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Nonlinear o model for disordered superconductors
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We suggest a variant of the nonlineamodel for the description of disordered superconductors. The main
distinction from existing models lies in the fact that the saddle point equation is solved nonperturbatively in the
superconducting pairing field. It allows one to use the model both in the vicinity of the metal-superconductor
transition and well below its critical temperature with full account for the self-consistency conditions. We show
that the model reproduces a set of known results in different limiting cases, and apply it for a self-consistent
description of the proximity effect at the superconductor-metal interface.
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I. INTRODUCTION attraction, and the order parameteiis treated as a dynami-
cal field, similar to the earlier developed microscopic
Since a seminal paper by Wegrles, field-theoretic ap- approact—* We are using the standard fermionic replica
proach to disordered systems based on the nonlmeaodel approachin temperature techniquéssor a long time, it was
(NLoM) became one of the most powerful tools in describ-widely believed that such an approach cannot be used for
ing localization effects and mesoscopic fluctuations. Thenonperturbative analysis. However, it was recently
main advantage of this approach lies in formulating theshowrt?*2 that this is not the case, since the well-known
theory in terms of low-lying excitation&diffusion modeg, exact nonperturbative result was reproduced from the fermi-
which greatly simplifies perturbative and renormalizationonic replica NloM, as well as more recentl{ with the
group calculations and, on the other hand, allows a nonpeiKeldysh technique.
turbative treatment. In the initial approachto interactions within the NizM,
Such an approach has been successfully extended to tlaesaddle-point approximation was identical to that of the
description of disordered superconductorslt was based noninteracting problem. This scheme was recently greatly
on the fermionic representatiorof Wegner's NloM ex-  improved® by choosing(within the Keldysh techniquethe
tended to include the electron-electron interacfiofhe  saddle point, taking account of the interaction which consid-
starting point in these works* was a microscopic model of erably simplified any further analysis. Such an analysis has
interacting electrons in a random potential. The effectivebeen directly extended to dirty superconductors in Ref. 16.
NLoM includes an extra bosonic field describing the superWe consider a model where, for simplicity, the Coulomb
conducting order parametdr. Then the lowest-order expan- repulsion is not included. A distinctive feature of our ap-
sion in A is used. This makes such an approach a googdroach is a change of the saddle pdiamd of a subsequent
working tool in the vicinity of the superconducting transition initial approximation in the presence of the superconducting
where all the interaction channels can be easily include@rder parameter. This is similar but not identical to the
which makes it very useful in describing different aspects ofchoice suggested in Ref. X%hen applied to the Coulomb
the metal-superconducting transitions. interaction, it would lead to a different variant of the
An alternative approach to the MM for dirty NLoM). The NLoM (Ref. 15 is optimized to maximally
superconductofs? starts from the Bogoliubov—de Gennes simplify the lowest perturbational order while by sacrificing
equationgor, equivalently, Gorkov's equationwithout im-  this we arrive at quite a general formulation of the model
posing a self-consistency condition on the superconductingith different specific approximations being made for differ-
order parameteA which is considered as given. Then the ent applications.
initial many-body problem turns into a single-particle one As usual, we restrict our consideration to the limit of dirty
which makes applicable powerful techniques based on theuperconductors whe<1/7,<eg (or, equivalentlyv g g
supersymmetric NeM.! Such a supersymmetric approach <é where 7 is the elastic mean free time, aridis the
has been recently developed in Ref. 10 and applied to theorrelation length is dirty superconductprafter describing
description of nonperturbative aspects of the proximity effecin detail an alternative saddle-point approximation, we show
in superconducting—normal-metal structures. In this aphow the model reproduces a set of known results in different
proachA was taken into account just by the boundary con-limiting cases, and apply it for a self-consistent description
ditions (Andreev reflectionfor the normal region. A natural of the proximity effect at the superconductor-metal interface.
disadvantage of thigand any supersymmetji@pproach is
that no inte_raction can pe inclgded beyonq the mean-field Il. BASIC MODEL
approximation; thus it is impossible to describe an effect on
the superconducting order parameter of disorder in the nor- We consider the standard BCS Hamiltonian in the pres-
mal metal(or even inside the superconducting region ence of a random potentialr). For completeness, we start
A NLoM developed in this paper starts from a micro- by outlining the standard proceddref a field-theoretic rep-
scopic model of electrons in a random potential with BCSresentation in the temperature technique for this Hamil-
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tonian. The corresponding action has the form and Tr in Eq.(3) refers to a summation over all the matrix
indices, an integration over and a double integration over
S=S+S, (18 (as is not diagonal inr).
The field A is an Hermitian and self-charge-conjugate

Pe(X), (1py ~ matrix field, which is diagonal in the replica indices and
coordinates and 7, and has the following structure in the
spin and time-reversal space:

S:AOJ Xmﬂ?(X)lJlj(X)lfll(X)dIT(X) (10) A__(A/ Tt A/r’q‘_g’)@;_gp’ (5)

+&+u(r)

— * 19
SO—J dx 3 (X) 77

Here y(x) is a Grassmannian fieltl® antiperiodic in imagi- whereA’ andA” are real and imaginary parts of thecalay
nary timer with period 1T, x=(r,7), s=(1,|) is the spin  pairing field A; 7' and 7P are Pauli matricesiE0,1,2,3
index, A is the BCS coupling constant, and from now on we i, 7 — 1) that span the time-reversal and spin sectors, re-

seth=1. _ _ _ spectively.
The random potentiali(r) is supposed to be Gaussian * The integral over electron degrees of freedom is per-

with zero mean and the standard pair correlator, formed in a usual way, so that one reduces the effective
action(in the Matsubara-frequency representatimnthe fol-

S(r—r"), ) lowing form:

|

(u(nu(r)=3

mV
with » being the density of states ang, the elastic mean S= QTF 02+— E f dr|A,(r)]?
free time. The operatcﬁf in Eq. (1b) is defined as ¢

1 A
—ETrIn — i(et+A)].

.1/ e \? (6)
g_ﬁ(_lv_EA> — M, A
Heree=diage,, while e,= m(2n+1)T is the fermionic fre-
whereA is a vector potential of an external magnetic field. quency andv=e— €’ is the bosonic one. Sinck is diago-
Averaging overu with the help of the standard replica nal in the imaginary timer, it is a matrix field in the Mat-
trick gives the quartic in/ term in the action. Using the subara frequencies.
Hubbard-Stratonovich transformation, one decouples both The action(6) is a standard starting point for a further
this term and the BCS term, E¢lLc), the former with the field-theoretic analysis. To construct a working model, one
help of a matrix field(}=fr(r;7-, 7') and the latter with the needs to expand in some way the Trin term in &j. Our
help of a pairing field = A(r; 7), which will eventually play goal here is to derive a field-theoretic model which is fully
the role of the order parameter. This results in the followingself-consistent in terms of the superconducting order param-
effective action: eterA and does not use a smallexpansion. We restrict our
considerations to the limit of dirty superconductors when

~, ) <1/7<eg . Otherwise, we do not impose any limitations on
SloA ‘I’]— + of d x|A(X)|*+ f d X W (x) A, and will derive the model applicable both in the vicinity
of the transition and deeply in the superconducting regime.
J “ o
ot
S E P Y00 & lll. SADDLE POINT
Here the replicated Grassmannian fields are Our starting point is to construct a saddle-poinE approxi-
mation to the actior(6) in the presence of the field. As
— 1 ;1 . usual, we vary the action with respect to the fieldvhich
v=(C¥) ZE(lﬁsia—lﬂsi), v Zﬁ(lﬂsi-lﬂsi)a gives
-1
wherei=1, ... N are the replica indicedN=0 in the final o(r)=< r>. )
result3. The standard doubling of these fieldg—£W) is

convenient to separate diffuson and Cooperon channels f(%:S 1/ is much greater than both temperatdreand the

electrons propagating in the random potentiak the charge d h et A pl h le of
conjugating matrix defined by the above equation. The ma?roer parameteA, the matrixe+A p ays the role of a sym-

ix fields o and A defined in th 4B metry breaking field. We look for a solution in a way similar
trix fields o and A are defined in the space spanned®y  , 1hat in the metallic phase where such a role is played by

®W which is convenient to think of as a direct product of the matrix e alone. In the metallic phase, the saddle-point

the NX N replica sector, X2 spin sector, and 22 “time-
equation withe# 0 has a unique solutioor= A, whereA is
reversal” sector. The field is defined by its symmetries, diagonal ine and unit in the replica and spin sectors:

o'=0, o=Co'Cc}, (4) A =diag{sgne}. €)

064522-2



NONLINEAR o MODEL FOR DISORDERED SUPERCONDUCTORS PHYSICAL REVIEW B 63 064522

For e=0 a degenerate solution to the saddle-point equation After substituting Eq.(12) into Eq. (6), one obtains the
is given by any matrixs of the symmetry(4) obeying the following representation for the Trin term:

condition o>=1. Such a matrix can be represented &as

__1 A-1 ViGN T
=UTAU, with U belonging to an appropriate symmetry 65=—3ZTrIn{Go "+ V[, Va] =i (UAUD)],

group:® o where
Similarly, a solution to Eq(7) in the presence of+ A is _ )
given by A [ 1 N
o (7]
sp.=V)AVy, 9)

The expansion to the lowest powers of gradients ang
whereV, is the matrix that simultaneously diagonalizes botheasily performed and results after some straightforward cal-

o and e+A. This means that it should be found togetherculations in the following action:
with the yet unknown eigenvalues=diag\ . from

1 TV D
_ 2 — 2_
S= I ; fdr|Aw| + > Tr[4(ﬁQ) )\Q},

(13
Naturally, one expect¥, to become a unit matrix above the ) o
superconducting transition temperatire. where Tr refers to a summation over all the matrix indices

Assuming that both field& (r) ande(r) are smooth func- and Matsubara frequencies, as well as to an integration over
tions of r and looking for a spatially independent solution to "~ The long derivative in Eq(13) is defined as
Eq. (7) (i.e., ignoring at this stage the fact thiaandV, do
not commut@ one substitutes expressio(® and (10) into dQ=VQ+
Eq. (7), thus reducing it to

o=

The scale of\ is defined bye~T and A which are both andd is the long derivativé14) in the absence of the pair-

<1/7 in a dirty superconductor. Thus it is easy to verify ing field A. BothV, and\ should be found from the diago-

that the saddle point is given by E®) with the eigenvalues nalization ofe+ A, Eq. (10). Although such a diagonaliza-

A, Eq. (8), being not affected by the presence of supercontion cannot be done in general, it will be straightforward in

ductivity. Let us stress that this saddle point is obtained by anany important limiting cases. Fdr=0, the fieldA, van-

nonperturbative in\ rotation(9) of the metallic saddle point ishes,d— dy and\— ¢, so that the functionall3) goes over

A. This should lead to an effective functional valid anywhereto that of the standard nonlinear model for noninteracting

in the superconducting phase rather than only in the vicinityelectrons.

of T.. The o model defined by Eqs(13)—(15) is fully self-
Such an effective functional which includes fluctuationsconsistent, and the value of the superconducting order pa-

around the saddle point is obtained in the standard way:ameter can be found from it for any temperature and geom-

First, one constructs a saddle-point manifold of matriees etry (i.e., with a proper account of the proximity effects,

obeying the saddle-point equation)at 0, and then one ex- Wwhere applicable The self-consistency condition would eas-

pands the Trin term in Eq6) in both the symmetry break- ily follow from variation of the action(13) with respect taA

ing term \ and gradients of the field¥. The saddle-point and finding the optimal configuration for the fields. How-

e+A=VI\V,. (10)

ie ~tr
AA_ ?A Ts,Q

=d0Q+[Ax,Q]. (14

i 4 where the matriXA, is given by
—&+ EA +1N

r> | ) As=VyaoVh, (15

manifold is convenient to represent as follows: ever, it is convenient to impose the self-consistency require-
ment only at the very end of the calculations. Any physical
U:VRQVA, Q=UTAU, (12 observable is then to be found by calculating an appropriate

functional average with the functionél3)—(15).
whereQ represents the saddle-point manifold in the metallic e proceed with illustrating how the model reproduces
phase andr is obtained fromQ by the same rotatiof®) as  pasic fundamental results for dirty superconductors, then
0s.p. Is obtained from the metallic saddle poibt Therefore,  demonstrate how to include consistently weak localization
Q is defined, as in the metallic phase, on the coset spacgorrections in the vicinity of the superconducting transition
S(2N)/S(N)® S(N) where, depending on the symmet§, in the presence of a magnetic field, and finally show how to
represents the unitary, orthogonal, or symplectic group. Betake into account the self-consistency of the order parameter

fore describing the expansion, let us stress that one coulg the description of the proximity effect in tH®NSgeom-
expand the Trin term without making the rotatitt®), i.e.,  etry.

in powers ofVo and ofe+ A. Although this would be for-
mally an expansion within the same manifold, performing
first the rotation(12) simplifies enormously all the subse-
guent considerations and leads to a new variant of the non- We show that the basic results for dirty superconductors
linear o model. can be reproduced in the simplest approximationwe ne-

IV. SIMPLEST APPROXIMATION
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glect all nonzero Matsubara harmonics of the pairing field, V. GINZBURG-LANDAU FUNCTIONAL

l.e., substitutedod, - for Ao (i) we neglect disorder- In the vicinity of the superconducting transition one can
induced fluctuations near the saddle point, i.e., substitute th@xpand the actiol3) in the pairing field. A further simpli-
saddle-point valugQ=A.. In this case, the matrix+A fication is possible in the weak disorder linpgl>1: one
reduces to direct product over all integerof (e,+4A,)  can integrate out th@ field to obtain an effective action for

®(e,—Ay) where the A field only. In the quadratic in tha approximation, the
kernel of this action will give an effective matrix propagator
o €, A of the pairing field, with due account for the disorder, which
en+AOE<A* B ) (16) governs properties of a disordered superconducting sample
o “¢€n near the transition.

Here Ag=|A|€* is a two-component field which, naturally, ~ TO integrate over the field, one splits the actiof13)
plays the role of the order parametere omit the index 0 in  iNto S=&p+ S, where

|A]). Now it is easy to find explicitly the eigenvaluasand
the diagonalizing matri¥/, in Eq. (10):

N=ve>+|A|>sgne,, cosf.=e,/\,,

7vD , TV
So=— 8 Tr(doQ) —TTreQ (21

is the standard nonlinear model functional as in the metal-
. 6. lic phase. Then one makes a cumulant expansion, i.e., first
+Jsgne, sin—-, (17 expands 0*51) in powers ofS, , then performs the func-
tional averaging withe ™ (denoted below by- - -)o), and
where3z(&o/|A|)5€’_€, is the 4x 4 matrix which depends finally reexponentiates the results. The expansion involves
only on the phasg of the field A, and repeats the matrix only the first- and second-order cumulants since the higher-

structure ofA,, Eq. (5), and the full matrixV, is the direct ~Order cumulants generate terms of higher ordedirThen
product of allV, , . the only terms which contribute to the action quadrati@ain

€

VnA(r)=cos2

On utilizing the assumptiortii) above, i.e.Q=A, and &' given by
substituting the parametrizatidt7) into Eq. (13), we arrive 1
. — d . mV
at the actionS= [dr £ with Sel A]= T D J dr|A,|2— 7<Tr()\—e)Q)Q
A 2
c:%—zmz JeZ+ A2+ 5L, D
0 ‘ —<—;;—T¢AA,Q]2
7vD 2e \2 2
— 21 i _ &= (7mvD)
Q

Using the parametrizatiofl7) one can easily sum overto . )
get Expanding\ andA, to the lowest power i\ and perform-

ing a standard functional averaging, as described in the Ap-

avD 2¢ \2 pendix, one finds the action quadraticAnas follows:
SL=——1{Cy(V|A)?+Cy| Vx— —A]| {, (19
8T c
14 A~
where the stiffness coefficien@, , are given by SelAl= 7 % f dr AL (r(r[K,[r" )AL (), (29
1 Al 1 2|A| . N
= —_ T2 with the operatotC,, given b
Ci | |tanhﬁ+ >T cosh o7 p g y
.1 1 ., (0)C
A Ry=——2aT ¢, 1 Mo
C2=2|A|tanhﬁ. (20 ©““Nov e(w—ze)<o YTV (2e—w)?

(24)
The functional(19)—(20) coincides with that obtained in Ref. A
9. Expanding coefficientsC;, in A, one obtains the Herera')‘f(r,r’)=(r|H°vd|r’> are the Cooperon and diffuson
Ginzburg-Landau functional as that in Ref. 9. However, thepropagators, respectively, with
simplest approximation used hgand equivalent to those on
which earlier consideratiois’ were basexis not sufficient e =+ 1 o5
even in describing the vicinity of the superconducting tran- o = (CH]]) ™, (25
sition. In general, one must keep all the Matsubara compo- A i > 4
nents of the pairing fields. In the following section, we will Where the operataf=—D(V —2ieA/c)” defines the propa-
show how to do this in the vicinity of the transition in the gation of the Cooperon modeH¢ is obtained fromlI¢ by
weak disorder limit. putting A=0.
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In the last term in Eq(24), T17,,(0)=TIIf,(r,r); this term  linear size of the order of the coherence length becomes
may be obtained by expandirim the weak disorder param- greater than the flux quanta. The weak localization correc-
ete) the Cooperon propagator with the renormalized diffu-tions diminish the diffusion coefficient, which leads to a
sion coefficient, shrinkage of the coherence length. Therefore, one needs a
stronger field to fulfill the condition of coherence destruc-
tion. The same reasoning explains the growthTgfin the
fixed magnetic field.

o o ) Note finally that we have calculated teaverages in Eq.
Therefore, this is just a weak localization correction to the(22) perturbatively, up to the first order in the weak localiza-

C— C.

1 d
1~ —I1{,(0)
mV

free Cooperon propagat®ff,(r,r'). tion correction. It would be straightforward to include the
The summation over Matsubara frequencies in24) is  main weak localization corrections in all orders by calculat-
easily performed to yield ing these averages via the renormalization group. This would
R lead to renormalizing the diffusion coefficient in the Coop-
A T 1 |w|-C 1 a,C eron propagato(25), thus changing the shape of tfig(B)
Koz 0 5T 207 ) 9 2) " 221 @9 curve. However, the value d,(0) will again remain unaf-

fected, since the superconducting instability is defined by the

where To=T.,(B=0) [s the transition temperature pf the appearance of the zero mode in the operdiorEq. (26).
clean superconductor in the absence of a magnetic field. Thehis zero mode is homogeneous, and thus does not depend
weak localization correction is proportional to the coefficient,, the value of the diffusion coéfficient in the Cooperon

a,, given by propagator.
! > ! (L 1ol VI. PROXIMITY EFFECT
3,(T)= 7V § Dg? V2" GaT '
A recent supersymmetric versifrof the NLoM has been
47T 1 |w|+Dg? 1 ol specifically formulated for studying the proximity effect in
- D_qz 2T T 4T | §+ 277 SNSjunctions..AIthough Fhig version is very cqnvenient for
a nonperturbative analysis, it has the natural disadvantage of
For o=0 the coefficientag=a,_,(T) can be simplified in the supersymmetric approach: no interaction can be included
the two limits: beyond the mean-field approximation. It means that the su-
perconducting order parametér should be treated as a
W' (112 1 background field rather than a dynamical one. More specifi-
— 4 1~ D L>Ly, cally, A was taken into accouf®tjust by the boundary con-
A= Ly <g<l q 27) ditions (Andreev reflectioh at the boundaries of a normal
0 W (112) metal, while having been considered as a given field in the
- L<Lq, superconducting region. This allows for changes in charac-
8m2wLoT teristics of the normal metal in the proximity of the super-

conductor, but not for the possibility of changes in the su-

whereLr=yD/T s the thermal smearing length. perconducting order parameter in the proximity of the

The instability of the normal stat@.e., a transition to the
. . normal metal.
superconducting stateccurs when the lowest eigenvalue of The action in the normal regiofN) has the standard

the operatork’, becomes negative. The eigenfunctions offoym519 yhile in the superconductd®) we have the NirM
this operator coincide with the eigenfunctions of the Coop-uf the form(13). The continuity of the Green function across
eron operatof. The lowest eigenvalue df is known to be  the N/S boundary requires

Co=DB/ ¢q, where ¢y is the flux quanta. This ground-state

Cooperon eigenfunction corresponds to the lowest eigen- Qnlns=ViQsValws- (29

value K, of the operator,,. The conditionKy,=0 implic- ) ) o

transition occurs: leads to a rotation of the matriy in the N region in order
to match the structure imposed by the boundary condition
| Te . 1 . Co 1) aglo 08 (29):
HE R v o Bt ) Ao o (28) .
Qn— VAQnVN, (30

The term on the right-hand sid®HS) of Eq. (28) describes

a 14 correction to the main result. This weak localization is with the rotation matrix/y of the same structure &5, in the
linear in the magnetic fiel@ and vanishes aB—0 as ex- Sregion so that at the boundary they match each other. Pro-
pected(Anderson theorejn In a nonzero magnetic field the ceeding in the same manner as above we keep onlywthe
weak localization correction to tH&; is positive which hasa =0 component of the pairing field and neglect the disorder
very simple explanation. The superconductivity is destroyednduced fluctuations, i.e., we p@y=Qs=A. Then for the

by the magnetic field when the flux over the area with theN region we have
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Q*)VLA Vy=cosf +sin 953,

8 er=—10. _o(cOSy T3tsiny ®ic,, (31

where 6, and x. are now independent variables. In a bulk

superconductor, all these parameters were explicit functions

of A and e, Eq. (17). There is no such a constraint in the
normal region. The £, — €) sectors in the normal region are
still coupled due to the proximity effect but they may all be
different.

In this approximation the action corresponding to the

region decouples into the sum of uncorrelated contributionsth® normal metal. For a long n

$N=277v2 J dr L.,

2e \?
Vxe— ?A —€Cosd,.
(32)

Now we find the supercurreni by varying the actior(32)
with respect to the vector potentiAl

L;%[(V 06)2+sin206<

2
js=2emvD T, <sin266(VXE—iFeA)> , (33

N

where(- - - )y stands for functional averaging with the action

(32), the functional integration being performed over func-

tions obeying the boundary conditions

X5|N:X|Sv COS&E|N: (34)

€

Here |A| and xy are the modulus and phase of the order

parameter at th&l/S interface.
The classical trajectory corresponding to the ac{@®2) is
nothing but the Usadel equati®n

2
+e€c0sf=0,

DA0+D in20| V ZeA
A0+ Zsin20| V=~

\Y =0. (35

sin20( Vx— ?A)

For quasi-one-dimension&juasi-1D geometry in the ab-
sence of a magnetic field, the Usadel equati®d can be
written as the equation fof,

d20+ 2990 | | “2sing=0 (36)
——tati— sinf=0,
dx>  “sirfe ¢
with the self-consistency condition an, (see Fig. L
f dx 37
= .
AN e sint e,

Here xn=x+—x-
perconducting banks ard.= +/D/2e is the coherence length
for two particles with the energy differeneepropagating in

is the phase difference between two su-

PHYSICAL REVIEW B 63 064522

FIG. 1. A spatial dependence of the phageacross theSNS
contact for quasi-1D geometry.

ormal bridge between the two
superconducting bankk> L= /D/27 T, one may consider
separately three regions: those close to & boundaries
(with the width of orderL;) and the bulk. Matching the
solutions for all the regions, we find the following expression
which well approximates the solution for the entire normal
region:

X
6(x)=8 tar( fp/4)e /%« \/cosz% + sinhZL—,

a.=32tarf(0y/4)sinyyL. *exd —L/L.], (39
where 6,=0_|y/s. In calculating the supercurrent through
the normal bridge, one reduces the expression within the
angular brackets in Eq33) to «,sinyy. Then it is enough

to keep only the leading term witthy= 7T because the con-
tributions from all other frequencies are exponentially sup-
pressed ak <L;. Then we obtain the following expression
typical for Josephson junctiorjg=j . sinxy, wherej. is the
critical current:

je=e2’mvD Ttarf(6-/4)L; exd —L/Lt], (39

with 6= Oe,-

The supercurrent in the superconducting banks is found
by varying the actior{19) valid in the S region with respect
to the vector potentiah:

A
WAl xs

js=ewvD]|A|tan 2T Lo

(40)
where Lg is the length of the superconductor and the
phase difference between its edges.

It should be stressed that we have varied the action for the
entire SN Sstructure, rather than only for the normal region
subject to the boundary conditions at the superconducting
banks as in the supersymmetric variant of theoWL for
dirty superconductor¥. This means that the phase difference
across the normal region is not fixed but should be found
self-consistently by finding the optimal configuration for the
action for the entireSNSstructure subject by the matching
the fields at theN/S boundaries. This defines the actual
phase differencgy, Eq.(37), across the normal bridge. Nu-
merically, a similar procedure has been employed in Ref. 21.
It is easy to show that the matching condition can be ex-
pressed as the continuity of the supercurrdpats varying
with respect to the phase difference is equivalent to varying
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with respect to the vector potentiallhus supercurrent con- (TrMW(r)PW(r"))
servation defines the phase difference on the normal bridge,

2 —
— - ap ap 5Ba
- rrM rP/

— 2 [ar) e MR,

A A L 0 ee’=0
utanh'—l)(sz ZSe-Ulrginyytaf—, (41 *p
64T 2T Ly 4 ~ ap aas. ofBB
+a  UrMIZtrP ], (AL)
so that if the width of superconductor bariksis sufficiently (TrMW(r)TrPW(r"))
large, the overall phase drop mainly happens across the 5
banks. _ -~ af VEGL D) Ba
_ . . . =—— (M —=M) 5 (P—P).,
Finally, let us reiterate that the main result of the paper is TV ezo Teer U Jee'l Jere
an alternative variant of the NtM given by Eqs(13)—(15). ap
Here we have applied this formalism to a few relatively (A2)

simple problems mainly to show that it works and has certain oo .
. . . where th rindi refer to the time-reversal r
advantages over alternative variants of the oML This ere the upper indices,  refer to the time-reversal secto

. . . . ._and tr refers only to the matrix indices which are not indi-
model has also been applied to a microscopic considefAtion . A
of the quantum phase slip problem in quasi-chated .expllcnly. Th(_a matrixr in Egs.(Al) and(AZ) has the
superconductofé?*and to a microscopic derivation of level following structure in the time-reversal sector:
statistics in nonstandard symmetry classes introduced in Ref. Hld _o(rr) Hr _o(rr)
25. Let us also stress that the method employed in the deri- Too(r,r')= : ¢ df € ) ., (A3)
vation of Egs.(13—(15) can be straightforwardly general- oy (rir) Iy (rr’)

ized both to including different types of interactions and to\yhere the propagators are solutions to the standard Cooperon
considering the unconventional pairing in dirty supercon-gnd diffuson equations:

ductors.
[-DV2+ w8 (r,r)=68(r—r"),
2
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APPENDIX Next, one expand® in Eq.(22) up to the fourth power in
W and uses the above contraction rules to obtain

To perform the functional averaging in E¢22), one
should employ some parametrization of the fi€ldn terms (Trx=€)Q)q=Tr(A — e)A, (A5)
of unconstrained matrices, for exampte? d

H\Ze*w\(o)

8
T A , 2 =T A 1A 2+_
(TMAL.QI) =T A, ,A] TV e(0-)<0 (26— w)?

2

Q=(1-WI2)A(1+W/2)~ 1,

2e
X V—?A A, (AB)

whereW=—W" andWA + AW=0. TheQ integration then
reduces to the Gaussian one with weight™ with S, ob- Taking into account that the second term in the brackets in
tained from Eq.(21) by expandingQ to second order iW. Eg. (22 contributes to the higher-order correction only we

The GaussiaW integration is carried out with the help of arrive at the Ginzburg-Landau functional described in the

the following contraction rules: text.
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