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Fast x-ray spectroscopy study of ethene on clean and SO 4
precovered Pt {111}
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The adsorption and decomposition of ethylene over @18} single crystal surface has been
investigated by fast x-ray spectroscopy. At 100 K ethene displays precursor-mediated adsorption
kinetics, adopting a single environment with a saturatighlCcoverage of 0.25 ML and binding
energy of 283.2 eV. Thermal decomposition proceeds above 240 K via dehydrogenation to
ethylidyne with an activation barrier of 573 kJmol'! and preexponential factow=1

X 101905 571 Site-blocking by preadsorbed $@educes the saturation ethene coverage but
induces a new, less reactivebonded ethene species centered around 283.9 eV, which in turn
decomposes to ethylidyne at 350 K. Z03 American Vacuum Society.

[DOI: 10.1116/1.1559923

I. INTRODUCTION based on structural and vibrational analyses show that in this
Improved mechanistic understanding of hydrocarbond"a adsorption geometry ethene is almssf® hybridized

chemistry over transition metal surfaces is central to the deWIth the C—C bond length increased from 1.34 to 1.49 A,

sign of new and more efficient heterogeneously catalyze&fcgm depsity fun.ctional thep (PFT) cglculaiif?ns suggest
organic transformations. Of particular interest is the interac:nIS tﬁ confflsten;[ W'tg ?/dsggrglﬁn a;[ra bti”dngef thi)or;jy\':ﬁrr:

tion of alkenes with poison or promoter species over meta! 9 b e:/uda}[ced 0 arbo ﬁ tod a d?c On ?ci N ft?] ? r?1 i
surfaces. Previous studies have addressed the interaction B¢ o to feso P odo de ydroge ? O?Of € rema
ethene with alkali metals or oxygén® Other important sur- Ingngii(l::rsetﬁ I(i)drmn:r?s Oercieerse L%v)e%\(/eerr aycaelegtr(?np;;rac
face modifiers are sulphoxy species prevalent in Pt dope,ﬁOn (LEED)-|\>/11 ymeas%reme.nts and Dgl’i%f calculations
S0,/Zr0,* catalysts for alkene isomerization and P4

automotive pollution control catalysts for alkene combustion.Indlcate that occupation of the ch hollow §|te favored.
Above 500 K further dehydrogenation of ethylidyne occurs

Here we report the application of fast x-ray photoelectron ST .
spectroscopyXPS) as anin situ chemically specific probe to result|.n_g in the formation of CH fragments and eventually
study the adsorption and reaction of ethene over clean and aphltlc c'arbon. o .
sulphated R11). This artlclle reports the .appllcatlon of fast XPS to studying
The interaction of ethene with L1} surfaces is fre- the adsorption and react|V|ty_of ethene over clv_aan and sul-
n%hated RtL11} surfaces. In a single experiment simultaneous

quently used as a model system to understand alke | time observation of both tace reactant and oroduct
hydrogenation/dehydrogenation processes in heterogeneoﬁsa ' servation suriace reactant and produ

catalysis, and as such has been the subject of many inves stributions is permitted directly from their G XP spectra.

gations. Bonding of ethene to metal surfaces largely occur addition . to  kinetic . parameters ~ for  the
via an electronic interaction between the metdband and ethylene—ethylidyne transformation, the threshold tempera-

the filled = or vacantm™ orbitals of the &=C bond. A range tu_re for thydrogenation _and sur_face coverages of inter.me—
of techniques including reflection absorption infraredd""‘tefS wil be_ reported.;zhg wo.rk |s.compl|mentary to earlier
spectroscopy, high-resolution electron energy-loss speétra, studies “ig”g LIT[.) 2 V|brat|9nal spectroscoﬁg%
near edge x-ray absorption fine structyNMEXAFS),® and T-NEXAFS,™ and static secondary ion mass specirostopy
temperature programmed desorptiGiPD)’ have béen ap- to follow the kinetics of ethene dehydrogenation over clean
plied to studying the adsorption geometry and decompositi0t11D t{gl]}.bE;ndencetlﬁ also prdeseq;:]e_dhf(;]r_ a ddlrect:';], m dutlrj]a:jmter-
pathways of ethene on{®11}, and it is generally agreed that ac 'O':. ew?r(]an ethene and S®@hich hinders the dehydro-
below 52 K ethene retains isp? character, adsorbing with genation pathway.

the C=C bond parallel to the surface through a weak

donor_ inter_actior?. Howeyer, for temperatures above 90_ K\l EXPERIMENT

chemisorption occurs with electron transfer from the Pt into )

the 7* orbital inducing significant rehybridization of the Measurements were carried out at the SuperESCA beam-

bond and the formation of a @i-bound species. Calculations line of the ELETTRA synchrotron radiation source using a
P{111 single-crystal sample prepared by standard proce-

S : —10
aAuthor to whom correspondence should be addressed: electronic maifiures and maintained under U|tr_ah|9h vacuumle< 10
a.f.lee@chem.hull.ac.uk Torr). Quoted exposures are given in langmufis L=1
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Fic. 1. C Isfast XP spectra during {1, adsorption on clean £t11} at 95
K. Inset shows fitted component intensities. Fic. 2. C Isfast XP temperature programmed reaction spectra from a satu-
ration GH, adlayer on clean P111}. Inset shows corresponding image plot.

%10 ® Torrs™1) and are uncorrected for ion-gauge sensitiv-

ity. The crystal was held at 90 K during dosing. Temperature, 50y to that observed in the gas phase and for adsorp-
programmgd reaction data w?{e acquired by application of flon on RH111,'® and contains a high binding energy shoul-
linear hea?“”g rqmp{~0.4 Ks™=) to the_ exposed_;ample. der centered-283.5 eV due to internal molecular vibrational
Ethene (Air |._IQUIde 99% was used W'thc_"%t purification. modes. There was no evidence for population of the more
Sample dosing was performed by backfilling the vacuumyeaiqy hounda-bonded state, which is stabilized at lower
chamber. temperaturés or high background ethylene pressut®s.
Carbon 5 and sulphur @ XP spectra, referenced to the | jioher exnosures resulted in the growth of a second state
Fermi level, were acquired at a photon energy of 398 eV andiih 4 similar line shape at284.5 eV which increased con-

energy resolution of~100 meV. Individual spectra were ac- tinuously indicative of the physisorbed multilayer.
quired approximately every 30 s during fast XP measure-

ments. The background-subtracted spectra were fitted using a
I_Domach—Sunch function convoluted with a Gaussflan. Flt—B_ Ethene decomposition over Pt {111}
ting parameters for molecular ethene were determined from
the 100 K clean surface uptake, while those for ethylidyne Figure 2 follows the subsequent thermal decomposition of
were derived from a 300 K saturation ethene exposure and saturation gH, adlayer on clean P11} during continuous
for carbon from a 900 K annealed surface. The same surfacdeating. Above 110 K the multilayer desorbed leaving only
were used to calculate the corresponding absorption crosgiemisorbed di bound ethene. The monolayer remained
sections based on their known surface coverages. Photoelegtable up to~240 K, above which the £, intensity de-
tron spectra were measured at normal emission, using a 96reased rapidly with the concomitant appearance of a new
channel double-pass hemispherical analyzer. Absolute cahigher binding energy feature at 284.1 eV. This new state
bon coverages were determined by calibration with CO. has a sharper linewidth than ethene and is stable up to
~400 K. At ~240 K it is known that most of the (i,
[Il. RESULTS AND DISCUSSION adlayer desorbs with the remainder dehydrogenating via
the loss of one hydrogen atom to form surface ethylidyne
(Pg=C-CH;).>*" It is thus reasonable to associate this
The low temperature adsorption of ethene over the cleapeak shift and narrowing with ethylidyne formatiche only
P{111} surface was followed by fast XPS at 95(Kig. 1). It ~ surface intermediate isolated to date in ethylene decomposi-
is widely accepted that under these conditiopslfmolecu-  tion over P{111}). In contrast to recent studies of ethylidyne
larly chemisorbs in an extensively rehybridizededgeom-  on RH111}'® the inequivalent carbons are not resolved, al-
etry and indeed at low coverages a single feélature was though the intensity of the outémethy) carbon is strongly
observed centered around 283.2 eV. This state grew lineariyfluenced by photoelectron diffraction effects. Higher tem-
with exposure up to 2.5 L(Fig. 1 inse} indicative of peratures result in loss of this ethylidyne state and a progres-
precursor-mediated adsorption of molecular ethene. Thsive shift in the peak maximum to lower binding energy with
saturation coveragé(C,H,)=0.25 ML in accord with pre- associated line broadening. These changes reflect further de-
vious LEED and TDS estimatéé.The ethene line shape is hydrogenation coupled with C—C cleavage and the formation

A. Ethene adsorption over Pt {111}
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Fic. 5. Arrhenius plots of ethylidyne formation from a saturation reacting
C,H, adlayer on Ril11}.
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Fic. 3. Deconvoluted C dcomponents from a saturation,d, adlayer on  €thene, however, these species are indistinguishable by our

clean P{111} annealed tda) 100 K, (b) 300 K, and(c) 680 K. high-resolution XPS suggesting a common adsorption
geometry/degree of hybridization. A leading-edge analysis of
the ethylidyne reaction profiléFig. 5 reveals first-order ki-

of CH, fragments and subsequent complete dehydrogenatiametics with an activation barrier of 573 kJ mol'* and pre-

to residual surface carbon species at 283.9 eV. exponential facton=1x10'%"%5 571 These values are in

The temperature programmed reaction spectra in Fig. good agreement with the Fourier transform infrared study of

were successfully fitted using components corresponding tdloshin et al** with AE,=59+4 kJmol'! and v=1

first layer and multilayer ethene, ethylidyne, and carbonx 10'°s %, and the Fourier transform infrared reflection ab-

shown in Fig. 3. Figure 4 shows the resultant fitted intensisorption study by Erleyt al*® which likewise found ethyli-

ties normalized to their corresponding absorption cross seayne formation was strictly first-order independent of ethene

tions and raises several points. First chemisorbed ethene beeverage withAE=67=2 kJmol ! and »=6x 1019033

gins desorbing at 230 K, just below the threshold reactiors . It is important to note these values are significantly

temperature for ethylidyne formation of 250 K. This is con-lower than those inferred from ethene decomposition by

sistent with the model that some ethene desorption is reSalmeron and Somorjaiand by Windhamet al*?° using

quired to liberate sufficient free sites for the initial dehydro-TDS, wherein H desorption was assumed reaction-rate lim-

genation step to ethylidyne via either a vinyl or ethylideneited.

intermediaté>**The maximum ethylidyne coverage of 0.11

ML equates to a yield of 45% in accord with TPD studies

which indicate~56% of ethene desorbs intact from{ 21}

in accord with the TPD studies of Windhagh al* Second it Ethene adsorption was also explored over sulphated

is important to note that only one chemically distinct form of P{111} to investigate the influence of coadsorbed sulphoxy

chemisorbed ethene is present on the surface at all tempergpecies which are commonly occurring poisons during hy-

tures. There is considerable speculation regarding the natuggocarbon combustion. A pure sulphate adlayer was prepared

of the reversibly and irreversibly boundreactivg by adsorbing 12 L of S@onto oxygen presaturated{P11}
at 100 K, and subsequently annealing to room temperature as

previously reported® The resulting SQ coverage was 0.25
ML. Figure 6 compares the Cslspectra followig a 2 L

C. Ethene adsorption over sulphated Pt {111}

CoHy
0.25 +— CHH:  Total C— C,H, exposurgbelow the multilayer thresholaat 95 K over
di-o C;H, . .

X the sulphated surface with that from the corresponding clean
= 0201 H H surface. On the sulphated surface a small shift in the peak
g 0.151 maximum to around 283.3 eV is apparent and the line shape
A cannot be reproduced using only acdethene state. A good
L 0.101 CoHy Carbon fit could be achieved, however, by including an additional

654 component with the same parameters as molecular ethene
’ but with a higher binding energy of 283.9 eV.

0 A clear candidate for a second such state ig-bound

100 200 300 400 500 600

species as has been reported ofi Pl at low temperatures
and high pressures. Suehbound ethene remains essentially

Fic. 4. Fitted C & intensities as a function of temperature for a saturation SP° hybridize.d and .adso'jbs reversibly Wit_h a-donor/
C,H, adlayer on Ril11}. The total integrated C signal is also shown. m* -acceptor interaction with the clean platinum surface.

Temperature / K
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Fic. 6. Comparison of deconvoluted G XP spectra of 2 L gH, on clean

and SQ-precovered R111). Fic. 7. S D fast XP spectra during 1, adsorption over sulphated{P11}

at 95 K. §(SQ,) =0.25 ML. Inset shows spectral deconvolution.

Electropositive/negative coadsorbates have been show to . . . o _
promote the formation ofr-bonded ethene over 211} via  formed (Fig. 8 and is not associated with either dlior
surface-mediated charge transfer. For example, K and c@ultilayer ethene. A similar SPpeak shift of 0.2 eV was
suppress the strong Pt—C covalent bonds normally formed b§PServed following propene coadsorption ovelL."" The

di-o ethene, while C and O enhaneedonation from the ©rigin of this shift is not certain but is consistent with a
C—C bond into Ptd orbitals but suppress back donation change in substrate-related charge-transfer into the sulphate

from the metal to ther* orbital. In all these cases-bonded o* and7* LUMOs. Recentab initio cluster calculations of
ethene remained weakly adsorbed, desorbing20 K sulphate adsorption on bare transition metals show the sul-

whereas sulphate, as we will show later, exerts a far greatéate HOMOs are delocalized through the oxygen atoms,
stabilizing influence. It is also important to note that the co-Which push charge into the surface. Conversely the sulphate

existence of distinct ethene adsorption states suggests surfdcdMOs are localized on the electron-deficient sulphur atom
sulphate exerts a localized not global influence ol 4. which accepts charge from the surfd€ehe magnitude of
The total saturation ethene coverage is reduced p§% this sulphur back bonding increases with the overall sulphate

over the sulphated surface in comparison with adsorptio@dsorption strength and thus coordination number. Mono-,
over bare RiL11} reflecting the loss of available metal sites. P~ @nd tridentate sulphate adsorption geometries are all pos-

Since the surface comprises a roughly equal mix of ethengiPle, however, cluster calculations suggest coordination via
and sulphate, yet only around one-third of ethene is pert'ré€ Oxygen atoms is strongly favored over{Afl and
turbed by proximity to sulphate groups, a likely scenario isAU{111} surfaces. In the present case surface crowding fol-
that the surface comprises mutually exclusive islands of eaclpWing ethene adsorption on{RL1 may force preadsorbed

coadsorbate and not a mixed adlayer. Sulphate-inducettPhate to switch from a sterically demanding polydentate
ethene perturbation would thus be confined to their contacte@€0Metry to a more weakly bound monodentate geometry.

perimeters, with islands possessing a high perimeter:area ra-
tio. The absence of ordered LEED structures is consistent

with formation of such small ethene islands across the 0.2 {[odio CiiL, 173.5
P{111 surface. o Multilayer g

Further evidence for an interaction between coadsorbed g 0.154|% Catle REE
sulphate and ethene is provided by the corresponding S 2 s S2pBE g-.
XP spectra recorded during low temperature ethene adsorp- & T173.1 0=
tion. Figure 7 shows a strong doublet at 167 @44 com- 5 . ?
ponenj, with a spin-orbit splitting of 1.15 eV, arising from 11729 5
SO, over clean RiL11}. A small fraction of unoxidized SO -
is also present at 166 eV but represeqts5% of the total L1727 &

sulphoxy species and plays a negligible role in the surface
chemistry. Subsequent ethene adsorption increases the SO
binding energies pY“O-?’ ev. ThIS shift occurs over precisely Fic. 8. Fitted C & intensities as a function of i, exposure over
the coverage regime in which the perturbed ethene state B0,-precovered R111}. The binding energy is shown for comparison.

Exposure / L
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Fic. 10. Fitted C % intensities as a function of temperature for a saturation
C,H, adlayer on S@precovered R111}. The total integrated C signal is
also shown.
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Binding Energy / eV hybridize the C—C bond with a corresponding increase in

24 o ;
Fic. 9. C Isfast XP temperature programmed reaction spectra from a satu—M C bond strengﬁ‘m and reactivity as for di- ethene. Sul

ration GH, adlayer on S@precovered R111). Inset shows corresponding Phate should act as a net electron déhtw a metal surface,
image plot. and thus suppress the corresponding etherigll11} donor
interaction, decreasing the extent of ethene rehybridization.
This in turn is expected to strengthen the C—H b@aahging
The corresponding reduction in Pt—S back bonding, prefrom 410 to 431 kJmol! for gas-phase ethane and ethene,
dicted to be around 0.05 eV, could account for the increaseﬁbspectivelﬁl‘;) and lower the corresponding reactivity over

S 2p binding energy. P{111}. This model is consistent with the higher threshold
reaction temperature observed for ethylidyne formation from
D. Ethene decomposition over sulphated Pt {111} our proposeds p?-like 7-C,H, species.

Temperature programmed reaction spectra acquired dur-
ing continuous heating of a saturategH; adlayer over sul- IV. CONCLUSIONS
phated RfL11} are shown in Fig. 9. The multilayer was fully (1) Ethene adopts a single adsorption environment over
desorbed above 110 K leaving the two chemisorbed ethengy111) at 100 K with a characteristic binding energy of
species responsible for a broad asymmetric peak from 282 1283.2 eV and a saturation coverage of 0.25 ML.
284 eV. As over clean PI11}, the dio ethene adlayer was  (2) Approximately 44% of a saturation ethene adlayer de-
stable up to~250 K. Further heating triggered rapid decay hydrogenates to form ethylidyne over cleafilR1}, proceed-
of this principal, unperturbed ethene component at 283 e\hg with an activation barrier of 573 kJmol * and pre-
and a concomitant appearance of a new state at 284.1 edkponential factow=1x 102551, Ethylidyne possesses
corresponding to ethylidyne formation. However, significanta narrow line shape centered around 284.1 eV.
intensity is retained~283.5 eV until temperatures in excess (3) Preadsorbed sulphate reduces the saturation coverage
of 350 K, at which point only ethylidyne is present. Higher of ethene over P111} and promotes the formation of a less
temperatures result in complete decomposition to carbon aghybridizedw-bound species shifted to higher binding en-
over the clean surface. ergy by 0.7 eV. Thisr-ethene state is populated near satura-

Figure 10 shows the result of deconvolution and peakion coverage and correlates with an increase in thg SO
fitting of the C I spectra. First it is important to note that the (S 2p) binding energy suggesting a localized interaction be-
onset temperature for desorption and subsequent dehydroggreen the coadsorbates.
nation of the die state characteristic of the clean surface is  (4) The decomposition of both di- and 7-bound ethene
unchanged. As over fitl1} the desorption 0of~50% of this  proceeds via an isolable ethylidyne intermediate, however,
di-o ethene frees up sufficient bare sites to trigger transforSQ, enhances the thermal stability of ethene ovéi Pt
mation of the remainder to ethylidyne. In contrast the sul-
phate perturbed species remains stable>850 K (with a
corresponding AE,.=100+5 kJmol'l); its subsequent ACKNOWLEDGMENTS
(complete reaction to ethylidyne confirms that, €haracter Financial support by the UK Engineering and Physical
was retained upon adsorption. The strength of alkene chemBciences Research Council under Grant No. GR/M20877
sorption and reactivity can be interpreted in terms of theand the European Union under Grant No. HPRI-CT-1999-
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