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1 Introduction

Modem demand-led approaches to manufacturing, such as JIT (just-in-time) and lean manufacturing impose a
requirement on manufacturing systems to be flexible and able to respond rapidly to changes in demand for end
products. This presents a challenge for the designers of manufacturing systems, who are expected to be able to
respond rapidly to changes in requirements, and produce the optimum design for a manufacturing system in the
shortest possible time.

Systems designers use Discrete Event Simulation (DES) to respond to this challenge, designing and redesigning the
required systems through the use of computer models, which can be easily adapted and re-evaluated without the
need to invest time and effort in changing the physical systems (Chan 1995). However, the results predicted by DES
models have consistently been shown to be different from the results that occur in practice. Observation of the
results predicted by DES models of systems involving workers against wholly automated systems suggests that the
basis for this difference lies in the inability of DES to represent the performance of direct workers accurately.
Consequently, in order to improve the effectiveness of manufacturing systems, there is a need for the development
of techniques that can be used to extend the scope of DES by taking into account the performance of direct workers
(Baines and Kay 2002).

The work described in this paper is concerned with the development of tools and techniques for modeling the
performance of direct workers, known as Human Performance Modeling (HPM). In order to develop such tools, it is
fist necessary to demonstrate the existence of variability in worker performance, and define its magnitude, profile
and impact on the overall manufacturing system. To achieve this aim a three-month study was carried out to track
the performance of direct workers on an assembly line. Data were collected on the processing times taken by each
worker to complete a task. The study was based on two null hypotheses: that the times taken to complete a task by
different workers would he equivalent; and that the time taken to complete different tasks would be equivalent.
However, the data revealed that considerable variations exist both between workers and between tasks. The study
produced distributions of task completion times that vary both in the form of the distribution and the mean values
observed. These empirical distributions will be used in the development of a modeling tool to improve the accuracy
of DES.

The structure of the paper is as follows: a review of the background to the use of assembly lines in manufacturing,
and the assumptions of worker behaviour embodied by this; a discussion of the use of empirical data to improve DES
accuracy; a description of the design and execution of the empirical study; a summary of the main results from the
analysis of the empirical study; and a discussion of the implications for the development of HPM tools, and the
design of manufacturing systems in general.

2 Background

The origins of the modem assembly line lie in the development of the “Scientific Management” approach to
industrial production, originally designed by F. W. Taylor in the early 20th century, and put to practical application by
Henry Ford in his factory at Highland Park, Detroit, Michigan, constructed in 1913 (Womack, Jones and Roos 1990).
The basis of scientific management involved two aspects: the principle of interchangeability and the division of
labour (Askin and Standridge 1993).



The principle of interchangeability refers to the standardization of the individual components that make up a
finished product, such that components are interchangeable between product units. Division of labour refers to the
breaking down of a job into smaller component tasks and activities that can be easily learnt with a minimum of
training of the workers. In this way, workers, as well as parts, become interchangeable units, able to repeat the
actions required of them in a standardized controllable and highly predictable manner.

In order to coordinate the overall production process, the various tasks that are carried out sequentially must be
equivalent in the time taken to execute them. If this is not the case, bottlenecks and part shortages will occur as the
product unit moves down the line. The tasks are carefully designed, and predicted execution times (work standard
times) calculated based on observation (work study) of the times typically taken to carry out similar activities. In this
way, designers attempt to ensure that the line is ‘balanced’, i.e. that different tasks can be completed in equivalent
time, and that the line can therefore run smoothly.

The design of the assembly line thus implies two assumptions. Firstly, because of the way in which tasks are
designed to be as simple and standardized as possible, the performance of different individual workers should be
equivalent. Secondly, in order for the line to be balanced correctly, the time taken to perform different tasks must
also be equivalent. There should therefore be no scope for individual human variability, which in theory has been
designed out of the system.

Discrete Event Simulation models, which are designed to allow system designers to investigate and predict the
performance of manufacturing systems, have therefore to date treated direct workers as simple components, and
assumed no variation between them (Bemhardt and Schilling 1997). However, the predictions produced by DES
models of highly automated systems are notably more accurate than those involving direct workers (Bakes and Kay
2002). The existence of this ‘gap’ suggests that individual workers can in fact have an impact on overall system
performance. This gap between manufacturing system performance as predicted by DES models, and the outputs
that such systems generate in practice, creates problems for system designers. It would therefore be helpful for
system designers if the scope of DES could he extended by developing tools to simulate worker behaviour, allowing
informed design decisions that positively impact both the system and the workforce.

Ideally a HPM tool would predict the impact of those human behaviours and performance variations that
significantly affect system performance. In practice, social science has yet to address many of the issues of behaviour
at work, and much of the social science literature is not suitable for predicting human performance. However,
models and techniques are emerging within the social science domain (llgen and Hulin 2000), and the military arena
(Pew and Mavor 1998), that clearly indicate that some valid modeling of worker performance is possible. Outside of
the laboratory, in the specific context of manufacturing, the time and cost of developing theoretical models of
human performance of sufficient rigour to improve DES accuracy is prohibitive. An alternative approach is to use
empirical data to represent human performance variation, rather than attempting to predict from social science
theory.

3 Empirical data in simulation models

The use of empirical data to represent parameter variance is a well-established technique in DES. Machine
breakdowns, tool change intervals, and component inter-arrival times are all often modeled using probability
distributions, derived either from empirical data or mathematical distributions which have been shown to fit certain
parameters e.g. the Weibull distribution used to represent the time to failure of equipment (Law and Kelton 1991).
Simulation models employing such techniques are identified as stochastic, rather than deterministic, models. Many
simulation tools already have the capability to attach probability distributions to worker activity times, and thus
introduce human performance Variability with little programming or run-time overheads. The difficulty in applying
this approach successfully is knowing which distribution to apply, and what limits to set.

For any given task, there will be a minimum task time below which it is impossible to complete the task with an
appropriate level of quality or stamina. In theory there is no upper limit for a task, a worker can conceivably take as
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long as they like, in practice however the controls of the system, management and peer pressure ensure that the
task is completed in a reasonable time. Long task times may occur, but they will have a low probability of
occurrence. These upper and lower limits will change depending on which operator is conducting the task. At
present such limits may be set by company work-study conventions. In the host company studied during the
experimental work the limits expected were from 50% to 120% of the standard time for a task. If the profile of the
distribution is known, these limits could be used to approximate worker variability. However, this work shows that in
reality the limits lie far outside the work-study limits. The experimental results also provide accurate distribution
profiles for a variety of different tasks.

Several possible alternative approaches to integrating empirical data into DES exist. Trace driven models use time
series data streams of real parameters, collected in existing systems, to drive the simulation runs (Law and Kelton
1991). This technique has a number of limitations. Firstly, it is difficult and time consuming to gather sufficient data
for long simulation runs or to allow different data streams to be used in each experiment. Secondly, the data will be
a function of the system it is collected from, and may be completely inappropriate for the system being modelled.
Thirdly, trace driven models ignore the effect that the system has on the performance of the individual. The second
and thud limitations apply also to the use of distributions, and are therefore limitations of the current research
approach.

The limitations of data driven models can be overcome by incorporating more detailed empirical data concerning
not only performance variation, but also worker behaviour and the effect of the system. For example, it is known
that the state of the buffers surrounding a workstation may influence the performance of a worker. Such feedback
mechanisms are prevalent in the study of human behaviour. Mediating effects like these may be represented using
techniques such as micro modeling, where numerical models are used to relate input parameters such as
environmental conditions, system status, and organizational issues, to output parameters sncb as activity time and
error rate (Mason, Siebers and Baines, 2002). Although the use of such advanced techniques may improve the
accuracy of DES beyond the capabilities of probability distributions and time series data, a significant research effort
is required to develop and implement them.

4 Experiment design

The aim of the study was to investigate the magnitude and profile of worker activity time variation on a manual
assembly lie. Two objectives were therefore identified. The first was to define the true limits of human variability in
performance on an assembly line, as measured by activity time, the time taken to perform a manual task. The
second was to form probability distributions of worker activity times for application to DES, thus revealing the profile
of human variability in the experimental context of a flowline assembly system. In order to achieve these objectives,
some mechanism was required to allow the collection of information on worker performance. This section of the
paper describes the methodology adopted to gather the required data.

Design engineers assess the effectiveness of manufacturing systems on the basis of many Performance measures
generated by DES models. Typical measures include: output of the system (e.g. units per hour), lead-time and quality
(e.g. viable parts per million). Such measures provide an insight into the overall performance of a proposed system.
Micro measures can also be taken of individual machines, such as utilization etc. A number of performance variables
relating to the performance of individual workers were considered in the study:

e Work station activity time: The time taken to complete a single task.

e Error rate: An indication of how well an operator conducts a task. Errors are any deviation from product
specification, which may result in unserviceable product ("scrap") or product that requires additional
processing to become serviceable ("rework").

o Dependability: Given that all conditions for a task to commence are met, when does the operator start the
activity in response to a request?



This paper will concentrate on workstation activity rate. Various methods of measuring activity rate were
considered. Methods involving direct observation were discarded for two major reasons: firstly, because of
objections from the workers taking part in the study, and the concerns that direct observation would potentially
affect the performance which was being measured, as occurred in the classic Hawthome studies (Mayo, in Pugh
1997). Secondly, direct observation was infeasible because of the impracticality of observing workers for long
periods of time to gather sufficient data to form complete distributions.

The assembly lie used in the study is divided into ten main work zones, which were included in the study, with
additional testing and finishing zones, which were not included because the processes performed on them are
atypical. Product units travel along the line on platens, passing through all of the zones in turn. Each of the zones
included in the study contains a number of tasks, or operations, which are performed by a team of workers, varying
in size from 6 to 12 people. Each individual on the team works on all the operations in their zone, moving on to the
next operation on an hourly basis. The workers voiced concerns about the measuring and traceability of personal
performance, and it was therefore decided to monitor just one operation in each of the ten zones, the operations
chosen being those in each zone with the highest planned workstation activity time. This allowed the researchers to
monitor differences in activity time on different operations and for different teams of workers, but without being
able to relate specific performance back to identifiable individuals.

The manufacturing system under study assembles automotive engines, with the engines moving from one
workstation to another along powered and free roller track. The line consists of a mixture of manual and high
precision automatic machines which necessitates that the engines are mounted on metal platens (Figure 1), which
act not only as material handling pallets but also as work holders during the operations. The plant has an active
union representation, and hence no automatic monitoring of activity times is carried out on the line. A logging
system was therefore installed on the lie to monitor the selected operations.
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In order to monitor the activity time on each operation, switches were installed underneath the workstations to
record platen movements (Figure 1). The times measured were not exactly equal to the activity time, but were
actually the length of time each engine spent at the monitored stations. The sequence of events for each operation



on the line is as follows. The operator presses a foot switch to release the platen currently at their station, and move
the next platen to their workstation from the upstream buffer. The platen arrives at the workstation and comes to a
stop; the operator then performs the required activities, before starting the cycle again. Due to the configuration of
the logging equipment, the time measured was actually equivalent to the time taken for the platen to move half its
length and stop, the time the platen was stationary, and length out of the station. Figure 1 shows the four stages and
times involved in the time logging process.

The time recorded by the logger, t,, is given by ts - tg, while the true activity time, t,, is given by t, - t;. The error t, -
tat is a constant for all the operations measured, and based on measurements of the line speed, and ignoring
deceleration and acceleration effects the constant error is estimated as 2.5 seconds. However, since it is common
practice for the operator to begin work on the engine while it is still indexing in to the station, t, is regarded as
synonymous with t,s for the purposes of the work described in this paper.

Using this method, it was possible to monitor the work stations 24 hours a day, 5 days a week, over a 12 week
period, generating approximately 150,000 data points for each operation monitored. The plant operates a twenty
four hour, three times eight hours shift system, with three crews of workers. Of the three crews of workers working
on the line during the study period, two were directly comparable, but the third consisted of a smaller number of
workers per team, some of whom were required to perform more than one task. Although data were collected for
this crew (Crew B), they were not included in the analysis.

In addition to the workstation data, information was also collected about a number of contextual factors e.g.
breakdowns, part shortages, and quality problems. and a number of potential contributory factors, relating to the
individual attitudes of the workers, the physical environment and the organizational environment.

5 Data analysis
The data initially collected consisted of the time at which the switch on the underside of the platen was activated, b,
and the time at which the platen left the station, t3, as shown in figure 1. Hence, the activity time is given by

tae(n) = t3 (n) —to (n), (1)

where t,(n) is the activity time for platen n, t3(n) is the time at which platen n leaves the station and to (n) is the
time at which platen n arrives at the station.

In addition, it is possible to calculate the gap between consecutive platens;
‘gap (n) =ty (n +1) - t3(n), (2)

where tg,, (n) is the time between platen n leaving the station, and platen (n+1) arriving, to(n+1) is the time at which
platen (n+1) arrives at the station and t;(n) is the time at which platen n leaves the station.

The overall cycle time was calculated as the sum of work station activity time and the subsequent gap;
te(n) = ta(n) + tgap(n'l)/ (3)

where t,(n) is the cycle time for platen n, tg,p(n-1) is the time between platen (n-1) leaving the station, and platen n
arriving.

The data were examined to remove those data points which corresponded to a scheduled break, or the handover
time between two crews of workers at the end of a shift. The remaining data were plotted as frequency histograms
of activity times and cycle times for each of the 10 operations monitored.

The initial histograms showed extreme workstation times of several minutes in some cases, as well as extremely
short workstation times (less than 5 seconds). These short workstation times were clearly too short to possibly



reflect actual work taking place, and it is to be assumed that they reflect cases where the worker moves the platen
on without carrying out any work on the product unit, either because the product unit is faulty due to a problem
upstream, or because the worker has been "working ahead", i.e. working on the product unit before it arrives at the
station.

Various smoothing methods were med to remove these extreme workstation times, including discarding the top 5%
of workstation times for each hour (ninety-fifth percentile method) and discarding any jobs for which the overall
cycle time (workstation time + subsequent gap) exceeded 27 seconds (line speed plus 20%). These smoothing
methods removed the most extreme data points, but analysis showed that they did not significantly affect the
shapes of the resultant distributions.

6 Results

As described in Section 2, the principles on which assembly lines are based assume that assembly tasks are designed
to be as similar as possible in terms of the time required for their execution. Only if this is the case can the line be
balanced and hence run smoothly.

The most striking finding from the present study, however, was the marked differences in the distributions of activity
time generated by the different tasks. Figures 2 and 3 show comparative frequency distributions for two of the
operations monitored. Neither of the distributions has a statistically normal (bell-shaped) distribution. Figure 2
shows a bi-modal distribution, i.e. in addition to a large peak at an activity time of 8 seconds, there is also a smaller
peak at 14 seconds. This suggests that there exist at least two different ways of completing the task, although the
exact meaning of this cannot be interpreted from the numeric data alone, and direct observation is required to
investigate this further.
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Figure 3 shows an operation which has a single dominant peak at 19 seconds, but also a large number of extremely
short activity times of 5 seconds or less. It is postulated that this is caused by the operator working "up the line" on
product units which have yet to arrive at the station proper, and then pressing the button repeatedly to move the
completed units through to the next work station. However, as before, this behaviour can only be confirmed through

direct observation.

In addition to the assumption that all tasks are substantially equivalent in the time they take to complete, similarly it
is thought that different operators will take the same amount of time to complete a task. Time series analysis of the
data has shown that there may be significant differences in both the mean value and spread of activity time from
hour to hour, as individual workers in the team rotate around the tasks in their work zone. Figure 4 shows data taken
from a typical eight hour shift, where the differences from hour to hour can clearly be seen.
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Figure 4 Time Series Scatter Plot of Activity Time Variations over Shift Period

7 Conclusions and further work

The results of the study show that the performance of direct workers, as measured in terms of process times, varies
considerably. This implies that current methods of predicting system performance, which ignore the effect of worker
behaviour, are inadequate to explain system behaviour fully. Contrary to the hypothesis that the times taken to
process these operations would be consistent, the study demonstrated that process times vary widely. It would
seem, therefore, that the assumption that worker performance can be easily predicted is incorrect. This finding has
implications for the effectiveness of both DES and work study, and indicates the importance of the development of

Human Performance Modeling tools and methods.

A firt step in the exploitation of these findings to extend the scope of Discrete Event Simulation will make direct use
of the distributions of activity times. Work is currently underway on the development of a computer-modeling tool
which will allow the user to select from a number of distributions of activity times and incorporate these into models
of the assembly line. This offers a significant improvement on present methods, in which activity times are assumed
to be uniform, or randomly distributed.

A further development of the work concerns the additional data which has been collected with relation to
contextual factors, individual worker attitudes, environmental conditions and organizational factors. This
information will be used to investigate a theoretical framework of the factors that affect direct worker performance.
The identification of the most significant factors will permit the generation of numerical micro models of the
relationships between input factors and performance measures. These will be used in the development of more
sophisticated HPM tools, which will allow system designers to investigate the impact of varying the underlying causal
factors. It will also lead to a more robust understanding of the factors that affect the performance of direct workers.

Through improving designers' ability to predict the behaviour of direct workers, HPM offers the potential of
designing more accurate models, improving the flexibility and effectiveness of the resulting systems.
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