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Abstract. Accurate QRS detection plays a pivotal role in the diag-
nosis of heart diseases and the estimation of heart rate variability and
respiration rate. The investigation of R-peak detection is a continuing
concern in computer-based ECG analysis because current methods are
still inaccurate and miss heart beats. This paper presents a different
algorithm to the state-of-the-art Empirical Mode Decomposition based
algorithms for R-peak detection. Although our algorithm is based on
Empirical Mode Decomposition, it uses an adaptive threshold over a
sliding window combined with a gradient-based and refractory period
checks to differentiate large Q peaks and reject false R peaks. The per-
formance of the algorithm was tested on multiple databases including
the MIT-BIH Arrhythmia database, Preterm Infant Cardio-Respiratory
Signals database and the Capnobase dataset, achieving a detection rate
over 99%. Our modified approach outperforms other published results
using Hilbert or derivative-based methods on common databases.
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1 Introduction

The QRS complex is of focal interest in computer-based ECG signal analysis
as it is the most distinguishable feature of the heart signal and embodies valu-
able information from which the Heart Rate Variability [1] and Respiration Rate
[2] can be estimated. Signal contamination from various types of noise and the
variability of the QRS morphology make the detection of the latter more com-
plex. Moreover, the complexity of QRS identification relies on the difficulty in
differentiating the R peaks from large P or T peaks [3].

Several methods for QRS detection have been proposed, from derivative
based methods [3], [4] to neural networks methods [5], [6]. The majority of the
algorithms consist of two stages: pre-processing and decision. The signal is pre-
processed in order to enhance the QRS complex and eliminate noise and baseline
wander and then a set of thresholds is applied in order to identify the real R
peaks in the signal. In [3] and [4] the QRS complex is enhanced by differentiating
and then integrating the signal, in order to obtain the slope and width informa-
tion of the QRS complex. The decision rules are based on estimators of signal



2 Adaptive R-peak Detection Using Empirical Mode Decomposition

or noise level, such as the mean and the median. In [7] and [8] it was proposed
to pre-process the signal using the Hilbert transform of its first derivative. The
zero-crossings in the derivative are represented as peaks in the Hilbert sequence.
The regions of high probability to identify an R peak are located using a thresh-
old based on the Root Mean Square (rms) of the Hilbert sequence. Finally their
method located the real R peaks using a second stage detector based on the
heart refractory period (200 milliseconds) [9].

Over the past decade, research in computer-based ECG signal analysis has
investigated the use of Empirical Mode Decomposition (EMD) [10] in R peak
detection [11], [12], [13]. The EMD method acts as an effective pre-processor
which amplifies the QRS complex and decomposes the signal into a set of In-
trinsic Mode Functions (IMF). A method of R peak identification by summing
the first three IMFs and applying a set of experimentally acquired thresholds
was developed in [11]. The reconstruction of the ECG waveform by adding the
first three IMFs and then applying a threshold based on 50% of the maximum
amplitude was reported in [12] and [13]. The major drawback of [11] and [12]
is that they have established an empirical threshold scheme. A serious weakness
with the detectors being proposed in [11], [12] and [13] is that the threshold is
derived from the full length ECG. Generally difficulties arise when the signal in-
cludes very large R peaks, making the threshold high. This results in the failure
to detect lower R peaks. Our method provides a solution to detect these lower
R peaks by dividing the signal into segments.

Our proposed method for the detection of the QRS complex overcomes the
aforementioned problems in the current state-of-the-art EMD methods by intro-
ducing an adaptive threshold which is calculated from the local energy of the
reconstructed ECG signal from the EMD. The pre-processing stage of our QRS
detector contains a band-pass filter in order to eliminate noise and reduce the
number of the initial IMFs. The reconstruction of the signal using the EMD
method facilitates the removal of low frequency interference and the absolute
value of the reconstructed signal amplifies the QRS complexes. The signal is
then divided into segments in order to increase the efficiency of the algorithm.
Compared with the existing results on the topic, our study has three distinct
features that have not been reported in the literature. Firstly, the proposed de-
tector provides a solution for the detection of small R peaks by establishing a
threshold derived from the mean of the rms over a prespecified number of most
recent segments. Secondly, the threshold established relies on the local signal en-
ergy of each segment. Thirdly, the present research explores the differentiation
of R peaks from large Q peaks in the absolute value of the signal, by using the
first derivative of the ECG signal.

2 Empirical Mode Decomposition

EMD decomposes the signal, x(t), into a series of narrow-band signals, ci(t),
which are called IMFs, and fulfill special conditions. An oscillatory mode of the
signal is an IMF exclusively under the conditions that: first, in the whole dataset,
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the number of zero-crossings and the number of extrema are either equal or differ
at most by one; and second, at any point, the mean value of the maximum and
the minimum envelope is zero. The key advantage of EMD is that it is a data-
driven analysis method. In each iteration the algorithm needs to decide if the i -th
component, hi(t), extracted from the data, is an IMF based on the conditions
mentioned above. In order to achieve this, the EMD method uses a systematic
way which is called the sifting process and is described as follows: for a given
signal x(t), the extrema points are first identified, followed by approximation of
the upper, r̂(t), and lower, r(t), envelopes of the signal through a cubic spline
interpolation. The mean is then obtained, and the i-th component, hi(t), is
computed as the difference between the signal and the mean. The sifting process
has to be repeated as many times as required to reduce the extracted signal to
an IMF. For our implementation in order to terminate the EMD algorithm, the
number of zero-crossings and the number of extrema are checked for equality or
whether they differ at most by one. If the final residue, rN (t), is obtained as a
monotonic function, the sifting process is stopped, ci = hi, and the signal, x(t),
can be written as follows:

x(t) =

N∑
i=1

ci(t) + rN (t) , (1)

where N is the total number of the extracted IMFs.

3 Proposed R-peak Detection

The proposed algorithm is based on the assumption that the QRS complex of the
ECG signal can be enhanced by reconstructing the signal from the first three
IMFs of the EMD. This assumption is verified on all of the tested recordings
as well be shown in Section 4. However, before applying the EMD, the signal
is first processed by a band-pass filter to decrease the computational cost and
reduce the number of IMFs. Following the pre-processing stage, the reconstructed
signal is divided into a number of segments. Then the envelope of the maxima
of each segment is approximated. This is followed by the computation of the
local signal energy of each segment and an averaging step for the evaluation
of the threshold. Moreover, a few checks were implemented to minimize false
positives and negatives including the refractory period and the calculation of the
derivative of the ECG signal to discriminate large Q peaks from R peaks in the
absolute of the signal. The chosen duration of the segment provides an adequate
number of QRS complexes and depends on the sampling frequency. Moreover,
for the averaging step the eight most recent segments were used. The number of
segments to be averaged is a prespecified parameter which can be decided based
on the clinical condition of the patient and whether it is expected that their
ECG signal is going to be less or highly variant. However, it is recommended
that just the most recent history of the ECG vital signs are kept, thus we used
the eight most recent values in the current paper. To summarise, the proposed
QRS complex detection algorithm is as follows:
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3.1 Pre-processing Stage

1. The raw signal, x(t), is first filtered with a band-pass filter, whose coefficients
were designed using a Kaiser-Bessel window [14]. The band-stop frequencies
were set at 8 and 20 Hertz [15] in order to amplify the QRS complex, elimi-
nate noise and reduce the number of IMFs. The output of the filter is denoted
as xf (t),

2. The EMD method is applied to xf (t) to extract the IMFs, c1(t) . . . cN (t),
where N is the total number of the extracted IMFs,

3. The signal is reconstructed by adding the first three IMFs,

xr(t) =

3∑
i=1

ci(t) , (2)

where the number of IMFs is experimentally selected and it will be discussed
later,

4. Then, the absolute value of the reconstructed signal is computed, that is
a(t) = |xr(t)|. This makes all data points positive and implements a linear
amplification of the reconstructed signal emphasising the higher frequencies.

3.2 Decision Stage

5. In order to increase the efficiency of the algorithm, we divide a(t) into k
segments of 3 seconds duration, that is k = (total number of samples)/(3 ∗
fs). The starting point of the k-th segment should match the last R peak
located in the k − 1 segment in order increase the accuracy,

6. Compute the envelope of the maxima, âk(t), of ak(t) for each segment k
through a cubic spline interpolation of the local maxima,

7. Compute the local signal energy for each segment as,

RMSk =

√√√√ 1

M

M∑
t=1

[âk(t)]2 , (3)

where k is the current segment and M is the number of samples in the
segment, that is M = 3 ∗ fs,

8. The threshold of the k-th segment is set to be the mean of the most recent
eight RMSk values,

Tk =
1

8

k∑
j=k−7

RMSj , (4)

9. The peaks, which exceed threshold Tk in the absolute sequence ak(t), are
classified as candidate peaks.

10. In order to segregate large Q peaks from R peaks, we compute the first
derivative of xr(t). Peaks with a negative derivative will be investigated
further at the refractory period check given next,

11. Apply a refractory period check when the R-R interval of two adjacent peaks
is less than 200 milliseconds. Keep the peak with the maximum amplitude.
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4 Results and Discussion

The proposed algorithm is based on the assumption that the range of the fre-
quencies of the first three IMFs of the EMD corresponds to the QRS complex
which includes high frequencies in the range 3-40 Hertz [9]. Moreover, P and
T wave frequencies are about 0.7-10 Hertz [9], thus in order to enhance QRS
complexes, the IMFs that correspond to P and T waves should be discarded.
The following discussion shows the validity of this assumption. Fig. 1 shows
the filtered ECG signal, xf (t), of recording 100 from the MIT-BIH Arrhythmia
database [16] and its first five IMFs obtained after the EMD algorithm. A Fourier
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Fig. 1. The result of the EMD and the spectrum of each IMF. Plot 1 corresponds to
the filtered ECG, xf (t). Plots 2 to 6 correspond to the first five IMFs. Plots 7 to 11
correspond to the Fourier transform of each IMF.

transform is applied to each IMF, in order to obtain their frequency bands. It is
evident that as the order of the IMFs increases, the frequency content decreases.
It can be observed that the spectra of the first three IMFs correspond to the
frequency band of the QRS complex. The dominant frequencies in Plots 7-9 (Fig.
1) are about 10-20 Hertz, whereas the dominant frequencies in Plots 10 and 11
are about 2-10 Hertz, which shows that the last two IMFs correspond to P and
T waves, hence they should not be used in signal reconstruction. Fig. 2 shows
that the filtered signal, xf (t), can be approximated by the reconstructed signal
(summation of the first three IMFs), xr(t), because the difference of the two
signals (red dotted line) is small and the shape of the QRS complex is preserved.



6 Adaptive R-peak Detection Using Empirical Mode Decomposition

Hence, the first three IMFs are sufficient to delineate the QRS complex. Our
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Fig. 2. Reconstruction of the filtered signal, xf (t), by the summation of the first three
IMFs, xr(t), and their difference, xf (t) − xr(t).

assumption was tested on all the recordings under study and the first three IMFs
were found to be sufficient for reconstructing the signal, enhance the QRS com-
plex and eliminate low frequency interference. Furthermore, the number of the
extracted IMFs for recording MIT-BIH 100 before applying the band-pass filter
was 24, and after applying the filter was 22. Following this verification step, our
proposed QRS detector was tested using the entire records from the MIT-BIH
Arrhythmia database [16] which belong to adults, and all the records from the
Preterm Infant Cardio-Respiratory Signals database [16], [17]. Moreover, our
method was tested on real data from the Capnobase dataset [18] which were
collected during elective surgery and routine anaesthesia and belong to children
of ages in ranges 1-14 years old. Furthermore, all databases under study provide
annotated R peaks. Fig. 3 shows the sequential steps of the QRS detector. The
detected R peaks are marked by an asterisk ‘*’ on the filtered signal, xf (t) (Plot
4).

For all the databases the results obtained from the proposed method are
shown in Table 1, Table 2 and Table 3. Table 4 shows a comparison of our
method’s performance with other existing methods. A false negative (FN) oc-
curs when the algorithm fails to detect an actual R peak. A false positive (FP)
represents a false peak detection. Sensitivity (Se), Positive Predictivity (+P)
and Detection Error Rate (DER) were calculated using the following formulas
respectively:

Se(%) =
TP

TP + FN
% , (5)

+P(%) =
TP

TP + FP
% , (6)
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Fig. 3. Steps of the QRS detector for a part of the record 100 from the MIT-BIH
database. Plot 1, corresponds to the filtered ECG signal, xf (t). Plot 2, corresponds to
the reconstructed signal, xr(t). Plot 3, shows the absolute sequence, ak(t), (blue line)
and its maximum envelope, âk(t), (dotted black line) along with the threshold (dashed
black horizontal line) and candidate peaks marked with a red asterisk ‘*’. Plot 4, shows
the identified R peaks on xf (t) as red asterisk ‘*’.
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DER(%) =
FP + FN

total number of R peaks
% , (7)

where TP (true positives) is the total number of R peaks correctly identified by
the detector.

Table 1. QRS detection performance using the MIT-BIH Database

MIT-BIH record Annotated peaks DER (%) Se (%) +P (%)

100 2273 0.00 100 100
101 1865 0.48 99.95 99.57
103 2084 0.00 100 100
104 2229 1.57 100 98
105 2572 2.33 99.92 97.79
106 2027 0.98 99.41 99.60
107 2137 0.47 99.81 99.72
109 2532 0.28 99.72 100
111 2124 0.66 99.95 99.39
112 2539 0.20 100 99.80
113 1795 0.11 100 99.89
115 1953 0.00 100 100
117 1535 0.00 100 100
118 2278 0.04 100 99.96
119 1987 0.25 100 99.75
121 1863 0.16 99.95 99.90
122 2476 0.00 100 100
123 1518 0.06 100 99.93
124 1619 0.30 99.81 99.77

Average 35740 0.42 99.92 99.66

As can be seen from Table 4 our method shows a better performance for the
MIT-BIH records, achieving higher Se of 99.92% compared to 99.86% in [7] and
99.80% in [3] as well as lower DER of 0.42% compared to 14.3% in [7] and 1.33%
in [3]. Furthermore, the highest Se percentages are reported for PICSDB and
Capnobase records by our detector, compared to [3] and [7] (Table 4).

Compared to existing R peak detection methods, the following observations
were found. Firstly, during our experiments we observed that some of the adult
recordings from the MIT-BIH database include inverted R peaks and this in-
creases the R-peak time-of-occurrence error. The QRS detector fails to detect
the inverted R peaks. However, it identifies as a real R peak, a peak close to the
inverted one which is not counted as a FP. Hence, the time difference between
the actual and the detected peak is large and affects the time-of-occurrence er-
ror. Same problem occurs with existing methods [3], [4], [7], [8], [11], [12], [13].
We will further investigate this problem in future research. Secondly, another
important observation, which yields high error in the detection of R peaks was
seen in some recordings from the MIT-BIH database, is that the absolute am-
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Table 2. QRS detection performance using the PICSDB

PICSDB record Annotated peaks DER (%) Se (%) +P (%)

infant1 4671 0.08 99.95 99.95
infant2 970 1.34 100 98.70
infant3 1757 0.91 100 99.10
infant4 2300 0.00 100 100
infant5 4434 0.04 100 99.95
infant6 3974 0.30 100 99.70
infant7 4451 0.13 100 99.87
infant8 4185 0.02 100 99.98
infant9 4426 0.59 99.50 99.91
infant10 4572 0.19 100 99.80

Average 15371 0.36 99.95 99.70

Table 3. QRS detection performance using the Capnobase Dataset

Capnobase record Annotated peaks DER (%) Se (%) +P (%)

9 815 0 100 100
15 960 0 100 100
16 1012 0 100 100
18 1131 0 100 100
23 818 0 100 100
28 588 0 100 100
29 546 0 100 100
31 539 0 100 100
32 685 0 100 100
35 900 0.18 100 99.89
38 956 0 100 100
103 826 0 100 100
104 912 0 100 100
105 530 0.37 100 99.62

Average 12094 0.03 100 99.97

Table 4. Comparison of QRS detector performance with other methods

Database Method DER (%) Se (%) +P (%)

MIT-BIH
Derivative based [3] 1.33 99.80 98.85
Hilbert transfrom [7] 14.23 99.86 99.71
Our method 0.42 99.92 99.66

PICSDB
Derivative based [3] 0.34 99.86 99.81
Hilbert transfrom [7] 0.14 99.92 99.84
Our method 0.36 99.95 99.70

Capnobase
Derivative based [3] 0.03 100 99.97
Hilbert transfrom [7] 0.04 100 99.95
Our method 0.03 100 99.97
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plitude of a Q peak is larger than the R peak. This was found to identify the Q
peak as a real R peak, because in the decision stage the threshold is applied to
the absolute of the reconstructed signal. Fig. 4 shows part of the MIT-BIH 104
record where the absolute amplitude of some of the Q peaks is larger than the
R peak. To address this issue the first derivative of the ECG signal is computed.
The derivative after an R peak is negative because the signal decreases in time.
The derivative after a Q peak is positive as the signal increases in time. Our
method was modified and for each candidate peak also the sign of the derivative
was checked. Peaks with a negative derivative were investigated further in the
decision stage by applying the refractory period check of 200 milliseconds. Hence,
the QRS detector proposed in this paper can efficiently distinguish Q from R
peaks, whereas existing methods do not propose anything about this issue [12],
[13]. Thirdly, current EMD based methods use the average of the mean of all
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Fig. 4. Part of the filtered ECG signal, xf (t), and its absolute value, a(t), from the
MIT-BIH 104 record. The dashed line in the red box shows that the absolute amplitude
of the Q peak exceeds the amplitude of the R peak.

segments [12] and 0.5 of the maximum amplitude [13] to calculate the threshold.
When we computed these thresholds for recording MIT-BIH 104, we found the
threshold of 0.5 of the maximum amplitude [13] to be high, about 0.5161, while
the average of the mean [12] is found to be very low, about 0.0847, thus produc-
ing large number of FPs and FNs. Our threshold computed as the average of the
rms over the full record was found to be 0.1153, thus minimising FPs and FNs.
This is shown in Fig. 5 where as can be seen our peak detector, Fig. 5. Plot 2,
has identified all R peaks correctly while the 0.5 of the max amplitude threshold
[13], misses too many peaks as can be seen from Fig. 5. Plot 1.
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Fig. 5. Plot 1 shows the detected R peaks for a part of MIT-BIH 104 record using the
method proposed in [13]. Plot 2 shows the detected R peaks for the same part of ECG
using the proposed method.

5 Conclusion

To conclude, a new QRS detector was presented based on Empirical Mode De-
composition using an adaptive threshold which relies on the local signal energy.
Our method provides a solution for the detection of small R peaks by establishing
a threshold derived from the mean of the rms over eight segments. In addition,
our detector correctly discriminates R peaks from large Q peaks in the absolute
value of the signal, by using the first derivative of the ECG signal. Using the
MIT-BIH Arrhythmia database, the method performed effectively with accurate
QRS complex detection of 99.92%, using the Preterm Infant Cardio-Respiratory
Signals database and using the Capnobase dataset the method performed ef-
fectively with an Se of 99.95% and 100%, respectively. The proposed method
shows comparable results with other published methods using derivative-based
[3] and Hilbert methods [7] on common databases and real data. However, the
average R-peak time-of-occurrence error remains an issue to be addressed, thus
the problem of the inverted R peaks is going to be part of our future work.
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