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Abstract

In this paper, we modify the Gaussian noise model (GN-model) to address the nonlinearity effects in few-mode fibers. Closed-form
expressions for the nonlinear interference power in birefringent few-mode fibers (FMFs) are derived and the effect of differential
mode group delay (DMGD) is investigated. Moreover, the nonlinearity accumulation through propagation in multiple-spans fiber
and the birefringence effect are considered. In addition, we discuss the effect of the DMGD on the fiber nonlinearity in systems
adopting mode-division multiplexing (MDM). The results show that the DMGD management degrades the system performance in
weak coupling regime because the nonlinear interference is enhanced. However, strong coupling-based transmission outperforms
weak coupling transmission regardless of the DMGD effect in the weak coupling regime. On the other hand, by taking the DMGD
effect into account, the system performance in weak coupling regime is better than that in strong coupling regime. Furthermore,
the impact of the nonlinearity on the maximum reach is discussed.

Keywords: Few-mode fibers (FMF), Gaussian noise model (GN-model), mode-division multiplexing (MDM), nonlinearity
modeling, space-division multiplexing (SDM).

1. Introduction

Optical transmission capacity is rapidly approaching its fun-
damental nonlinear limit in single mode fibers (SMFs) [1]. Op-
tical space-division multiplexing (SDM) is a promising degree
of freedom that increases the fiber transmission capacity. It sup-
ports multiple communication channels using modes in few-
mode fibers (FMFs) and/or cores in multi-core fibers (MCFs)
[2–4]. In recent years, several experimental efforts have been
done to demonstrate optical space-division multiplexing based
systems [5–7].

However, in long-haul transmission, the system performance
suffers from physical impairments due to attenuation, disper-
sion, and nonlinearity. The fiber nonlinearity is a major source
of capacity performance limitation [4, 8–11]. This nonlinear
limitation arises from the nonlinear interaction between dif-
ferent co-propagating optical fields due to Kerr-effects. These
Kerr-effects simply involve nonlinear changes in the refractive
index with increasing transmitted signal power, thus generating
self-phase modulation (SPM), cross-phase modulation (XPM),
or four wave mixing (FWM) [12–15]. Another linear interac-
tion in FMFs transmission arises from the coupling between
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various spatial copropagating fields that results in a periodic-
power transfer from an optical field to another copropagating
one [11, 16, 17]. This linear coupling can exist: between dual-
polarized fields on a specific mode (core), called linear polariza-
tion coupling, or (and) between different copropagating mode
(core) fields, called linear mode coupling [17]. When the linear
mode coupling level is comparable to that of polarization one,
two distinct coupling regimes occur, namely weak- and strong-
coupling regimes. In the weak coupling regime, the linear mode
coupling is insignificant and could be neglected compared to the
linear polarization coupling. On the other hand, in the strong
coupling regime, the linear mode coupling is significant com-
pared to the linear polarization coupling [16]. The randomly-
varying birefringence during fiber transmission results in a re-
duction of the nonlinear interaction due to the randomly-averaging
operation under the birefringence effect [16, 18, 19]. In the
strong coupling regime, this randomly-averaging is higher com-
pared to the weak coupling one, because of the large random-
fluctuation of the propagating power in strong coupling case.
Another linear propagation process in FMFs transmission is
the differential mode group delay (DMGD) between the co-
propagating modes [20, 21]. It is similar to the differential
group delay (DGD) between dual-polarized fields in SMFs trans-
mission [22]. DMGD is a design limitation of multiple-input-
multiple-output (MIMO) receivers in MDM based systems [21,
23]. Though the DMGD leads to an increase in the complex-
ity of MIMO-receivers, it reduces the impact of nonlinearity of
FMFs based transmission [24]. Further, a DMGD-management
may be performed by periodically interchanging FMFs with
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different DMGDs in order to reduce the complexity of MIMO
receivers [25].

Recently, the description of nonlinear propagation of dual-
polarized signal through nonlinear-dispersive multi-mode opti-
cal fibers is described by the coupled multi-mode generalized
nonlinear Schrödinger equation (MM-NLSE) and generalized
coupled multi-mode Manakov equations [9, 16, 18, 26, 27].
The generalized multi-mode coupled Manakov equations are
simpler than the MM-NLSE, but both have to be solved numer-
ically by the split-step-Fourier-method (SSFM) [11, 16]. Exten-
sive efforts have been made for analytical modeling of the non-
linear interaction in SMFs using perturbative approaches [14,
15, 28–38]. In [14, 15], an analytical model based on Volterra
series transfer function (VSTF) has been developed to address
the nonlinear impairments in long-haul transmission. One of
these approaches is the well-known Gaussian noise model (GN-
model), which is considered a reasonable-simple tool for ad-
dressing the nonlinearity [38]. The GN-model concept has been
proposed in [36]. Then, it has been validated over a wide range
of SMFs systems [37–41]. Recently, several extension efforts
have been done on the GN model to enhance its accuracy and
consider new features such as the impact of modulation for-
mats and stimulated Raman scattering on long-haul transmis-
sion performance [42–46]. In this work, we discuss the non-
linear Kerr-effects for transmission over FMFs. For simplicity,
we do not take into our consideration the impact of the mod-
ulation techniques and other nonlinear impairments. The GN-
model is extended for FMFs transmission, since the nonlinear
interference between two orthogonal-polarized fields is equiva-
lent to that between two co-propagating spatial modes [47]. In
recent years, some numerical and analytical efforts have been
developed for evaluating this nonlinear propagation in FMFs
[10, 16, 48–54]. In [50], an analytical analysis of the nonlinear
interference in a weak coupled two-mode MDM based system
has been introduced. In [4, 10, 51], the application of the GN-
model in multi-mode fibers (MMFs) based systems has been
validated. Furthermore, a generic expression for estimating the
nonlinear information spectral density of MMFs based system
has been proposed in [52]. In our previous work, we have just
presented simple closed-form expressions for the nonlinear in-
terference power for both weak- and strong coupling regimes
[53, 54].

The main contributions in this paper are summarized as fol-
lows.

• A complete mathematical analysis has been explored for
obtaining closed-form expressions of the nonlinear inter-
ference power for both weak- and strong coupling regimes
over FMFs based transmission systems.

• The effect of DMGD and its management in week cou-
pling transmission is discussed.

• Expressions for the nonlinearity accumulation through
multiple spans fiber propagation is presented.

• Analytical results illustrate the impact of nonlinearity on
the bit-error rate ( BER) performance under different sys-

tem parameters, where the effect of both intra- and inter-
modal nonlinearities are discussed.

• The impact of linear mode coupling is analytically ex-
plored.

• The impact of the nonlinearity on the maximum reach of
different optical fiber schemes is discussed.

The remaining of this paper is organized as follows. In
Section 2, we review the FWM in FMFs transmission and ex-
plore the derivation of simplified expressions for the phase-
matching condition of FWM process for both weak- and strong-
coupling regimes. The nonlinear propagation equations are also
reviewed and the performance parameters are presented in same
Section. In Section 3, a rigorous mathematical derivation for
the modified GN-model in FMFs is detailed in order to obtain
closed-form expressions for the nonlinear interference power in
both coupling regimes. In addition, a scenario for the nonlinear-
ity accumulation when propagating over multiple-spans fiber is
discussed. In Section 4, our results of the derived expressions
are discussed and compared to similar cases in literature. Fi-
nally, we give the conclusions in Section 5.

2. General Considerations

2.1. Four-Wave-Mixing in FMFs

The different nonlinear Kerr-effects that originate in FMFs
transmission are summarized in Fig. 1. Self-phase modulation
(SPM), cross-phase modulation (XPM), and four wave mixing
(FWM) are third-order parametric processes that modulate the
fiber refractive index [55, 56]. These nonlinear effects can be
classified into: (a) intra- and inter-channel nonlinearity based
on the frequency channel interactions and (b) intra- and inter-
modal nonlinearity based on space (mode) interactions [57, 58].
Both SPM and XPM processes can be treated as special types
of the FWM process [36]. For a FWM process in FMFs, the
nonlinear interaction process among spatial fields at frequen-
cies ( fr, fs, fk) results in an energy-transfer into an idler mode
with a frequency ( fi), where (i, s, r, k) are the frequencies in-
dices [59, 60]. This FWM nonlinear-interaction occurrence
among different spatial fields requires two conditions to be sat-
isfied [51, 55, 59, 60]: (1) a frequency (wavelength)/mode con-
servation condition [i f0]p = [r f0]m − [s f0]q + [k f0]l, and (2)
a phase-matching condition ∆βisrk

mqlp( f0) = βm(r f0) − βq(s f0) +

βl(k f0) − βp(i f0), where f0 is the frequency separation between
any two successive frequency-components and the subscripts
(m, q, l, p) are the spatial modes indices.

Phase-Matching Condition
Simplified expressions for the phase-matching condition in

FMFs can easily be formulated. For the weak coupling regime,
the dispersion term of the pth mode can be expanded using Tay-
lor’s series as: βp( f ) = β0p +2π fβ1p +2π2 f 2β2p +· · · , where β0p ,
β1p , and β2p are the propagation constant, the group delay (GD)
parameter, and the group velocity dispersion (GVD) parameter,
respectively. We focus our consideration to significant terms

2
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Figure 1: Different nonlinear Kerr-effects in FMFs based system; SM-SPM:
self-mode self-phase modulation, SM-XPM: self-mode cross-phase modula-
tion, SM-FWM: self-mode four wave mixing, XM-XPM: cross-mode cross-
phase modulation, XM-FWM: cross-mode four wave mixing. (r, s, k, i) and
(m, q, l, p) are the frequencies and spatial modes indices, respectively.

only (that is, up to the GVD term) [27, 61]. By substituting this
expansion in the phase-matching condition, we obtain

∆βisrk
mqlp( f0) =(β0m − β0q + β0l − β0p ) + 2π[r foβ1m − s f0β1q

+ k f0β1l − i f0β1p ] + 2π2
{
[r fo]2β2m − [s f0]2β2q

+ [k f0]2β2l − [i f0]2β2p

}
. (1)

In birefringent-fiber transmission, both SPM and XPM effects
are dominant compared to the FWM effect [16, 47], thus the
phase-matching conditions for both XPM and SPM (i.e., m = q,
and l = p) can be rewritten as:

∆βrski
ppqq( f0) =2π

[
(r − s)β1q − (i − k)β1p

]
fo + 2π2

{
[(r fo)2

− (s f0)2]β2q + [(i f0)2 − (k f0)2]β2p

}
. (2)

Then, by applying the frequency conservation condition, i.e.,
(r f0 − s f0 = i f0 − k f0) and setting a simplified notation for
∆βisrk

ppqq( f0) as ∆βpq( f0), we get:

∆βpq( f0) =2π
{
(i − k)[β1q − β1p ] fo

}
+ 2π2

{
[(r fo)2

− (s f0)2]β2q + [(i f0)2 − (k f0)2]β2p

}
. (3)

In order to obtain a continuous frequency-domain expression,
we substitute: i f0 → f , k f0 → f1, r f0 → f2, s f0 → f1 + f2− f .
This yields

∆βpq( f ) =2π( f1 − f )∆β1pq + 2π2( f1 − f )[( f1 − f + 2 f2)β2q

− ( f1 + f )β2p ], (4)

where ∆β1pq = β1q − β1p is the DMGD between spatial modes
with indices p and q. At the center channel (i.e., i = 0), the last
expression reduces to:

∆βpq ≈ 2π f1(∆β1pq + 2π f2β2q ). (5)

Moreover, for the intramodal case (i.e., q = p), the phase-
matching condition is further simplified to: ∆βpp ≈ 4π2 f1 f2β2p .
Whereas, for strong coupling regime, the phase-matching con-
dition is given by: ∆β ≈ 4π2 f1 f2β̂, where β̂ is the average GVD
parameter of the co-propagating spatial modes for the strong
coupling regime.

2.2. Signal Propagation in FMFs

The frequency-domain electric-field propagating in FMFs
can be expressed for the pth mode [16] as:

Ēp(x, y, z, f ) = Fp(x, y)Āp(z, f ), (6)

where Fp(x, y) is the spatial field distribution and Āp(z, f ) is
the slowly-varying field envelope vector for the pth mode as in
[27]. According to [16], the nonlinear propagation in nonlinear-
dispersive FMFs can be described by the generalized multi-
mode coupled Manakov equation for the pth mode as follows

∂Āp(z, f )
∂z

= L̄p( f )Āp(z, f ) + Ḡnlp (z, f ). (7)

The right-hand side of (7) is divided into two terms: the first one
is the linear part, where L̄p( f ) is a linear operator that includes
both attenuation and dispersion operators, and the second term
represents the source of nonlinear interference due to the Kerr-
effects. Both L̄p( f ) and Ḡnlp (z, f ) are expressed based on the
generalized multi-mode coupled Manakov equations for both
coupling regimes in the following subsections (2.2.1 and 2.2.2).
It is worth mentioning that there is another linear part due to the
linear coupling between the co-propagating fields. However,
the randomly-birefringence process averages out this linear part
[16, 19].

2.2.1. Weak Coupling Regime
In this regime, the linear operator is expressed as L̄p(z, f ) =

−ᾱααp − jβ̄ββp( f ), where ᾱααp and β̄ββp( f ) are the fiber attenuation and
dispersion operator for a dual-polarized field on the pth mode,
respectively. Furthermore, the nonlinear term Ḡnlp (z, f ) is ex-
pressed as [16]

Ḡnlp (z, f ) =

j
4
3
γ

M∑

q

fpq

(
2
3

)δpq

Āq(z, f )∗ [Ā?
q (z, f )

]T ∗Āp(z, f ). (8)

Here, γ = 2πn2/(λAeff) is the fiber nonlinearity coefficient (with
n2 being the nonlinear-index coefficient, λ the propagating wave-
length, and Aeff the core effective area of the fundamental mode),
M is the number of the co-propagating modes, and δpq is the
Kronecker delta function. The operator ∗ donates the convolu-
tion, and the superscripts T and ? donate for the transpose and
conjugation operators, respectively. The nonlinear interaction
tensor fpq = fppqq between spatial modes with indices p and q
is given by:

fppqq
def
= Aeff

∫∫
|Fp(x, y)|2|Fq(x, y)|2dxdy

∫∫
|Fp(x, y)|2dxdy ·

∫∫
|Fq(x, y)|2dxdy

. (9)

Note that the source of nonlinear interference part is classi-
fied into two distinct source-limited cases in FMFs; intramodal
(self-mode modulation, SMM) and intermodal (cross-mode mod-
ulation, XMM) nonlinearity.

3
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2.2.2. Strong Coupling Regime
In strong coupling regime, the linear operator is expressed

as Lp( f ) = −α̂ − jβ̂( f ), where α̂ and β̂ are the attenuation coef-
ficient and average GVD paramter of the co-propagating spatial
modes, respectively. The nonlinear term in (7) is expressed as
[8, 16]:

Ḡnlp (z, f ) = jγκ
M∑

q

Āq(z, f )∗ [Ā?
q (z, f )

]T ∗Āp(z, f ), (10)

where κ =
∑

p,q∈{1,2,...,M} :
q≤p

32
2δpq

fpq

6M(2M + 1)
. (11)

2.3. Performance Parameters
To assess the performance of optical communication sys-

tems, it is essential to evaluate the bit-error rate ( BER). It nor-
mally depends on the modulation format characteristics and
is obtained in terms of the signal-to-noise ratio ( SNR) based
on the modulation techniques and its constellation cardinality
[62–64]. Moreover, the SNR for the pth mode propagating in
multiple-spans of FMFs can be expressed as [36]:

SNRp =
Bn

Bch

Ptx

Pac
n + Pac

nlp

, (12)

where Bn is the noise bandwidth, Bch is the channel bandwidth,
Ptx is the average lunch power per mode, and Pac

nlp
is the accu-

mulated nonlinear interference power per mode, to be derived
in Section 3. Pac

n is the accumulated complex optical amplifier
noise variance. For erbium-doped fiber amplifiers (EDFAs), it
is simply the amplified-spontaneous-emission (ASE) noise per
lumped amplifier, and is expressed as: PASE ≈ (G − 1)FhνBn,
where G is the amplifier gain, F is the amplifier noise figure,
h is Plank’s constant, and ν is the center-channel frequency
[33, 38, 65].

3. Modified GN-Model for Mode-Division multiplexing Sys-
tems

In dual-polarized transmission over SMFs, the GN-model
treats the nonlinearity as an independent additive Gaussian noise
source, which is statistically independent from both the am-
plifier noise and the transmitted signal [38, 61]. This can be
applied to FMFs as the nonlinear interaction among the co-
propagating spatial (mode) fields is equivalent to that among the
orthogonal-polarized fields [47]. In the following subsections,
we explore the modeling assumptions of the propagating sig-
nal, followed by detailed derivations of expressions for the non-
linear interference powers in both strong- and weak-coupling
regimes.

3.1. Modeling Assumptions
In order to apply a perturbation analysis such as the GN-

model, some assumptions should be considered for the trans-
mitted signal [38, 51, 52]: (1) the signal Gaussianity, (2) the
statistical independence of the nonlinear interference from both

the ASE noise and the transmitted signal, (3) the mode depen-
dent loss is negligible, and (4) the relative low to moderate level
of nonlinearity. A complex periodic process, which is spectrally
shaped to satisfy the above assumptions, is used as a transmit-
ted field envelope process at the input of the optical fiber (z = 0)
using Karhunen-Loéve formula [62]:

Apx (0, f ) = Hpx ( f )
√

f0
∞∑

v=−∞
ϑv,px

δ( f − v f0), (13)

where Hpx ( f ) is the transmitting filter shape, and ϑv,px
is a ran-

dom variable of the pth mode on x-polarization at frequency
(v f0) having a zero mean E{ϑv,px

} = 0 and a unity variance
E{|ϑv,px

|2} = 1, such that E is the expectation operation.
We aim at obtaining an analytical model for the nonlinearity in
FMFs, thus we should obtain a closed-form solution of (7) as:

Āp(z, f ) = eL̄pzĀp(0, f ) + eL̄pz
∫ z

0
e−L̄pz′Ḡnl(z′, f )dz′, (14)

where Āp( f ) is the transmitted optical field envelope vector. A
straightforward linear solution, Alpx

(z, f ), of (7) can be obtained
by substituting (13) in the linear part of (14) as:

Alpx (z, f ) = Hpx ( f ) eLpx z
√

f0
∞∑

v=−∞
ϑv,pxδ( f − v f0). (15)

Obviously, obtaining the second part of the right hand side in
(14) represents a big dilemma, because the source of nonlinear
interference Ḡnl(z, f ) is a function of both the linear and nonlin-
ear solutions. Moreover, the nonlinear solution depends on the
source of the nonlinear interference. Fortunately, the linear so-
lution (15) can be used as a perturbative start for obtaining the
nonlinear-solution part in (14) through the GN-model scenario,
as will be shown in the following two subsections.

3.2. Nonlinear Interference in Weak Coupling Regime
In this subsection, we follow a similar procedure as in [33,

37, 51] to obtain an expression for the nonlinear interference
power, Pw.

nlp
, in the weak coupling regime. We substitute the

linear solution from (15) in the source of nonlinear interfer-
ence Ḡnl(z, f ) given by (8). We assume that all dual-polarized
transmitting filter shapes are identical, i.e., Hpx ( fv) = Hpy ( fv) =

Hqy ( fv) = Hqx ( fv) = H( fv). Then, we perform the triple convo-
lution operation and apply the frequency condition: (s f0− r f0 +

k f0 = i f0). The expression of Ḡnl(z, f ) for a particular mode at
a specific frequency on x-polarization is obtained as:

Gw.
nlpx

(z, f0) = j
4
3
γ f

3
2

0 e−3αz
M∑

q

fpq

(
2
3

)δpq ∞∑

i=−∞
δ( f − i f0)

×
∑

r,s,k

[
H(r f0)H?(s f0)H(k f0)

]
ϑk,px

(
ϑr,qxϑ

?
s,qx

+ ϑr,qyϑ
?
s,qy

)
e−j[βq(r f0)−βq(s f0)+βp(k f0)]z, (16)

where the superscript w. denotes the weak coupling regime. We
use (16) as a perturbative start to solve the dilemma of obtain-
ing the second term of (14). By recalling the linear operator ex-
pressionLp( f ) and substituting by [βq(r f0)−βq(s f0)+βp(k f0)−

4
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βp(i f0) = ∆βpq( f0)], we get the nonlinear optical field solution
as:

Aw.
nlpx

(z, f0) = j
4
3
γ f0

3
2 e−αz

M∑

q

fpq

(
2
3

)δpq ∞∑

i=−∞
e-jβp(i f0)δ( f − i f0)

×
∑

r,s,k

[
H(r f0)H?(s f0)H(k f0)

] (
ϑr,qxϑ

?
s,qx

+ ϑr,qyϑ
?
s,qy

)

× ϑk,px


1 − e−[2α−j∆βpq( f0)]z

2α − j∆βpq( f0)

 . (17)

The power spectral density, S w.
nlpx

(z, f0), of the nonlinear inter-
ference can be obtained by statistically averaging the square ab-
solute value of the nonlinear optical field E{Aw.

nlp
(z, f0)Aw.?

nlp
(z, f0)}

as:

S w.
nlpx

(z, f0) =
16
9
γ f02e−2αz

M∑

q

f 2
pq

(
4
9

)δpq ∞∑

i=−∞
δ( f − i f0)

×
∑

r,s,k

[
H(r f0)H?(s f0)H(k f0)

]2
Eϑϑ?η

r,s,k
FWM

( f0), (18)

where ηrsk
FWM

( f0) = |(1 − e−[2α−j∆βpq( f0)]Ls )/(2α − j∆βpq( f0)|2 is the
FWM efficiency [66], and Eϑϑ? is expressed as E

{(
ϑr,qxϑ

?
s,qx
ϑk,px +

ϑr,qyϑ
?
s,qy
ϑk,px

)(
ϑ?r′,q′xϑs′,q′xϑ

?
k′,p′x

+ ϑ?r′,q′yϑr′,q′yϑ
?
k′,p′x

)}
.

The value of this expectation is altered for different non-
linearity limits. For intermodal nonlinearity limit (XMM), by
recalling the random variable’s properties at the state: {(q′ =

q, p = p′) and (r = r′, s = s′, k = k′)}, the value of Eϑϑ? equals
“2”. For intramodal nonlinearity limit (SMM), the averaging
operation is performed at the aforementioned state in the in-
termodal limit besides an additional new state: {(p = p′) and
(s = k′, r = r′, k = s′)}. This new state produces an additional
“1” that makes the overall value of Eϑϑ? equals “3”. So, the
expression of the power spectral density (PSD) can be rewritten
as follows

S w.
nlpx

(z, f0) =
32
9
γ2 f 3

0 e−2αz
M∑

q

f 2
pq

(
2
3

)δpq ∞∑

i=−∞
δ( f − i f0)

×
∑

r,s,k

[
H(r f0)H?(s f0)H(k f0)

]2
ηr,s,k

FWM
( f0). (19)

The same expression for y-polarization effect is obtained by
performing similar analysis. The nonlinearity is evaluated at
the span end where the amplifier compensates for the span loss.
Thus, the overall PSD, i.e., S w.

nlp
( f0) = S w.

nlpx
( f0) + S w.

nlpy
( f0) can

be expressed by

S w.
nlp

( f0) =
64
9
γ2 f 3

0

∑

h

f 2
pq

(
2
3

)δpq ∞∑

i=−∞
δ( f − i f0)

×
∑

r,s,k

[
H(r f0)H?(s f0)H(k f0)

]2
ηr,s,k

FWM
( f0). (20)

The transmitting filter shape is assumed to be flat over the chan-
nel bandwidth, such that, Hp( fv) = (Ptx/2Bch)0.5 rect( fv) [61].
Furthermore, the discrete summation in (20) can be converted

into continuous integral by setting S w.
nlp

( f ) = lim
f0→0

S w.
nlp

( f0). Thus,

the PSD expression can be expressed as follows

S w.
nlp

( f ) =
8γ2

9
P3

tx

B3
ch

M∑

q

f 2
pq

(
2
3

)δpq ∫∫

D

ηFWM ( f1, f2)d f1d f2. (21)

Here D is the spectral integral area, shown as the dark-gray
area in Fig. 2a and ηFWM ( f1, f2) = lim

f0→0
ηr,s,k

FWM
( f0) is the FWM effi-

ciency. ηFWM ( f1, f2) can be expanded using the phase-matching
condition in (5) and under the condition, (∆βpq � 2α), at the
center channel as:

ηFWM ( f1, f2) ≈ L2
eff

1 + L2
eff,a

[
2π f1(∆β1pqδpq + 2π f2β2q)

]2 , (22)

where Leff = (1 − e−2αLs )/2α and Leff,a = 1/2α are the effective
and asymptotic-effective lengths of a fiber with a span length
Ls, respectively [38]. We use the approximation of the spectral
bands into a square integration area, shown as light-gray area
in Fig. 2a. This spectral approximation is verified to give a
closer result to the exact integral evaluation [67]. Furthermore,
this approximation reduces the over-estimation of the nonlinear
interference power in the GN-model. An analytical expression
of the PSD, S w.

nlp
, formulated by integrating the FWM efficiency

in (22) over the light-gray area in Fig. 2a using the integration
identities in [68]. Then, by integrating the obtained analytical
expression of the PSD over the noise bandwidth Bn, a closed-
form expression for the per-span nonlinear interference power,
Pw.

nlp
, can be obtained as:

Pw.
nlp
≈ 4

9π
γ2 L2

eff

Leff,a

Bn

B3
ch

P3
tx

×
M∑

q

f 2
pq

3δpq |β2q |
[
arcsinh(ψ+) + arcsinh(ψ−)

]
, (23)

where ψ± =
√

3
4 πLeff,aBω(

√
3

2 π
∣∣∣β2q

∣∣∣ Bω ± ∆β1pq ). Here Bω =

BchNch is the total WDM bandwidth, and Nch is the number
of the WDM channels.

3.3. Nonlinear Interference in Strong Coupling Regime

By starting from the MM-NLSE for strong coupling regime
(10) and the phase-matching condition, we apply the same pro-
cedure as has been explored above in Section 3.2. The esti-
mated value of Eϑϑ? equals “3”. A closed-form expression for
the per-span nonlinear interference power, Ps.

nlp
, is thus obtained

as:

Ps.
nlp
≈ 3M

8π
γ2κ2

|β̂2|
L2

eff

Leff,a

Bn

B3
ch

P3
txarcsinh

(
3
8
π2Leff,a|β̂2|B2

ω

)
, (24)

the superscript s. denotes the strong coupling regime.
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bandwidth, b) Spatial field distribution for the six LP spatial modes.

3.4. Accumulation of Nonlinear Interference over Multiple Spans
The accumulation scenarios of the nonlinear interference

power through propagating over multiple-spans fiber can be
viewed as either a) coherent approach (accumulating nonlinear
interference fields) [61], or b) non-coherent approach (accumu-
lating nonlinear interference powers). The second approach can
be modified from a pure-linear variation with the number of
spans Ns to a super-linear with an exponent (ε < 1), given by
[69]:

ε ≈



3
10 ln

(
1 + 12

Ls

Leff,a

arcsinh(ψ+)+arcsinh(ψ-)

)
; weak,

3
10 ln

(
1 + 6

Ls

Leff,a

arcsinh( 3
8 π|β̂|Leff,aB2

ω)

)
; strong.

(25)

Thus, the total accumulated nonlinear interference power and
total amplifier noise in (12) can be written as Pac

nlp
≈ N1+ε

s Pnlp

and Pac
n ≈ N1+ε

s PASE, respectively.

4. Results and Discussions

In this section, we apply the modified GN-model to a generic
long-haul hybrid wavelength-division multiplexing and mode-
division multiplexing (WDM-MDM) system with the param-
eters similar to those in [16]. A step-index few-mode fiber
(SI-FMF) is used as an optical channel for the weak coupling
regime. This SI-FMF has a numerical aperture of 0.2, a core
diameter of 12.5µm, and a normalized frequency of V ≈ 5 at a
wavelength of 1.55µm. It supports six linearly-polarized (LP)
spatial modes (LP01, LP11a, LP02, LP21a, LP11b, LP21b). The
spatial distributions of these LP modes are shown in Fig. 2b
and their dispersion coefficient and DMGD are given in Table 1
[16, 70]. The fiber attenuation coefficient α of 0.22 dB/km and
the nonlinear coefficient γ of 1.4 W−1km−1 are the same for all
co-propagating modes. The calculated values of the nonlin-
ear tensors ( fpq = fppqq) for the different LP modes are listed in
Table 2. In addition, we study a graded-index few-mode fiber
(GI-FMF) as the channel for the strong coupling regime. This
GI-FMF supports different Hermitian Gaussian (HG) modes
(HG00, HG01, HG02+HG20, HG11a, HG10, HG11b) correspond-
ing to the six LP modes of the SI-FMF [16]. The GI-FMF pa-
rameters are; fiber attenuation α, dispersion D, and nonlinear γ

Table 1: Dispersion coefficient; D [ps/km · nm], differential mode group de-
lay; DMGD [ns/km], and core effective areas Aeff [µm2] for the six LP spatial
modes.

LP01 LP11a LP02 LP21a LP11b LP21b

D 25 27.3 −2.3 20.8 27.3 20.8
DMGD 0 6.5 9.9 12 6.5 12

Aeff 80 76 83 86 76 86

Table 2: Calculated values of fppqq for the six LP spatial modes.

LP01 LP02 LP11a, LP11b LP21a, LP21b

LP10 1.000 0.734 0.661 0.455
LP02 0.731 0.964 0.369 0.335

LP11a, LP11b 0.660 0.369 1.053 0.608
LP21a, LP21b 0.455 0.335 0.608 0.930

coefficients of 0.22 dB/km, 21.5 ps/km · nm, and 1.4 W−1km−1,
respectively. We consider dual polarized-multiplexing quadra-
ture phase-shift keying modulation with Rs = 28.5 GBaud, that
equals to a net throughput of 25 GBaud and 14 % of forward
error correction (FEC) overhead. This corresponds to a WDM-
channel bandwidth at the Nyquist border. EDFAs have 6 dB
noise figure and a gain that compensates for the span loss, i.e.,
G = e2αLs . The total fiber length is 1000 km with a span length
of 100 km. These parameters are selected similar to those in
[16] in order to be able to compare their trends.

Figure 3 illustrates the effect of the different nonlinear penal-
ties on the performance of FMFs based systems. We opt the
standard single-mode fiber (SSMF) as a reference case study
with the parameters: α = 0.22 dB/km, D =16.7 ps/km · nm,
and γ = 1.3 W−1km−1 [61]. Here, we discuss two transmis-
sion cases for each coupling regime in FMFs. The first one is
called single-mode transmission (SMT) corresponding to turn-
ing on the fundamental mode (LP01) only. The second case is
called full-mode transmission (FMT) corresponding to turning
on all the six co-propagating modes. The bit-error rate ( BER)
averaged over all the turning-on modes is depicted as a func-
tion of the average lunch power per mode. In linear region,
increasing the average lunch power enhances the system perfor-
mance. However, after the average lunch power reaches a spe-
cific level (optimal average lunch power), the nonlinear inter-
ference power becomes significant compared to the noise power
level. Beyond this power, any increase in the lunch power leads
to a degradation of the system performance. This optimal av-
erage lunch power per mode, that achieves the minimum BER
(minimal points on curves) [71], can be formulated in weak
coupling regime as

Pw.
txopt

= 3

√√√√√√√ 9πLeff,aB3
ch(G − 1)Fhν

4γ2L2
eff

M∑
q

f 2
pq

3δpq |β2q |
[
arcsinh(ψ+) + arcsinh(ψ−)

] . (26)

It is proportional to the WDM-channel bandwidth and inversely
to both the nonlinear tensors values and the number of coprop-
agating modes M. Moreover, the existence of the DMGD in-
creases this optimal average lunch power value. It does not
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Figure 3: Average BER versus average lunch power per mode for different
transmission cases; B2B: back-to-back transmission (dashed-dotted), SSMF:
standered single mode fiber (circles), SI-FMF: step-index few-mode fiber
(squares), GI-FMF: graded-index few-mode fiber (diamonds), SMT: single-
mode transmission (solid), FMT: full-mode transmission (dashed). The PM-
QPSK/WDM-MDM system has Nch = 11.

depend on the overall link length but on the fiber span length.
Also, this power value is affected by the nonlinearity source-
limited cases (SMM and XMM). Furthermore, in the strong
coupling regime, the optimal average lunch power can be ob-
tained as:

Ps.
txopt

= 3

√√√
8π|β̂2|Leff,aB3

ch(G − 1)Fhν

3Mγ2κ2L2
eff arcsinh

(
3
8π

2Leff,a|β̂2|B2
ω

) . (27)

For SMT case, the nonlinear interference results from the
intramodal interaction. In GI-FMF based system (strong cou-
pling regime), the intramodal nonlinear interference is higher
than that in SSMF based system. Moreover, in SI-FMF based
system (weak coupling regime), this intramodal nonlinear in-
terference is lower than that for both GI-FMF and SSMF based
systems. This performance is due to different propagation prop-
erties, i.e., the dispersion coefficient of the fundamental mode
LP01 in SI-FMF based system is high compared to the other two
fiber schemes. This leads to reducing the impact of nonlinearity
in SI-FMF based system. In addition, the intramodal nonlinear
penalty is altered with different fiber effective areas for various
fiber schemes. On the other hand, for FMT case, the nonlinear
interference results from both intra- and inter-modal nonlinear
interactions. Thus, the difference in performance penalty be-
tween both FMT and SMT is due the intermodal nonlinear in-
terference. For FMT case, it is noticed that the GI-FMF based
system suffers more than the SI-FMF based system (taking the
DMGD effect into account). This result is due to the impact
of DMGD on the SI-FMF based system, which reduces the
effect of nonlinearity compared to that of GI-FMF based sys-
tem which is theoretically considered a fiber scheme with zero-
DMGD. Although, the randomly-averaging of the nonlinear in-
terference in the GI-FMF based system (strong coupling regime)
is greater than that in the SI-FMF based system (weak coupling
regime), the DMGD effect in SI-FMF based system is dominant
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Figure 4: Average BER versus average lunch power per mode in SI-FMF based
system (weak coupling regime), for different transmission cases; one [SMT]
(diamonds), two (squares), three (circles), and six [FMT] (trinagles) modes,
B2B: back-to-back transmission (dashed-dotted), for both unmangeded- (solid)
and mangeded-DMGD (dashed) SI-FMF based system. The PM-QPSK/WDM-
MDM system has Nch = 11.

over the effect of the randomly-averaging birefringence in the
GI-FMF based system.

Figure 4 depicts the impact of DMGD and its management
on the performance of SI-FMF based system. The average
BER is plotted versus the average lunch power per mode for
different number of co-propagating (turning-on) modes in SI-
FMF (weak coupling regime). Two propagation systems are
investigated: unmanaged-DMGD SI-FMF (with DMGD val-
ues as given in Table 1) and managed-DMGD SI-FMF based
systems. It is shown that, for SMT case, the performance of
both unmanaged- and managed-DMGD propagating systems
are identical. For three co-propagating modes (LP01, LP11a,
LP02) case, the optimal performance of unmanaged-DMGD sys-
tem is degraded by about “1” order of magnitude when com-
pared with the managed-DMGD one. This can be explained
as follows. In the managed-DMGD system, the effect of the
low dispersion coefficient of the third mode, LP02, leads to high
nonlinear interference. While, in the unmanaged-DMGD one,
the effect of DMGD of LP02 compensates the effect of its low
dispersion that reduces the overall nonlinear interference. For
FMT case, the performance of unmanaged-DMGD system is
better than that of three co-propagating modes. This perfor-
mance can be explained as follows. By turning on the third
mode (LP02), its low dispersion coefficient results in higher
nonlinear interference than that resulting form turning on one of
the modes (LP11b, LP21a, LP21b). Thus, the averaging over six
modes results in an averaged BER value lower than that when
turning on only three modes (LP01, LP11a, LP02). On the other
hand, the performance of managed-DMGD system is severely
degraded when more than two modes are co-propagating, i.e.,
M ∈ {3, 4, 5, 6}. In addition, the average BER performance is
approximately unchangeable. This performance is due to the
low dispersion-coefficient of the mode (LP02) when removing
the DMGD effect. Specifically, for FMT case, the optimal per-
formance of managed-DMGD system is degraded by about “1”
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Figure 5: BER versus OSNR for different LP modes in a SI-FMF based system,
including SMT: single-mode transmssion (dashed), FMT: full-mode transmis-
sion (solid), and B2B: back-to-back transmission (dashed-dotted). The PM-
QPSK/MDM system has Nch = 1 and Ptx = 4 dBm.

order of magnitude compared with the unmanaged-DMGD sys-
tem. In addition, the optimal power is reduced by about 1 dBm.
Thus, the DMGD-management increases the overall nonlinear-
ity effect compared to the DMGD-ummanged based system.
Fig. 4 shows a potential agreement with the conclusions in [24].
It is worth mentioning that DMGD-management is required to
reduce the receiver complexity to achieve more realistic MDM
receiver [24, 25].

Figure 5 illustrates the nonlinear penalty due to both intra-
and inter-modal nonlinear interactions on the BER performance
for various LP modes, in SI-FMF (weak coupling regime). The
BER is drawn versus the OSNR (optical signal-to-noise ratio
with respect to the ASE noise power with a reference noise
bandwidth of 12.48 GHz (0.1 nm) [16]). Here, the single-mode
transmission [SMT] is related to single transmission of any LP
mode in a SI-FMF. For SMT case, the propagating spatial field
suffers from only the intramodal nonlinearity. But, for FMT
case, it suffers from both the intra- and inter-modal nonlinear
interactions. Thus, the performance penalties between the two
transmission cases is related to the intermodal nonlinear in-
teraction. It is shown that all the modes (except LP02) have
almost the same intramodal nonlinearity penalty. The LP02
mode has a higher intramodal nonlinear interference because of
its low dispersion coefficient. Moreover, the non-degenerated
modes (LP01 and LP02) have lower intermodal nonlinear penal-
ties compared with the degenerated ones (LP11v and LP21v).
This is due to their degenerate nature that causes a high inter-
modal nonlinear penalty between LPvva and LPvvb modes. In
other words, these degenerated modes are affected by the same
propagation characteristics. Specifically, at the FEC-requirement
( BER = 10−3), the FMT case suffers from an OSNR penalty of
about 3 dB compared to the SMT case, for the LP11a (b) mode.
This OSNR penalty is almost zero for the LP01 and LP02 modes.

Figure 6 illustrates the impact of linear coupling on the sys-
tem performance between different number of co-propagating
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Figure 6: Average BER versus OSNR for different number of co-propgating
modes in GI-FMF, for weak- (solid), strong- (dashed) coupling regimes, and
B2B: back-to-back transmission (dashed-dotted). The PM-QPSK/MDM sys-
tem has Nch = 1 and Ptx = 4 dBm.

modes in both coupling regimes, regardless of the effect of
DMGD. The average BER is depicted versus OSNR for dif-
ferent number of co-propagating modes for both weak- and
strong coupling in GI-FMF based system. Here we eliminate
the DMGD effect in order to provide a fair comparison between
the two distinct coupling regimes. Clearly, the performance of
strong coupling regime is better than that of the weak coupling
one in GI-FMF based system. The stronger linear mode cou-
pling between the co-propagating modes, the higher variations
in the propagating optical signal through the GI-FMF. This can
be explained as follows. The nonlinear interference is reduced
in the strong coupling GI-FMF compared to that in the weak
coupling case. This nonlinearity reduction in the strong cou-
pling regime is due to the higher randomly-averaging birefrin-
gence operation compared to the weak coupling case that lacks
the high linear coupling effect. Furthermore, it is shown that
the more number of co-propagating modes, the higher degrada-
tion in performance of the weak coupling regime compared to
that of strong coupling one. Turning on more co-propagating
modes increases the total linear mode coupling on a specific
mode. This leads to an increase in the nonlinearity compensa-
tion because of the high randomly-averaging birefringence op-
eration of the nonlinear interference power in the strong cou-
pling regime compared to the weak coupling one. The analyt-
ical results of Figs. 5 and 6 follow same trends in [16]. Thus,
it gives a window of verification for the GN-model in MDM
based systems by comparing our results with those in [16].

Figure 7 shows the nonlinear penalty on the maximum dis-
tance that can be reached through various SI-FMF and GI-FMF
for different co-propagation systems (SMT and FMT) at a BER
of 10−3. It is found that increasing the optical lunched power
increases the achieved maximum reachable distance. But, after
reaching a specific power the nonlinear interactions among co-
propagating modes, this nonlinear interference power becomes
significant compared to the amplifier noise, and then an optimal
maximum reach is achieved. The aforementioned contributions
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Figure 7: Optical average lunch power versus fiber maximum reach for two
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fibers; unmangeded-DMGD in SI-FMF (circles), mangeded-DMGD in SI-FMF
(squares), and GI-FMF (diamonds). The PM-QPSK/WDM-MDM system has
Nch = 11.

of different fiber configurations are explored on the maximum
reach. Specifically, the optimal maximum reach that could be
achieved in the unmanaged-DMGD SI-FMF outreaches the GI-
FMF case by about 777 km and 1100 km for both SMT and
FMT, respectively. On the other hand, the managed-DMGD
SI-FMF case reduces the optimal maximum reach by about
1350 km and 240 km compared to what can be achieved by
the unmanaged-DMGD SI-FMF and GI-FMF systems, respec-
tively.

5. Conclusions

The nonlinear interference penalty in birefringent few-mode
fibers (FMFs) has been addressed by adapting the GN-model
for weak- and strong-coupling transmission through FMFs based
system. After a rigorous mathematical derivation, closed-form
expressions for the nonlinear interference power have been de-
rived. The nonlinearity accumulation and the DMGD effect
through multiple-spans FMFs have been considered. The re-
sults show that the nonlinear penalty becomes significant be-
yond an optimal average lunch power that is inversely propor-
tional to the number of co-propagating modes. The unmanaged-
DMGD weak coupling transmission outperforms the strong cou-
pling one due to the DMGD impact. On the other hand, regard-
less of the DMGD impact, the BER performance of strong cou-
pling transmission is better than that of the managed-DMGD
weak coupling one. DMGD management increases the non-
linear penalty level and hence the optimal power is reduced,
which results in a degradation of the corresponding optimal sys-
tem performance in DMGD managed based systems. Further-
more, the birefringence effect in weak coupling-based system
is lower than that in strong coupling based one. Thus, an in-
crease in the level of the linear mode coupling (i.e., turning-on
more modes) leads to a higher reduction in the nonlinearity of
the weak coupling-based system compared to the strong cou-

pling based one. The same effects of the nonlinearity on the
maximum reach are noticed.
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