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ABSTRACT:  
The process of manufacturing system design 
frequently includes modelling and, usually, this 
means applying a technique such as Discrete Event 
Simulation (DES). However, the computer tools 
currently available to apply this technique enable 
only a superficial representation of the people that 
operate within systems. This is a serious limitation 
as the performance of  people remain central to the 
competitiveness of many manufacturing 
enterprises.  Therefore, this paper explores the use 
of probability density functions to represent the 
variation of worker activity times within DES 
models.  
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1. INTRODUCTION 

In a manufacturing system design context, the term 
modelling usually means applying a technique such 
as computer based Discrete Event Simulation 
(DES). However, Human Performance Variation 
(HPV) is often modelled incorrectly in DES 
models.  As a consequence, simulation results can 
be distorted, providing only a coarse prediction of 
how people-centered manufacturing systems are 
likely to perform in practice. This limitation on the 
ability to adequately model the behavior of people 
in manufacturing systems is a significant issue. 
Hence, there is an important need to expand the 
capability of modelling to include accurate 
representations of Human Performance Variation.   
 
The research described in this paper has focused on 
the development of Probability Density Functions 
to represent the variation of worker activity times 
within DES models.  The paper describes how, 
contrary to prior evidence in the literature, 
empirical worker performance data is best 
represented using a Pearson Type IV distribution. 
This is demonstrated in a number of simulation 
experiments which also illustrate that, under certain 
conditions, HPV can have a significant effect on 
overall system performance. Indeed, these results 
indicate that practitioners should always consider 
testing for sensitivity to HPV. 
 
 

The paper is structured to first illustrate the 
research challenge in greater detail, with section 3 
then describing the research approach taken.  
Following this, section 4 explores the nature of 
HPV in a real production facility. Section 5 
describes how this variation can be represented 
statistically and section 6 then demonstrates the 
impact of incorporating this variation within 
simulation models of the facility.  The final 
sections give our conclusions and identify further 
work. 

2. BACKGROUND 

International market pressures and technical 
innovation translate into ever increasing demands 
for wider product variety, mass customization, 
faster delivery, improved quality and reduced cost 
[1]. To fulfill these demands, enterprises must 
continually improve their product design and 
manufacturing capabilities [2, 3, 4, 5].  Some 
manufacturing system re-design can take place 
incrementally, using techniques such as Kaizen [6].  
On the other hand, major and radical re-designs are 
sometimes called for when, for example, a new 
product line is introduced or a new facility is 
proposed [7].  Here, a more formal process of 
manufacturing system design is usually followed. 
 
Modelling is undoubtedly a popular and valuable 
aid during this process of system design [8, 9].  
Usually, modelling is carried out using a computer 
based tool, the principles of which, are based on the 
technique of Discrete Event Simulation (DES) [10]. 
There are a wide variety of tools of this nature and, 
predominantly, they are used mainly to model the 
elements of a manufacturing system that are highly 
deterministic in their behavior (eg: mechanical 
equipment such as machines, conveyors and 
robotics) [11].  However, as the elements of a 
manufacturing system become less deterministic 
the validity of models rely greater on the skills of 
the practitioner [12]. In this situation practitioners 
must be highly skilled in data collection techniques, 
statistical analysis methods, and also highly 
knowledgeable about the behavior of the element 
under consideration [13]. One such issue occurs 
when attempting to model the behavior of 
production workers [14, 15].   
 



Currently computer tools, based on the technique of 
DES, treat production people as a simple element 
that has limited availability [11, 16, 17, 18].  In a 
typical simulation model ‘labor’ is defined as a 
resource that is required by activities such as 
‘machining’ and ‘assembly’ [7, 11].  Then, by 
varying the general availability and priorities of the 
labor resource, the model is used to determine the 
required number of workers [7, 19]. Occasionally, 
standard statistical distributions (eg: normal 
distribution) are used to introduce some variance to 
the availability of the ‘worker resource’ and, in this 
way, some assessment of model sensitivity can be 
carried out [20].  However, the validity of using 
such distributions is highly questionable. 
 
Human Performance Variation (HPV) in manual 
tasks has been studied since the work of Taylor in 
the late nineteenth century [21].  The possibility 
that activity duration can be characterised by a 
Probability Density Function (PDF) has been 
known for some time [22].  For example, the 
positively skewed nature of the distribution of 
activity duration was noted by Conrad in 1954 [23] 
and this has been confirmed in many studies since 
[e.g. 22, 24, 25, 26, 27, 28].  However, the exact 
form of the response has not previously been 
identified and, so, a number of PDF forms are 
sometimes used to represent HPV.  This is 
frequently unsatisfactory, for example, Knott and 
Sury [22] found that:  
 
“A goodness of fit, X2 test, was used to test the 
actual worker time distributions against the log-
normal, gamma and beta distributions, none of 
which proved to be statistically significant.”  
 
Judging by the apparent paucity of literature since 
1987, this issue has not been studied in depth since 
the late 1980’s.  Consequently a variety of standard 
distributions are still used to estimate HPV [9]. It is 
therefore clear that a definitive description of the 
likely form and impact of HPV is needed [29, 30, 
31] and this therefore is the purpose of the research 
described here.   

3. RESEARCH METHODOLOGY 

The aim of the research has been  to determine a 
valid method of representing HPV in computer 
tools, based on the technique of DES, and to assess 
the impact of this on a typical model of 
manufacturing systems. To achieve this aim three 
objectives were identified, namely to: 
 Measure the extent of HPV within an actual 

manufacturing system. 
 Develop a statistical representation of this real 

HPV. 
 Include this actual HPV within a typical DES 

model and evaluate the impact. 

A three stage research methodology was defined to 
complement these objectives and this provides the 
structure for the remainder of this paper. 

4. HUMAN PERFORMANCE VARIATION: 
A DEFINITION AND ASSESSMENT 

Human performance within a manufacturing 
system can be measured in many ways.  For 
example, in terms of how quickly a task is 
completed; how many task cycles are completed; 
and the reliability with which a task is completed. 
The selection of the appropriate measure depends 
on the objective of the measurement. For people 
who are directly involved in production (sometimes 
referred to as direct workers) the duration of the 
time spent on a discrete activity (eg: fitting a water 
pump to an engine) is a most valuable measure.  
Hence, in the context of the work described in this 
paper Human Performance Variation (HPV) is 
defined as: 

The variation in the time taken to complete a task 
by a direct worker under normal working 

conditions. 

The term ‘normal working conditions’ implies that 
both the operation of the production system in 
which the worker operates, and worker 
performance itself, is within the accepted limits for 
the task [32]. This definition eliminates 
performance during periods where system 
perturbations are present, such as when quality 
problems occur, or where the worker displays 
unusual behaviors. 
 
With this definition in mind, a detailed study of 
actual HPV was designed and executed by the 
authors.  An automated activity time measurement 
system was installed on a real manufacturing 
system (this is described in detail in [33]). The 
system was a large-scale, high-precision, high-
value automotive assembly line. Ten manual task 
operations were monitored over a twelve week 
period, resulting in a dataset for each operation of 
the order of 200,000 activity times.  
 
Within the assembly line, each operation was 
performed by a team of operators who work on a 
number of different activities throughout the day, 
spending an hour at a time on each operation, and 
then rotating to the next. This job rotation helped to 
reduce monotony and boredom [34]. The data sets 
gathered were for individual machines operated by 
the team, however, the researchers were prevented 
from directly relating activity time variations to 
specific workers.  Similarly, no observations could 
be made of particular workers over long periods of 
time.  This limitation is discussed further in section 
6.  



Examination of the resulting datasets reveals a 
number of interesting characteristics. Figure 1 
shows a sample time series plot of a 12 hour period 
of activity time data from one operation. It can be 
seen that each operator achieves a different level of 
performance in terms of the mean and range of 
their activity time. This is consistent with the 
general view in the literature that individual 
differences do affect worker performance [35].  
 
 
 
 
 
 
 
 
 
 
 
Figure 1: Sample 12 hour time series plot of 
activity time data for one operation. 
 
Plotting the data as a histogram for each operation 
(a technique used by numerous researchers [22, 24, 
25, 26, 36]) provides intriguing results as shown in 
figure 2.  Here, the ten curves (one for each 
operation) have markedly different mean values. 
This is an unexpected result as the assembly line 
under study has undergone a rigorous design 
process to ensure that it is balanced. This would 
imply that these curves should be similar.   

 
 Figure 2: Activity time distributions for the ten 
operations studied 
 
Closer examination of each distribution also reveals 
that they are bimodal in nature (Figure 3). The 
peaks may be due to individual workers having 
different ways of completing the task, or to the 
effect of “blocked conditions” where an operator is 
prevented from passing their completed work onto 
the next operation because the inter-process buffer 
is full.  
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 3: Relative frequency histogram for one 
operation 
 
The bimodality and skew of the empirical 
distribution suggests the hypothesis that HPV, in 
real world production situations, occurs in a 
number of different forms.  These reflect different 
worker behaviors, ways of working, and other 
effects. If then, a distribution is created to 
summaries HPV over a significant time, this may 
actually be the sum of a number of component 
distributions.  These component distributions may 
not necessarily themselves be skewed.  This then 
forms a basis for developing a statistical 
representation of HPV.   

5. DEVELOPING A STATISTICAL 
REPRESENTATION OF HUMAN 
PERFORMANCE VARIATION 

The form of the empirical distributions can be 
estimated by applying curve fitting software.  In 
this case TableCurve2D™ was used to test the fit 
of over two thousand different equation forms to 
the data using least squares estimation.  The 
statistical summary of this process is shown in table 
1. Here, the r2 value is shown, for each of the ten 
production operations assessed in the case study, 
against the three distributions most commonly used 
to represent HPV. 
  

Operation 
Number 

Pearson 
IV r2 

Normal 
r2 

Weibull 
r2 

Gamma 
r2 

1 0.997 0.961 0.951 0.975 
2 0.990 0.832 0.953 0.957 
3 0.997 0.973 0.977 0.986 
4 0.969 0.938 0.939 0.938 
5 0.995 0.946 0.978 0.988 
6 0.996 0.977 0.977 0.980 
7 0.996 0.942 0.959 0.981 
8 0.997 0.965 0.973 0.981 
9 0.997 0.979 0.981 0.984 
10 0.996 0.979 0.985 0.991 

 
Table 1: sample coefficient of determination for 
least squares fit to activity time data. 

The data in Table 1 shows that the curve which 
gives the most reliable fit, in terms of the r2 value 
across all operations, is the Pearson Type IV. This 
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is in contrast to the curves normally cited in the 
literature as being appropriate to represent HPV, 
namely; Normal, Exponential [37], Gamma [38], 
Weibull [39], and the Erlang distribution [40].  Of 
these the Gamma distribution gives the closest fit. 
 
The activity times, however, differ significantly 
across the ten operations (figure 2). To make the 
ranges comparable, and the Pearson Type IV usable 
in practice, the Coefficient of Variance (CV) needs 
to be established. The CV is a measure of 
dispersion and can be used to compare distributions 
with different means [22] and is calculated by 
dividing the standard deviation by the mean.  The 
CV of worker activity times assumed by 
researchers in assembly line design varies widely, 
as shown in table 2. Liu et al. [38] state that, 
“…high CV values in the order of 0.3 and over are 
not common occurrence in the real world”, 
although out of curiosity they expanded the CV 
range in their study from 0.2 to 0.6. The range of 
CV values present in a system can drastically alter 
the design parameters required for effective 
operation of the system [41, 42].   

 
Table 2: Coefficient of variation of activity times 
assumed by authors from 1955 – 1996. 
 
The CV results for the ten operations in the present 
study range between 0.31 and 0.63, significantly 
higher than many researchers have assumed in the 
past.  It is worth noting that the datasets also 
contain some evidence of trends in performance 
over time. Using the technique of waveform 
education attributed by Minors and Waterhouse 
[43] to Czeisler [44], the underlying oscillatory 
nature of the data can be seen. By concatenating all 
the data for an operation onto a 24 hour timescale, 
and dividing the dataset into hourly time slots, it 
can be seen that the mean activity time changes 
over time, as shown in figure 4. The range in the 
mean of this trend is 1.86 seconds.  Therefore, 
although the remainder of this paper primarily 
focuses on assessing the impact of the Person Type 
IV, some consideration is made of temporal trends 
on model validity.  
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Figure 4: Trend in mean activity time for one 
operation over 24 hours, three shift system 

6. EXPLORING THE IMPACT OF HPV ON 
MANUFACTURING SYSTEM MODELS 

This section of the paper explores the impact of 
incorporating HPV on models of a real 
manufacturing system.  The models chosen are of 
the system, from which, the data of HPV was 
collected.  Although this approach has some 
limitations (as discussed later) the size of this 
facility, and the depth to which the research team 
understand its operation, mean that it is very well 
suited to this initial assessment.   
 
One goal in carrying out this study was to assess 
the relative significance of HPV on the 
performance of a model.  Therefore, a series of five 
DES models were constructed with each 
representing a slightly different scenario. A 
summary of these models is shown in table 3.  
Model 0 represents the system with deterministic 
activity times and no breakdowns. The 
deterministic output of this model can therefore be 
considered as the ideal performance of the system. 
In Model 1 breakdowns are represented 
stochastically and are based on empirical data from 
the real system.  Comparison of the results of 
Model 0 and Model 1 gives a measure of the 
impact of modelling breakdowns on system 
performance. The activity times remain 
deterministic.  
 
Model 1 forms the basis for Models 2, 3 and 4 and 
is focused at assessing HPV.  Currently the host 
organization uses a Normal distribution with the 
work standard time as the mean and a standard 
deviation of 8% of the work standard time.  A 
single PDF technique is implemented in Model 3, 
and a probability density surface technique is 
implemented in Model 4 (this allows the temporal 
trends mentioned earlier to be incorporated).  
 
 
 
 
 
 

Authors 
Coefficient 
of Variation 

Conrad and Hille (1955) 0.18-0.32 
Kala and Hitchings (1973) 0.00-0.24 
Slack and Wild (1980a) 0.25-0.32 
Knott and Sury (1987) 0.22-0.57 
Chow (1987) 0.22-0.47 
Hira and Pandey (1987) 0.00-1.00 
Dar-El and Mazer (1989) 0.00-0.30 
Blumenfeld (1990) 0.00-1.00 
Liu et al (1996) 0.20-0.60 



 
Model 
Name 

Description 

Model 0 
Deterministic activity time 
No stochastic modelling of breakdowns 

Model 1 
Deterministic activity time 
Breakdowns modeled stochastically 

Model 2 
Stochastic activity time, Normal PDF 
Breakdowns modeled stochastically 

Model 3 
Stochastic activity time, Single Pearson Type 
IV PDF 
Breakdowns modeled stochastically 

Model 4 
Stochastic activity time, 24 x Hourly Pearson 
Type IV PDF 
Breakdowns modeled stochastically 

 
Table 3: Descriptions of experimental discrete 
event simulation models. 
 
The basic model used in these experiments was 
developed by the host organization during the 
design of the system. The system is a large scale 
assembly line, comprised of several hundred tasks, 
both manual and automated.  To prepare this model 
for experimentation, the logic and layout of the 
model was first checked against that of the real 
system. The physical structure of the line was 
mapped and compared to the original model. Minor 
alterations were made to the model to incorporate 
elements added since the systems inception. 
Testing of the revised model was then conducted to 
ensure that the model was an acceptable 
representation of the existing system. To aid 
validity, this work was conducted jointly by the 
research team and the simulation expert of the host 
organization responsible for the building of the 
original model.  The revised DES model was then 
redeveloped to incorporate the changes outlined in 
table 3.  
 
The experimentation protocol was considered to be 
of utmost importance to ensure that the results 
obtained were reliable.  These protocol will 
determine the number of runs, length of runs, 
warm-up period, random number management and 
analysis procedure.  A number of authors have 
proposed methods of assessing the required 
protocol for simulation experiments, e.g. Carrie 
[46]; Law and Kelton [9]; Shannon [47]. Those 
proposed by Fishman [48] utilize a pragmatic 
combination of statistical and graphical techniques 
and are the ones adopted here.  Fishman describes 
the problem of designing a simulation protocol as 
the control of systematic and sampling errors. He 
defines the two types of error thus; 
 
“Random input induces sampling error, and the 
dependence among observations often enhances its 
severity. Systematic error arises from the 
dependence of the observations on the initially 
chosen state or conditions in the simulation”. 
  

If only one replication is used, the presence of 
sampling error prevents the detection of systematic 
error. The process begins by conducting tests to 
define the number of replications of each 
simulation required to attain acceptable confidence 
limits. To alleviate the effects of starting conditions 
all the replications are started from the ‘system 
empty’ condition. The run length and warm-up 
periods are then selected using sensitivity testing. A 
full description of the methods used is given by 
Mason [49].  Each of the simulation models was 
run for 5 replications of 300 simulated shift 
periods, equivalent to 20 weeks of production. 
Each random number stream (RNS) affecting the 
HPV calculations within the models were changed 
for each replication. The RNS for the breakdown 
calculations were kept constant for all replications. 
Hence, the variation in throughput shown by the 
models is due to HPV alone. 
 
The simulation experiments each produced 
principal performance figures representing the 
average production per shift and a confidence limit 
for the mean. The results are shown in table 4 and 
again graphically in figure 5. To ensure anonymity 
the results are expressed as a percentage of the 
target performance of the system.  
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Model 0 100.0  0.0 

Model 1 87.9  1.0 

Model 2 88.1  2.0 

Model 3 86.8  0.6 

Model 4 87.3  1.1 

 
Table 4: Mean and 99% confidence limits for 
simulation model results. 
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Figure 5: Graph of mean and 99% confidence 
limits for simulation model results. 



7. ANALYSIS AND DISCUSSION 

When first considering the results gained from 
experimenting with the different models (Table 3), 
the Model 1 can initially be considered as the 
datum. Here there is no HPV.  Against this, the 
Normal PDF model (Model 2) shows a doubling in 
the level of variation in the results though the mean 
is much less affected.  The ranges of results from 
the two proposed HPV models, (Models 3 and 4) 
are lower than that of the ‘Normal’ and ‘No HPV’ 
models. Hence, incorporating HPV does cause the 
model to be more conservative. Although, this 
decrease is of the order of only 1% of the target 
output for the system in question, in practice this 
represents a very significant financial loss.  
 
The positively skewed PDF of Model 3 is 
particularly interesting.  This reduces the range of 
variation in the mean throughput, relative to both 
Models 1 and 2, while simultaneously reducing 
output. This result is counterintuitive as any 
increase in the spread of activity times could be 
expected to increase the range of mean throughput. 
A similar result is noted for Model 4, the PDF 
surface, although the range of uncertainty is larger 
in this case. The single PDF of Model 3 is 
significantly easier to apply in DES than the PDF 
surface of Model 4. The improved fidelity of Model 
4 does not warrant the extra effort and resources 
required in modelling. It is recommended therefore 
that in most systems a single aggregated PDF 
model of HPV is sufficient. 
  
The expectation of the host organization was that 
activity time HPV would have a large impact on 
performance, although this is not supported by the 
simulation results. The difference between Models 
0 and 1 is of the order of 12% of the target 
throughput. Thus, in this case, the stochastic 
modelling of breakdowns has a much larger impact 
on system throughput than HPV models [50]. It is 
valuable to question why HPV does not have the 
expected impact on the performance of this system.  
The system under study has over 200 separate 
manual and automated operations, and hence 
exhibits very complicated behaviour. The 
simulations clearly illustrate that in its normal mode 
of operation there is a rather intermittent flow 
within the system.  For example, under normal 
operating conditions the assembly line appears to 
be separated into a number of areas, almost cellular 
in nature, where constant material flow occurs 
separated by full buffers.  Products appear to flow 
between these areas of the line in “pulses”. The 
location of the ‘cells’ changes over time as 
breakdowns, shortages etc, occur. Hence, the 
inclusion of even relatively large time variations on 
operations is unlikely to have much effect, as in 
this instance system performance is dominated by 

the dynamics of the system itself. Such behaviour 
has been noted in previous studies [20]. 
 
To further explore the impact of HPV in systems 
where the dynamics of the system are less 
dominant, a number of small hypothetical systems 
were modelled with between one and four serial 
operations joined by conveyors. The models were 
run with no HPV present, and then repeated with 
the aggregated PDF distribution used in Model 3 in 
the previous tests. The results are shown in figure 
6.  Each model was run with a number of different 
planned activity times, ranging from 0.31 units to 2 
units. The cycle time was constant at 1 unit for all 
models. In the case of a single isolated operation, 
the difference between throughput from the HPV 
and non-HPV models is of the order of two to three 
percent for all the planned activity times. As the 
number of stations increases, the difference 
increases, with increasing activity time, to a 
maximum of 23%, at an activity time of 1 unit, and 
then decreases with further increases in activity 
time. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6: Output response of conceptual models 
with 1-4 operations with and without HPV 
 
This maximum decrease due to HPV occurs at a 
planned activity time value which, due to the 
interaction with other system parameters, i.e. the 
conveyor cycle time, leads to a dramatic increase in 
the magnitude of the effect of HPV.  Hence, when 
dealing with larger models with complex system 
dynamics it is difficult to predict whether the 
inclusion of HPV will have a significant effect or 
not.  

8. CONCLUSIONS AND FUTURE WORK 

To summarize the results therefore, it is clear that 
although the HPV distribution approach does result 
in a reduction in DES model output, in some 
systems it is not significant when compared to the 
loss in productivity caused by other disruptions. It 
is also clear that some systems, by combination of 
critical parameters, may be more prone to the 
impacts of HPV than others. Hence, testing for 
sensitivity to HPV is an important consideration.  
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In particular, it has been shown that, in the system 
under study, the best theoretical distribution to 
represent empirical HPV is the Pearson Type IV. 
This is contrary to the conclusions of Knott and 
Sury [22], and other earlier work in this area.  
 
In terms of further work, the type IV distribution is 
a very flexible mathematical form, and the shape of 
the resulting curve is governed by a number of 
parameters. Unlike the Normal distribution, which 
can be defined by its mean, magnitude and standard 
deviation, many more parameters must be defined 
to create a type IV curve that is characteristic of 
HPV in a given context. Hence, relatively large 
datasets are required when gathering HPV data for 
this purpose. Further work is required to examine 
the relationships between these “shape” parameters 
and task factors, in order to define generic HPV 
distributions which would be widely applicable. In 
addition, further studies in different task contexts 
are required to verify the generic nature of HPV. 
 
The current research has concentrated solely on the 
impact of HPV in terms of activity time. To fully 
assess the importance of HPV it is necessary to 
extend the models of HPV to include error rates, 
and both corrective and disruptive behavior, and in 
doing so it is anticipated that worker HPV will be 
found to have a larger impact on system 
performance.  
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