50e+01 ||m* 1.2e-01 IM* 3.6e~01  [m+ 3.3e-01 |M+ 3:6e—01 | D 1.32—02 NI
133 || 3.78e+01 |Imx 1.6e-01 |M* 1.4e-01 |n+ 1.7¢-05 N|M+ 1.6e-06 N| D 3‘38_01 |
134 |] 2.73e+01 |im*x 4.5e-01 M 4.3e-01 |m+ 2.9e-01 |M+ 4.7e-06 N| D 9:26_02 |
136 || 4.11e+01 |Im* 7.7e-02  |M* 2.5¢-04 N|m+ 1.3e-01 |M+ 8.5e-09 N| D 3.3¢-01 |
137 || 3.69e+01 [lm* 3.9e-02  [M* 1.4e-01 |m+ 4.7e-04 N|M+ 3.6e-01 | D 1.3e-02 N|
143 || 3.36e+01 |lm* 1.4e-06 N|M*x 2.1e~01 |m+ 2.9e~03 N|M+ 1.1e~01 | D 1.8e-01 |
144 || 4.04e+01 jlm* 2.4e-01  |M* 4.1e-01 |m+ 3.0e-07 N|M+ 2.8¢-06 N| D 3.3e-01 |
147 || 5.52e+01 ||m* 1.9e-13 N|M* 2.9e-01 Im+ 4.7e-04 N|M+ 6.6e-04 N| D 2.9e-01 |
148 || 3.29e+01 | Im¥ 3.8e-07 N|M* 3.6e-01 Im+ 6.6e-03 N|M+ 4.2e-01 | D 2.1e-01 |
149 || 3.51e+01 ||m* 1.0e~07 NIM* 1.2e~01 |m+ 2.0e-01 [M+ 1.6e-02 N| D 3.3e-01 |
163 || 3.23e+01 |lm* 1.5e-05 N|[M* 1.3e-01 Im+ 1.2e-03 N|M+ 1.4e-01 | D 4.6e-01 |
154 || 2.86e+01 |Im* 8.1e-03 N|M*x 7.2e¢-02 |m+ 1.7e-04 N[M+ 4.7e-01 | D 9.2e-02 |
156 || 2.81e+01 |Im* 1.5e-05 N|[M* 3.9e~01 [m+ 2.0e-01 |M+ 9.3e-02 | D 3.7e-01 |
158 || 2.63e+01 ||Im* 3.2e-04 N|M* 4.3e-02 |m+ 1.3e-01 [M+ 4.3¢-01 | D 1.5e-01 |
166 || 2.64e+01 |lm* 7.9e-04 N|M* 4.4e-01 |m+ 6.6e-03 N|M+ 4.7e-01 | D 7.1e-02 |
176 || 3.32e+01 ||m* 1.5e-05 N|M* 1.0e-01 |m+ 2.9e-03 N|M+ 2.6e-02 | D 4.8e-01 |
188 || 3.03e+01 ||m* 2.4e-01 [Mx 2.7e-02 |m+ 9.8e-06 N|M+ 8.2e-02 | D 8.3e-02 |
198 || 3.10e+01 ||m* 4.0e-01  |M* 3.1e-02 |m+ 3.3e-01 [M+ 8.8e-02 | D 1.3e-02 Ni
199 || 2.71e+01 |lm* 1.7e-01  [M* 1.9e-03 N|m+ 1.3e-01  [M+ 4.2e-02 | D 2.1e-02 NI
202 || 2.85e+01 ||m* 3.2e-04 N|Mx 3.9e-01 [m+ 6.6e-03 N|M+ 1.7e-02 N| D 1.8e-01 |

Table 4.4: Contribution measure for each of the 5-tuple

experimental conditions to be flagged. If the same method had been applied on the
other controls, we would have detected only an unusual variation between the controls
of a given plate. The transformation applied only on the standards achieves a bal-
ance between the ‘acceptable variation’ controlled by the minima and maxima and the

potential problems on a plate basis controlled by the difference of the standards.
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Figure 4.16: Novelty detection on HTS screen: plates 1 to 52.

-
number of wells | number of plates | proportion
1 T 11%
9 47 76%
3 T 11%
4 1 2%
__’/—L//——

Table 4.5: Repartition of rejected wells for 5 %: Totals, NSBs & Standards
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Figure 4.17: Novelty detection on HTS screen: plates 53 to 104.
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Figure 4.19: Novelty detection on HTS screen: plates 157 to 206.
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Chapter 5

Conclusion

This chapter presents the conclusion of this thesis. To start with, we sum up the results
of the preliminary study and emphasise the weak points of the traditional approach
of outlier detection in the context of an industrial control. The new method to tackle
the problem of novelty detection is also recalled. Its advantages are discussed together
with cases where it might give poorer results. The last section mentions related issues

which can be investigated on the same grounds.

5.1 Results of the preliminary study

In the first place, the correlation tests showed that the control variation due to experi-

mental conditions reflects properly the variation of the standard wells. In other words,

it validates the procedure based solely upon the controls for assessment of the data

quality.
Second, the severe limitations of the traditional approach of dealing with outliers

were put forward:

¢ Regarding the quality control of HTS data, the method whereby the outlier de-

tection is treated as a problem of hypothesis testing reveals a lack of robustness:

— The systematic use of various plots as a preliminary stage to testing outliers
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15 tedious and does not bring any improvement to the current control of
HTS data that is to say: it can be subjective and unreliable, in particular

when choosing the number of outliers to be tested;

— It does not provide any representation of the data in terms of probability
nor any measure of abnormality neither for the plates nov for the wells.
Therefore it can not be used for ordering the abnormal plates or controls

with respect to this novelty.

e It does not allow the possibility of automation, since the manual graph analysis

stage is highly recommended to set the number of points to be tested.

These limitations suggest that a method based on probability density inference
should be preferred because it would provide a description of the data which can be

used as an objective criterion for the determination of abnormal plates and wells.

5.2 New approach

This section describes the approach of the Quality control of High Throughput Screening
based on density inference. We summarise the method investigated and more particu-
larly what it implies from the user’s point of view. We then discuss strong points and

potential limitations of the method.

5.2.1 The method

An additional set of three plates called ‘control plates’ is added to the beginning of
the screen. These plates include the minimum, maximum and the standard controls.
The mixture contained by these controls are exactly the same as the mixture of the
corresponding controls of the ‘normal plates’. As a result, the measure of the activity

of the control plates can be used to assess the variability of the normal plate controls

through probability density inference.
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Using the principle of maximum likelihood. we have formulated the problem of
cdealing with abnormal values in terms of density estimation and novelty threshold. A
Gaussian mixture model framework was chosen to perform this estimation. It was pre-
ferred to other methods because of both practical constraints (computational efficiency,
EM algorithm) and theoretical assets (universal estimation property, straightforward
conditional densities). Cross validation was used to determine empirically the model

complexity and the structure of the the covariance matrix.

The novelty detection proceeds as follows: if the control values of a given plate
reveals a low probability, this plate is declared ‘novel’ or ‘abnormal’. This probability
constitutes a measure of the abnormality of the plate. In the second place, the condi-
tional densities of the control plates with respect to the model are computed in order to
highlight the value(s) which differ significantly from what is expected. The threshold

can be modified according to the degree of novelty required for the quality control.

5.2.2 Achievement

Section 4.1 showed satisfactory results in regard to detection based on minimum and
maximum controls. The number of rejected plates was higher than expected due to
a variation which has been discussed in great length in Section 4.5. The method was
improved by inclusion of the standards in the procedure as a fifth component taking
‘nto account their difference (Section 4.5.2). Some plates featuring suspicious standard
controls were detected although the corresponding plates were accepted by the first
scheme.

The negative log-likelihood together with the conditional densities provide a mea-
sure of the novelty'of the rejected plates or wells. Subsequently it constitutes a quanti-

tative criterion whereby a objective decision can be taken for the quality control of HTS.

The second part of the study was concerned with the choice of a proper threshold.
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Two possibilities have been suggested:
o the minimum of the likelihood function on the validation set:

e the critical value for the density probability corresponding to the level of novelty

desired.

The adequate choice should be determined by the user. The first possibility has the
obvious advantage of not requiring any intervention. It is also intuitive: the controls
of the control plates being considered as the reference of normality, all of them should
be accepted by the model they infer. On the other hand, the use of a critical value in

similar way to a statistical test permits the user to tune the detection as desired.

The high number of rejected plates pointed out in Section 4.1 should not raise con-
cern. Iirst of all, they do reveal a significant difference between normal and control
plates so this difference should appear in the detection. Second, if the control is con-
ducted manually the novelty threshold can be adapted in order to fulfil the constraints
which may arise from experimental restrictions such as the price of the compounds or
the cost of a second run. The contribution of the method in such a case is that it

enables the user to validate the plates from the most to the least likely.

5.2.3 Limitations

The limitations of the method were emphasised in Section 4.5. These are mainly due
to the fact that the entire variation on the whole screen can not be captured by the two
control plates if the screening is conducted under unsteady experimental conditions.
The various days of screening involve significant differences between the distributions
of the data of each assay. The computation of inhibition (or activation) does not re-
move this variation (Section 4.5.1). The system will detect any variation between the

control and normal plates. It is up to the user to determine whether this inconsistency

1s acceptable.
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A potential problem is also the versatility of such a scheme if the screening of the
first three plates is not properly controlled. As the density inference proceeds on the
control plates, the ‘representation of normality’ can not be expected to be valid if the
screening of these plates is poorly controlled. The outlier detection can cope with rare
and significant mistakes on the control plates but if a serious difference occur between
control and normal plates, the detection would most certainly detect a great number

of novel plates since its reference is inaccurate.

Nonetheless, it can be noticed that if the HTS is eventually automated as it can
be Pfizer aim for the future, such a variation will be removed. Both of these problems

due to different days of screening would therefore disappear.

5.3 Further studies

This section reviews a few extensions of the argument above related to novelty detec-
tion. These concern on the one hand a more thorough study of the normal wells of the
normal plates and on the other hand different approaches of the quality control of the
HTS data. Since some of these options were investigated, we give a ‘flavour’ of what

can be expected of such studies.

5.3.1 Normal wells and plates

It would certainly prove useful to model the distribution of the normal well values.
Coodness-of-fit tests showed that the modelling of the the distribution by a normal
distribution gives mitigated results as can be noted in Table 5.1.

If the ‘normality’ of the distribution for the normal wells of an HTS screen could

be modelled such a work would have two advantages:

e a plate which would not have this distribution could be flagged as abnormal and

87



CHAPTER 5. CONCLUSION

Screen 5% L%

Screen 1 20.00 | 35.65

Screen 1b || 81.74 | 88.59

Screen 2 96.66 | 93.85

\icreen 9 70.81 | 80.86

Table 5.1: Kolmogorov-Smirnoff normality tests on normal wells

therefore could be examined more thoroughly to determine whether this is either
due to an unusual number of ‘hits’ for the plate or induced by a problem which

occurred during the screening.

e a probabilistic definition of a ‘hits’ could be designed such as a compound which

appear in the top n% of a screen.

Besides, it may be interesting to compare two plates from two different assays. This
would require only a ‘rescaling’ of the data which can be obtained by multiplying the

values of the wells of a given plate by the activation of this plate.

5.3.2 Novelty detection on the control plates

For the time being, a simple method was implemented to suppress outliers in the first
three plates: a point further than 2 standard deviations from the mean is removed
from the training set. The tests for outlier detection exposed in Section 2.2 could be
used on this purpose. As was emphasised, such tests should be carried out with great
care, in particular in an automated procedure. This was the reason why they were
not used for detection on the control plates. Nevertheless they might prove useful if
the quality control of HTS was intended to be done automatically: a visual inspection
of the control plates guided by the value of the statistical tests may help the operator

to remove those outliers. As a result, the operator would have to inspect three plates

instead of 206.
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5.3.3 The ICyys

The data for the ICso (Figure 1.5) did not allow to perform substantial experiments
to tests the method for this format properlv. The method used for the 96-well plate
can be easily extended to the ICsps; only the dimension of the data would differ. It
the screen is studied plate by plate, the 4/6 dimensional space of our stucdy would be
replaced by a 16-dimensional space. If experimental characteristics malke the study
on one single line of the ICs5o more sensible, then the network would be trained on a

2-dimensional space.

5.3.4 Detection on a day-to-day basis

As frequently indicated in the previous chapters the controls are subject to an impor-
tant variation from one day to another. To treat this problem, it is possible to train a
model for each assay (whose date that may appear in the header of the data file). The
results of a first attempt is shown in Table 5.2".

Nonetheless the problems of learning directly on the normal plates exposed in Sec-
tion 4.5.2 remain. In such an approach, if a substantial set of plates was abnormal 1t
would not be detected and would result in the detection of false hits. Furthermore, it
the control for those those plates happen to be correctly modelled by a single Gaussian,
such a procedure might result in over-fitting the data because of the small size of the
training set. Note that in results on Screen 2 in Table 5.2 the plate 95 which clearly
differs from the rest of the screen (which had the highest negative log-likelihood) is not
declared novel.

The preliminary studies and a prototype of the method presented in this thesis were
initially implemented Matlab. The code detecting novel plates and unusual well values

was re-written in C. The final software will be incorporated in the HTS procedure for

real-world tests.

1The learning procedure is the one used in Section 4.5. It proceeds by cross-validation and includes
minimum, maximum and standard controls.
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CONCLUSION

Dates 28/11/96 | 06/11/96 | 13/11/96 | 07/11/96 | 12/11/96 | 13/11/96
Plates 1-40 41-80 §1-91 92-131 132-171 172-206
Number of rejected plates 1 2 2 0 1 1
Plates rejected 37 51,76 88,89 _ 137 176

Table 5.2: Daily detection on Screen 2
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Screen references

A.1 Screen 2

A.1.1 HTA and Totals & INSBs plates

Screen Number 2

Number of plates 211

Counter used Anthos HTII

Control plate Totals & NSBs: 1-3
1C50: 4-5

Normal plate cHTA: 6-211

Date/s of Assay/s 1: 1-5 =19/11/96
9: 6-45 = 28/10/96
3: 46-85 = 06/11/96
4: 86-96 = 13/11/96
5. 97-136 = 07/11/96
6: 137-176 = 12/11/96
7. 177-211 = 13/11/96
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A.1.2 Standard control plates

Screen Number 2

Number of plates 3

Counter used Anthos HTII

Control plate Standards Only: 2+3
Max/Min/Standards: 1

Date/s of Assay/s 1: 1-3 = 14/05/97

A.2 Screen 1

A.2.1 HTA plates

Screen Number 1

Number of plates 115

Counter used Packard 9912V Microplate Topcount
Control plate HTA: 1-115
Invalid plates 35 & 57 : Double ligand

77 & 78 : No assay window
Date/s of Assay/s 1: 1-16 = 01/07/96

9: 17-46 = 10/07/96

3: 47-86 = 17/07/96

4: 87-106 = 18/07/96

5. 107-114 = 17/09/96

6: 115 = 03/10/96
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A.2.2 Totals & NSB plates
Screen Number 1
Number of plates 6

Counter used Packard 9912V Microplate Topcount
Control plate Totals & NSBs: 1-3
Date/s of Assay/s 1: 1-6 = 13/02/97

A.3 Screen 9

A.3.1 HTA plates

Screen Number 9

Number of plates 206

Counter used Wallac LKB 1205-001 Beta Plate LSC
Control plate HTA: 1-206
Invalid plates 173-299 : A6 ALL ACTIVE (not relevant)

Date/s of Assay/s 1: 9/1/97 = 1-20
2: 15/1/97 = 21-50
3. 16/1/97 = 51-74
4: 92/1/97 = 75-108
5: 23/1/97 = 109-134
6: 24/1/97 = 135-142
7: 05/2/97 = 143-172
$: 06/2/97 = 173-206
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A.3.2 Totals & NSB plates
Screen Number 9
Number of plates 3

Counter used Wallac LIXB 1205-001 Beta Plate LSC
Control plate Totals & NSBs: 3

Date/s of Assay/s 1: not provided = 1-3
A.4 Screen 1b (same controls as Screen 1)

A.4.1 HTA plates

Screen Number 10

Number of plates 231 ¢cHTA + 32 HTA

Counter used Packard 9912V Microplate Topcount
Date/s of Assay/s 1: 1-10 = 30/07/96

o

: 11-16 = 14/08/96

3: 17-26 = 15/08/96

4: 27-56 = 21/08/96

5: 57-93 = 28/08/96

6: 94-95 = 1/11/96

7: 96-155 = 5/11/96

8: 156-209 = 6/11/96
9: 210-224 = 11/11/96
10: 240-263 = 21/11/96
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Appendix B

Results

B.1

Screen 1

112 plates are declared novel out of 112.

448 wells out of 448.

number of wells | number of plates | proportion
1 0 0%
2 14 12%
3 15 13%
4 83 74%

B.2 Screen 1b

212 plates are declared novel out of 263. 663 wells out of 1052.

number of wells | number of plates | proportion
1 3 2%
2 45 21%
3 80 38%
4 32 39%
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B.3 Screen 9

150 plates are declared novel out of 206.

339 wells out of 824.

number of wells | number of piates proportion
1 238 18%
2 61 38%
3 43 27%
4 27 17%
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Appendix C

Computation of the error after

normalisation

The problem can be formulated as follows: Suppose we have a sample 7y = {z,})_ ;.

A mixture model M, is trained on this sample using the EM algorithm. In the second

X-—a
b

place, the linear transformation ¢ : X — is applied on 77 to find 7; and a model
M, is trained on 7;. How can we compare the two models in terms of performance?
The problem is schematically shown in Figure C.1. To simplify the notations, we con-

sider the case ol in one dimensional case.

This Section shows that if two models 77 and 73 are trained with such a procedure, a
linear term must be added to the error & to compare it to &;. To do so, we compute &
on My = {P(j),0,p5,7 = 1...d}, the mixture model computed by the EM algorithm

using the initialisation {P(5)(®, U](O), ,ug-o)} and & on M, the mixture model computed

L9 g
using the transformed initialisation {P(5)©), aj(»o)b_l, ifb——} to show that

& =&+ Nln(b) . (C.1)

First, we show by induction that the parameters of M, found by the EM algorithm
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Figure C.1: Normalisation and log-likelihood error on a 2 Gaussian Mixture Model

are given by {P(j),0;67", %=, 7 = 1...d}. In Section 3.1.2, we had:

EnPOid(len)l'n

T}ew — 1 -’)
Hj S, P (jlen) (C.2)
£, P la) e = 3|
new\2 __ n J v
(o7v)? = = PG ) : (C.3)
Y new 1 o] N n 1
PG = 2P0l (C.4)

Since the distribution of the data is unchanged by linear transformation the priors
(C.4) and the posterior probabilities P(j|z") remain the same from the raw data to
the normalised (P®(j|z™) = PO (j|y™),Va,y,1).

If the assertion is true until the old step, for the new step of the training of M, we

have:
mew Y
‘uj - EnPoid(j|yn) (05)
/ ZnPOId NP ) no__ new 2
(oo Uly™)ly™ — w3l (C.6)

SnPo(5]ym)

The equation (C.5) gives:
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new __ POii(jlz J —1)
J - V‘nlDold ]Il n)
b v = S”’Pom(jl;?");k” B
J - EnPOld(jl;l'n)
"new __ M?e‘lu — -
v b (C.7)
Similarly, from equation (C.6) we find:
|72 zt—a nretY —q 0
(O_/.new)Z — anold(JI(E )”T — __]Tb_”’)
J NI ,
(gnewys = ZeP Ul — el
which gives
o = o 3

The proof above is easily reproduced for the first step of the EM algorithm. So fi-

nally, the parameters of M, found by the EM algorithm are given by {P(j), o567 ", £,

j=1...d).

The second part proves the relation (C.1). The error for My is given by:

a:—m{ﬁmuﬁ

N M Zn — 1;)?
_—m{nﬂlgp me\p(—(—#—)} . (C.9)

Similarly, the error for M, is given by:

—1n{ ﬁ p(yn)}

—_1H{H§[:P 2exp('—%g—'i)} :

n=1j=1 210 i

(C.10)
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Substituting (C.7) and (C.8) in (C.10) we deduce

n
©
I
|
—_—
)
—
M=
hag
o]
-
—
o
A
=
PN
|
>‘ I.’
sl
e
\_.._\/_/

n=1 ;=1 \/277(Ujl)_l);

Yl ] (" = )
:—hl{Hb P(7) = exp(— 35— )}

n=1 j=1 2ro; =05

N M

1 L ‘

= —1n{ P(j) exp(— 12 : ff))} In(b"V) (C.11)

n=1j=1 2ro 207

and finally, from (C.9) we conclude

£ =& —Nl(h) 0O

The proof is easily extended to the case of the application ® : x — Bx + a where

x and a are d-dimensional vectors and B a d x d invertible matrix. In this case, we

find:
& =&+ N In(det(B)) .

To summarise, the method used in Section 3.5.2 to compute an error comparable
to the one computed on raw data in order to compare two mixture models proceeds as

follows:
1. the application X — %—Z‘: is used to centre the data;
2. a mixture model is trained on the centred data with ¥ = o /;
3. the negative log-likelihood error &; is computed on the centred model;
4. the error &, is computed with respect to:

d
51 = 52 + N lH(H 8,)
1=1

where N is the size of the sample.
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