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Abstract: The conventional k-modes algorithm and its variants have been extensively used for categorical data 

clustering. However, these algorithms have some drawbacks, e.g. they can be trapped into local optima and 

sensitive to initial clusters/modes. Our numerical experiments even showed that the k-modes algorithm cannot 

identify the optimal clustering results for some special datasets regardless the selection of the initial centers. In 

this paper, for small-sized datasets we developed an optimal programming approach based on integer linear 

programming (ILP) for k-modes clustering, which is independent to the initial solution; . For medium and large 

sized datasets, we developed a heuristic algorithm that implements iterative partial optimization in the ILP 

approach based on a framework of variable neighborhood search, known as IPO-ILP-VNS, to search for near-

optimal results with controlled computing time. Experiments on 38 datasets from the UCI site, including 27 

synthesized small datasets and 11 known benchmark datasets, were carried out to test the proposed ILP approach 

and the IPO-ILP-VNS algorithm. The experiment results outperformed the conventional and all other existing 

enhanced k-modes algorithms in literature. 

Keywords: Categorical clustering; Variable neighborhood search; Data mining; Integer linear programming  

1. Introduction 

Cluster analysis is a popular data mining technique used in the field of knowledge discovery in databases (KDD). 

The k-means algorithm (Macqueen, 1967; Jain and Dubes, 1988) is a well-known clustering approach for its 

efficiency in clustering large datasets. However, the k-means algorithm cannot handle categorical datasets due to 

the lack of mean value measurement for categorical data. Huang (1997) presented the k-modes algorithm that 

extended the k-means algorithm to categorical data domains by using a simple measure of matching dissimilarity 

for categorical objects and by assigning the most frequent categorical values as the modes of the clusters. 

Mathematically, the k-modes algorithm can be formulated as an optimization model as following (Huang 1997): 
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In the above formula, the objective function is to minimize the total inner-distances of all centers. Notations N, 

M, and C represent the set of data objects, the set of categorical attributes, and the set of objective clusters 

respectively. The numbers of elements in N, M, and C are denoted by n, m, and l (l < n) and indexed by i, j, and c 

respectively. Notation Xi represents the ith data object in the dataset X described by m categorical attribute in 

accordance to Xi = {xi1, xi2, …, xim}; The notation Qc∈Q denotes the center of the cth cluster described by m 

categorical attributes in accordance to Qc = {qc1, qc2,…,qcm}; The notation W = {wic} denotes an n ×  𝑙𝑙 binary 

membership matrix indicating that when wic = 1, the data object Xi belongs to the cluster c, and when wic = 1 it 

does not. Function d(Xi, Qc) is the measurement of distance/dissimilarity between the object Xi and its cluster 

center Qc, which is often referred to as the simple matching dissimilarity measure by Kaufman and Rousseeuw 

(1990).  

However, the optimization model formulated by Equation (1) and Constraints (1)–(4) is nonlinear and cannot 

be solved with optimal solutions. For solving this problem, the k-modes algorithm adopts a partial optimization 

strategy to optimize one of the two variables (i.e. W and Q) in turn until no further improvement can be made to 

the objective function. The steps are outlined in Fig. 1 below.  

1. Find a set of l initial cluster centers 

2. Fix Q and find W to minimize F(W, Q) 

3. Fix W and find Q to minimize F(W, Q) 

4. Repeat Steps 2 and 3, until F(Q, W) cannot be improved 

Fig.1 Partial optimization of the k-modes algorithm 

As pointed out by Huang (1997), the above partial optimization employed in the k-modes algorithm is not a 

global approach and the final clustering results are very sensitive to the initial centers/modes. Although many 

following-up studies (see the related work section) proposed enhanced/improved k-modes algorithms (or variants) 
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in order to improve the qualities and stabilities of the clustering results, this known drawback with k-modes 

clustering algorithms still exists.  

In this study, we formulated the k-modes clustering problem as an integer linear programming (ILP) model. 

This ILP model can be efficiently solved with optimal results for categorical clustering on small-sized datasets by 

using an MIP solver, without using initial centers/modes. We also proposed a heuristic algorithm, referred to as 

IPO-ILP-VNS, to find the near-optimal results for medium and large-sized datasets. Computational experiments 

on synthesized and benchmark datasets from the well-known UCI site were carried out to test the effectiveness 

and efficiency of the proposed ILP model and the IPO-ILP-VNS algorithm, and our new approach delivered better 

or equivalent clustering results than all existing algorithms in our experiments. Our numerical experiments also 

showed that the k-modes algorithm only has an average probability of 13.9% to identify the optimal results, with 

an average deviation of 16.2% from the optimal ones estimated by the ILP model. 

The remaining part of this paper is organized as follows. In Section 2, we present current related studies. In 

Section 3, a domain-mapping method is introduced to represent the categorical objects with binary matrices, based 

on which an integer linear programming (ILP) model is presented for the k-modes clustering problem. In Section 

4, we presents the proposed IPO-ILP-VNS algorithm, and an enhanced version of the ILP model for large-sized 

datasets. In Section 5, we carry out the first part of computational experiments to compare the ILP model with the 

conventional k-modes algorithm. In Section 6, we carry out the second part of the computational experiments to 

test the IPO-ILP-VNS algorithm and compare it with the existing algorithms on 11 benchmark datasets from the 

IUC site and three synthesized large-sized datasets. Finally, we conclude the study in Section 7. 

2. Review of related studies 

Since categorical data are ubiquitous in the real world, clustering data with categorical attributes has a broad 

range of practical applications. A number of clustering algorithms for categorical datasets have been studied and 

practiced in literature, such as the k-means-based algorithm (Ralambondrainy, 1995), the k-modes algorithms 

(Huang, 1998), the ROCK algorithm (Guha et al., 2000), the CACTUS algorithm (Ganti et al., 1999), the RST-

based algorithms (Parmar et al., 2007; Cao et al., 2012), the k-populations algorithm (Kim et al., 2005), the soft 

feature-selection scheme (Chen et al., 2016), the Clustering ensemble selection algorithm (Zhao et al., 2017), the 

k-multi-weighted-modes algorithm (Cao et al., 2017), and the clustering methods based on k-nearest-neighbor 

graph (Qin et al., 2018, Myhre et al., 2018). Among them, the k-modes categorical clustering algorithm is the most 

well-known algorithm that can cluster large-sized categorical datasets into a given number of clusters represented 

by the most-frequent attribute values (i.e., the modes) in a fast manner. However, the k-modes algorithm, as well 
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as its extensions/variants, are quite sensitive to initial modes/centers and may not be able to identify the optimal 

clustering results even using different initializations.  

A number of studies developed new initialization methods to improve the solution quality and stability of the 

k-modes algorithms, they can be largely categorized into four classes: (1) the refinement algorithms that refine 

the initial centers/modes iteratively (Bradley and Fayyad, 1998; Sun et al., 2002), (2) the distance-based 

algorithms that identify the k most separated data objects from the dataset as initial seeds (Barbara et al., 2002; 

He, 2006), (3) the multiple-clustering algorithms that utilize the results of multiple clusters on subsets of 

exemplars from the entire data object set (Frossyniotis et al., 2002; Khan and Kant, 2007; Bai et al., 2011; Khan 

and Ahmad, 2013), and (4) the density-based algorithms that consider the distributions/outlines of data objects to 

choose the initial centers/modes (Wu et al., 2007; Cao et al., 2009; Bai et al., 2011,2012; Jiang et al., 2016; Chen 

et al., 2017; Bai et al., 2017). The following section presents more details of these reviewed methods.  

Sun et al. (2002) first applied the iterative refinement algorithm for the k-means clustering (Bradley and Fayyad, 

1998) to the k-modes algorithm, which first drew an initial estimation of the clusters using the k-means or modes 

algorithm from a randomly selected subset of the data, and then subsequently extended the clusters to the entire 

data set by gradually adjusting the means or modes as more data are accumulated. The refinement algorithm 

reduced the sensitivity of the k-modes algorithms on their initialization, and was reported to yield better clustering 

results than the non-refinement initialization methods (Sun et al., 2002).  

Barbara et al. (2002) proposed the Coolcat algorithm which introduced the concept of entropy to measure the 

distance of data object pairs and used a max–min distance/entropy method to find the k most dissimilar data 

objects from the dataset as the initial seeds. He (2006) used a farthest-point heuristic approach as the initialization 

method of the k-modes algorithms, which takes an arbitrary point as the first initial center, and then picks 

iteratively the next point that has the maximum distance to the nearest point among all the points picked so far, 

until all initial centers were determined. However, the distance-based methods are apt to consider far away data 

objects, and outliers may thus be selected which may worsen the clustering results (Bai et al., 2012).  

Frossyniotis et al. (2002) presented the multiclustering fusion method which combines the results of multiple 

independent runs of clustering in order to obtain a stable dataset partition. Khan and Kant (2007) utilized the idea 

of evidence accumulation to combine the results of multiple clustering to determine the most diverse set of initial 

modes for the k-modes algorithm. Khan and Ahmad (2013) proposed a cluster center initialization algorithm that 

performs multiple dataset clusters, based on different selection of the attributes with respect to their significance 

ranking.  
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Wu et al. (2007) introduced the concept of data object density and proposed a density-based initialization 

method for the k-modes algorithm according to which the point with the highest density should be selected as the 

initial cluster centers. Cao et al. (2009) presented the concept of data object density, which was defined as the 

average frequency of one object's categorical attribute value that appeared in other objects, and combined it with 

a distance measure to determine a set of initial cluster centers. Bai et al. (2011, 2012) defined the data object's 

density as the number of other objects to which the object-of-interest was the nearest, and integrated the density 

with the distance measures to select k initial cluster centers from the potential exemplar set. Chen et al. (2017) 

proposed a fast clustering algorithm which determined the cluster center quickly by constructing the normal 

distribution function of the density and distance of the data objects. In contrast to the data object density, Jiang et 

al. (2016) defined the data objects' outlierness in terms of a weighted matching distance and thereby improved the 

initialization of the k-modes algorithm by avoiding to choose outliers as initial cluster centers. Chen et al. (2016) 

proposed an algorithm for clustering categorical data with a novel soft feature-selection scheme, where the 

dissimilarity between categorical data objects is measured using a probabilistic distance function. Zhao et al. 

(2017) presented a clustering ensemble selection algorithm for categorical data with five normalized validity 

indices to measure the quality and diversity of the clusters. Gupta et al. (2018) developed two leaping techniques 

to estimate the number of clusters that was needed to be given in advance for center-based clustering methods. 

All the initialization algorithms/methods in the reviewed papers above reported some degrees of improvement 

on clustering qualities or stabilities of the k-modes algorithms. However, few of them discussed the optimality of 

the clustering results in terms of the objective function. Actually, our numeric experiments (see Section 5.1) 

showed that the k-modes algorithm has a very low (even zero for some tested datasets) probability to find out the 

optimal clustering results. The optimality of the clustering algorithm, especially for large-sized categorical 

datasets is an important issue, but has not received enough research attention.  

In this study, we propose a new optimal approach based on integer linear programming (ILP) to solve the k-

modes clustering problem toward the minimization of the total inner-distance function, based on the framework 

of variable neighborhood search (VNS), particularly for large-sized categorical dataset. Although ILP-based 

techniques were applied to other types of clustering problems in literature, such as the set-level constrained 

clustering problem by Mueller and Kramer (2010) and the hierarchical clustering problem by Gilpin et al. (2013), 

there is no work found on formalizing the k-modes clustering as an ILP model. Global meta-heuristics can also be 

found in literature for solving the clustering problems with near-optimal solutions, such as the Tabu search and 

genetic algorithms for k-modes clustering (Ng and Wong 2002; Gan et al., 2009), the particle swarm optimization 
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(Kao et al., 2008) for the k-means clustering, and the variable neighborhood search for the harmonic means 

clustering (Alguwaizani et al., 2011).  

3. An integer linear programming model for k-modes clustering 

In this section, we first introduce a new categorical data representation method using a domain-mapping 

technique followed by presenting an integer linear programming (ILP) model for the k-modes clustering on 

categorical datasets.  

3.1 A domain-mapping method for representing categorical objects 

Suppose there is a set of data objects denoted as X = {X1, X2, …, Xn} and m associated categorical attributes 

denoted as A1, A2…, Am. Each data object Xi can be expressed as Xi = {xi1, xi2, …, xim} and each categorical attribute 

Aj corresponds to a domain with limited categorical values denoted as a vector jV  = { (p )(1) (2), ,..., j
j j ja a a }, where 

pj is the total number of categorical values in the domain Aj. We use the following two definitions to transfer the 

categorical values/objects into binary representations. 

DEFINITION 1. Domain-mapping of categorical values: A categorical value of data object Xi on a limited 

domain Aj, i.e., xij, can be uniformly expressed as a mapping on the domain in the form of the point product 

ij ij jx Vδ= ⋅ , where 1 2={ , ,..., ,..., }jpt
ij ij ij ij ijδ δ δ δ δ  is a mapping vector satisfying {0,1}t

ijδ ∈  and 
1

1
jp

t
ij

t
δ

=

=∑ , and 

V is the domain vector representing the ordered categorical values in domain Aj. 

DEFINITION 2. Domain-mapping of categorical object: A data object iX   with m attribute values 

1 2, , ...,i i imx x x on categorical domains A1, A2,…, Am can be expressed in the form of the point product i iX = ∆ ⋅Ω , 

where 1 2={ , ,..., }i i i imδ δ δ∆  is a mapping matrix characterizing the exact position of the data object iX  in the 

domain matrix 1 2={ , ,..., }mV V VΩ . 

Thus, based on Definition 1, we can express any categorical value as the product of an individualized mapping 

vector and a common domain vector. Furthermore, by Definition 2, a categorical data object with multiple 

categorical attributes can be expressed as the product of an individualized mapping matrix and a common domain 

matrix. Note that either the mapping vector, or the matrix, contain only binary elements, which allows us to build 

an integer programming model for data object clustering.  

In the following, we use examples to illustrate how the categorical data objects are expressed by binary matrices. 

Suppose there are four objects in the dataset X, i.e., X = {X1, X2, X3, X4} that have three categorical attributes on 
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three domains, namely, SEX, EDUCATION, and JOB. Four data objects have specified attribute values as follows:  

X1 = {male, bachelor, engineer} 

X2 = {female, doctor, teacher} 

X3 = {female, master, manager} 

X4 = {male, bachelor, scientist} 

The domain matrix on three attributes is given as follows. 

sci

male bachelor teacher
female engineermaster

managerdoctor
entist

 
 
 Ω =  
 
 

 

Thus, according to Definitions 1 and 2, we can express the data objects X1, X2, X3, and X4, as 1 1X = ∆ ⋅Ω  , 

2 2X = ∆ ⋅Ω , 3 3X = ∆ ⋅Ω , and 4 4X = ∆ ⋅Ω , and each 1 2={ , ,. .., }, 1, 2, 3, 4i i i im iδ δ δ∆ ∀ = corresponds to a 

binary matrix detailed as follows, 

1

01 1
0 0 1

0 0
0

 
 
 ∆ =  
 
 

 2

0 0 1
0 01

01
0

 
 
 ∆ =  
 
 

 3

0 0 0
01 1

0 1
0

 
 
 ∆ =  
 
 

 4

01 1
0 0 0

0 0
1

 
 
 ∆ =  
 
 

 

3.2 Integer linear programming (ILP) model 

Below, we present the ILP model for the k-modes clustering problem on categorical datasets. 

Parameter notations: 

N set of data objects to be clustered, n = card(N) 

i  index of data objects, i ∈ N 

M set of attributes/domains to describe data objects, m = card(M) 

j index of attributes/domains, j ∈ M 

Aj value domain of attribute j 

Vj set of all categorical values in domain Aj, pj = card(Vj) 

v index of values for domain Aj, v ∈ Vj  

ωijv  binary mapping matrix of data objects defined in Definitions 1 and 2, indicating that if object i takes vth 

categorical values in domain Aj (by ωijv = 1) or not (by ωijv = 0), and satisfying 1
j

ijv
v V

ω
∈

=∑  and ijvω ∈Ω . 

C set of clusters, l = card(C) 
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c index of clusters, c�C 

Variables: 

wic binary decision variable, indicating if a data object i belongs to cluster c (by wic = 1) or not (by wic = 0) 

ucjv binary decision variable, indicating if the center of cluster c takes the vth categorical value in domain Aj (in 

accordance to ucjv = 1) or not (in accordance to ucjv = 0) 

dicj binary decision variable, indicating if data object i has a different value than the cluster center c on attribute 

j (by dicj = 1) or not (by dicj = 0) 

Objective function 

The objective function of the k-modes clustering is to minimize the total inner-distance of all clusters, which is 

expressed as follows: 

Min. ( , ) icj
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(9) , , {0,1} , , ,ic cjv icj jw u d i N c C j M v V∈ ∀ ∈ ∈ ∈ ∈  

In the above formula, Constraint (5) determines the binary distance of each data object to its cluster center on 

each attribute. The nonlinear absolute function is kept for the model simplification and can be linearized by 

dividing it into two linear constraints. Note that the term (1−wic) on the right side of the equation ensures that the 

variable dicj must be greater than or equal to |ωijt−ucit| only for wic = 1 (indicating that data object i belongs to 

cluster c). Constraint (6) indicates that each attribute of the cluster center must have only one categorical value 

from the attribute domain. Constraint (7) indicates that each object must belong to one cluster. Constraint (8) 

indicates that each cluster must have at least one data object/member. Constraint (9) indicates that the distances 

of a data object to other clusters (it does not belong to) must be zero. Constraint (10) defines the value domains 

of all variables. According to the theory of Huang (1998) that the optimal center of a given cluster always takes 
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the most-frequent attribute values of its element members, the following Constraints (10) and (11) is not necessary 

for the integrity of the ILP model but always holds for optimal solutions. 

(10)  , ,icj icd w i N c C j M≤ ∀ ∈ ∈ ∈   

(11) 
1

( 1) ; ; , ;
n

ijv ic ijv ic cjv j
i N i

w w n u c C j M v v V v vω ω ′
∈ =

′ ′− ≥ − ∀ ∈ ∈ ∈ ≠∑ ∑  

Thus, based on the objective function Eq. (2) and Constraints (5)–(9), we have formulated the k-modes 

clustering problem as an integer linear programming (ILP) model. Note that since all expressions are linear, the 

ILP model can be directly solved optimally by an MIP solver that does not need any initial solution. In the 

experimental section, we use the ILP model to solve a set of synthesized datasets and several well-known 

benchmark datasets, and compare the results with those obtained by traditional k-modes-based algorithms. 

4. VNS-based heuristic approach for medium and large-sized datasets 

The ILP model formulated in Section 3 is practically unsolvable for medium and large-sized data set within 

reasonable CPU time. To deal with this, we develop a heuristic approach that implements iterative partial 

optimization (IPO) on the ILP model under the framework of variable neighborhood searches (VNS), known as 

IPO-ILP-VNS, to obtain a near-optimal solution whose quality can be controlled by the given CPU time. VNS is 

a new top-level meta-heuristics approach proposed by Mladenovic and Hansen (1997) and it has been successfully 

applied to combinatorial optimization problems in various fields, such as the travelling salesman problem, the P-

median problem, the vehicle routing problem, and the multi-level lot-sizing problem (Hansen et al., 2010; Xiao 

et al., 2011a, 2014a). The mechanism of VNS is to perform local search with designed changes in multilevel 

neighborhoods, which gives many desirable properties of meta-heuristics such as simplicity, robustness, user-

friendliness and generality (Hansen et al., 2008). This is a first try to implement the VNS scheme on the k-modes 

clustering problem. The IPO on an ILP model is also referred to as the ILP-based refinement or the “fix-and-

optimize heuristics” in other fields of applied optimizations (Franceschi et al., 2006; Helber and Sahling, 2010; 

Xiao et al., 2011a, 2011b; Xiao and Konak, 2016).  

4.1 ILP-based variable neighborhood search 

The ILP model formulated in Eq. (2) and Constraints (5)–(9) has three groups of binary variables, which are 

wic, ucjt, and dicj. Since ucjt is tightly bound to wic according to Constraint (11), and dicj is dependent on wic and ucjt, 

there is only one independent variable, namely wic. Thus, to determine an optimal solution, we just need to 

determine optimally n l×  combinations of binary values for variable wic. However, for medium and large-sized 

problems, the binary variables in wic are too many for their optimization with the MIP solver at one time, to deal 
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with this, we employ the IPO strategy to select only a small part of the binary variables in wic for optimization 

while fixing the rest with given values (which may not be optimal). Thus, an MIP solver can solve the “limited” 

problem very efficiently. Furthermore, by repeating the “select-optimize” IPO process iteratively based on the 

framework of the variable neighborhood search (VNS) (Mladenović and Hansen, 1997, Hansen and Mladenović, 

2001; Mladenovic et al., 2012; Xiao et al., 2011a, 2014b), the original task to optimize the entire medium and 

large-sized problem at a single instant is decomposed to optimize multiple small-sized problems at multiple times.  

To implement the IPO under a VNS framework, we first define a distance metric of solutions based on variable 

wic, and then define the neighborhood structure of solutions based on the distance metric. 

DEFINITION 3. The distance metric: For any two solutions, say x and y, of the ILP model formulated in Eq. (2) 

and Constraints (5)–(9), the solution distance, noted as dis(x, y), can be calculated by 

( ) ( )

,

1( , )= | |
2

x y
ic ic

i N c C
dis x y w w

∈ ∈

−∑  , where ( )x
icw   and ( )y

icw   are membership matrices for solutions x and y 

respectively. 

The distance metric reflects the exact number of data objects classified into different clusters in the two 

solutions. In Fig. 2, we provide two examples to show how the solution distances are calculated. The solutions x 

and y in Fig. 2A have only one data object (i.e., data object No. 2) that belongs to different clusters, so we have 

dis(x, y) = 1. The solutions x and y in Fig. 2B have two data objects (i.e., data objects No. 1 and 2) that belong to 

different clusters, and thus dis(x, y) = 2. The property 0 ≤ dis(x, y) ≤ n holds for any two solutions, where n is the 

total number of data objects in the dataset. 

( ) ( )

0 0 0 01 1
0 0 0 01 1,

0 0 0 01 1
0 0 0 01 1

x y
ic icw w

  
  
   = =   
   
     

  ( ) ( )

0 0 0 01 1
0 0 0 01 1,

0 0 0 01 1
0 0 0 01 1

x y
ic icw w

  
  
   = =   
   
     

 

                         (A) dis(x, y) = 1         (B) dis(x, y) = 2 

Fig.2 Examples of solution distances 

DEFINITION 4. Neighborhood structures of incumbent solution: For the incumbent solution x of the ILP model 

formulated in Eq. (2) and Constraints (5)–(9), a solution set Nk(x) is the kth neighborhood of x if it satisfies 

( , )dis x y k≤  for all ( )ky N x∈ . 

  Based on Definitions 3 and 4, the algorithm of IPO-ILP-VNS that combines iterative partial optimization, the 

ILP model, and the VNS framework, is given in Fig. 3, as follows. 

Algorithm IPO-ILP-VNS (Kmax, Lmax, R): 

https://en.wikipedia.org/w/index.php?title=Mladenovi%C4%87,_Hansen&action=edit&redlink=1
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1) Initialization: find a solution x based on the following two steps: 

     (a) Select randomly l data objects as cluster centers 

     (b) Assign all data objects to their nearest cluster center 

2) Set k←R, L←0 

3) Until k = kmax repeat the following steps 

(A) Shaking: select randomly a set K of k data objects 

(B) Local search (the partial optimization): 

   Fix variable instances ( )x
icw for all ,i N c C∈ ∈  

   Unfix variable instances ( )x
icw  for all ,i K c C∈ ∈  

   Call the MIP solver to find a new solution x′ in the neighborhood Nk(x) 

(C) If x′ improves upon x Then let x←x′, L←0 

 Else let L←L+1 

(D) If L>Lmax then let k←k + R and let L←0 

4) Return the best solution found 

Fig.3 Framework of the IPO-ILP-VNS algorithm 

The IPO-ILP-VNS algorithm has three parameters, namely Kmax, Lmax, and R, that represent the farthest 

neighborhood to-be-searched, the maximum tries between two improvements within a neighborhood, and the step 

needed to enlarge the neighborhood respectively. The algorithm first initializes a solution x from a set of randomly 

selected cluster centers, and then starts to search the first neighborhood (k←R) for improvement. The Shaking 

phase selects randomly k number of data objects that will be allowed (by an unfix operator) to be optimized for 

their clustering memberships. The local search phase implements partial optimization on the selected data objects 

by an MIP solver. In this phase, if a better solution x′ is found (in Step 3C), then accept it by x←x′, and reset the 

non-improvement counter by L←0. Otherwise, increase the non-improvement counter by L←L+1. In the next step 

(step 3D), determine if the non-improvement counter is greater than the parameter Lmax. If it is, then search the 

next neighborhood by k←k + R and reset the non-improvement counter by L←0. The algorithm stops after the 

maximum neighborhood Kmax has been searched without improvement after Lmax continuous tries.  

Note that in Step 3A) of the IPO-ILP-VNS algorithm, all the data objects have equal probability to be selected 

into the set of partial optimizations. However, two priority policies can be applied here in order to accelerate the 

converging process of the algorithm. The first one is the Distance Priority Policy (DPP), which assumes that data 

objects with larger distances to their cluster centers should have higher probabilities for being selected. The 

underlying philosophy is simple: since these data objects are far from the center they are more likely to switch 

their cluster memberships in the partial optimization. The other one is called Time Priority Policy (TPP), indicating 

that a data object waiting for longer time (to be selected) will have a higher probability to be selected. Under TPP, 

for each data object there is a time recorder to record the last time it had been selected into a partial optimization. 
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We have verified the effects of these two heuristic policies in our computational experiments. 

The IPO-ILP-VNS algorithm adopts a general framework of the VNS algorithm with only a replacement of 

the local search by an IPO process, so it has the same level of computational complexity with the VNS which is 

measured by how many times of local search being implemented. We suppose the average CPU time used in each 

round of local search (i.e., the partial optimization by an MIP solver) is denoted by T, the times of local search is 

estimated by the product of the maximum number of neighborhoods to be searched (i.e., Kmax) and the maximum 

times of tries on each neighborhood (i.e., positively related to Lmax). Thus, the complexity level of the IPO-ILP-

VNS algorithm can be estimated as O (Kmax×Lmax×T). 

4.2 Improved expression of the ILP model for large size problems 

When the problem size is large, such as up to 100,000 data objects, the ILP model formulated by Eq. (2) and 

Constraints (5)–(9) in Section 3 is actually unsolvable for an MIP solver, even for optimizing only a small part of 

the decision variables. In this subsection, we use a merging method to improve the expression of the ILP model 

so that it can be applied to solve problems with large sizes using the IPO-ILP-VNS algorithm. This merging 

method sums the attribute information of all the fixed data objects according to their cluster belongingness, and 

then uses the summed information in the ILP model. As shown next, three new parameters are introduced to 

describe the improved ILP model. 

N' set of selected data objects to be re-clustered 

zcjv number/frequency of fixed data objects in cluster c that take the t value in domain Aj, 
\

cjv ijv
i N N

z ω
′∈

= ∑  

rc number of fixed data objects in cluster c, 
\

c ic
i N N

r w
′∈

= ∑  

The ILP model formulated in Eq. (2) and Constraints (5)–(9) in Section 3 can be improved as new formulas in 

Eq. (3) and Constraints (12)–(17) as follows. 

Min. ( , )
j

icj cjt cjv
c C i N j M c C j M v V

F W U d z u
′∈ ∈ ∈ ∈ ∈ ∈

= +∑∑∑ ∑∑∑   (3)  

s.t.  

(12) (1 ) , , ,icj ijv cjv ic jd u w i N c C j M v Vω ′≥ − − − ∀ ∈ ∈ ∈ ∈  

(13) =1 ,
j

cjv
v V

u c C j M
∈

∀ ∈ ∈∑  

(14) 1ic
c C

w i N
∈

′= ∀ ∈∑  
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(15) 1c ic
i N

r w c C
′∈

+ ≥ ∀ ∈∑  

(16)  , ,icj icd w i N c C j M′≤ ∀ ∈ ∈ ∈  

(17) , , {0,1} , , ,ic cjv icj jw u d i N c C j M v V′∈ ∀ ∈ ∈ ∈ ∈  

In the above formulas, the objective function has two terms, the first of which is from the selected data objects 

(will be re-optimized) and the second is from the unselected data objects (will be fixed). Note that zcjv contains 

merged information of data objects with fixed values. It is a constant parameter so the objective function is still 

linear. Constraints (12)–(17) can be interpreted in a similar manner to Constraints (5)–(9) except that the data 

object set N is replaced by N'. Note that the replacement of N by N' has reduced the complexity of the ILP model 

significantly, because N can be a very large number but N' is a small number. This makes it possible to solve very 

large-sized categorical clustering problems using the IPO-ILP-VNS algorithm.  

5. Computational experiment-part I 

The experiments were conducted on a Mac book computer with a 2.9 Intel Core i7 CPU and a 4G RAM. The 

ILP model was coded using AMPL (see Fig. A1 in Appendix) and was solved with the well-known MIP solver 

CPLEX (Version 12.6.1.0). 

5.1 Numeric experiments on synthesized datasets 

Firstly, we generated a group of small-sized datasets of categorical data objects to test the ILP model and 

compared the clustering results with those of the k-modes algorithm. This group of datasets has five classes that 

contain 10, 12, 14, 16, 18, and 20 data objects, respectively, and each class is associated with four categorical 

attributes that have four categorical values. The data objects in each dataset will be clustered into 2, 3, 4, or 5 

clusters, respectively, with an objective function for the minimization of the total inner-distance of all clusters. 

Thus, the combination produces 6×4 = 24 problem instances for testing.  

We first applied the k-modes algorithm to solve the 24 problem instances. The first-match policy was applied 

in the algorithm when a data object had an equal distance to the multiple cluster centers. We executed the k-modes 

algorithm repeatedly using all the possible combinations of the initial cluster centers in order to obtain all the 

possible results. Subsequently, we used the AMPL/CPLEX to solve the ILP model formulated in Eq. (2) and 

Constraints (5)–(9) for each of the test problems to obtain the optimal solutions. The performance and comparison 

of the test are shown in Table 1, where column “Optimal solutions” indicates the optimal solutions obtained by 

solving the ILP model, column “Number of initial combinations”, calculated as Cl
n , indicates the total number 

of initial center combinations, column “Number of distinct solutions” indicates the total number of final distinct 
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solutions found by the k-modes algorithm, columns “Best solution” and “AVG solution” indicate the best and 

average solutions respectively, column “Dev. (%)” is the deviation of the average solution found by the k-modes 

algorithm from the optimal solution found by the ILP model, column “Optimal solution found?” indicates if the 

k-modes algorithm has found the optimal solution based on all the initial combinations, and column “Optimality 

rate (%)” indicates the statistical possibility of reaching the optimal solution if started from a random initialization.  

Table 1 Experimental results and comparisons of 24 small-scale instances 
 

Problem 

ID 

   Execution of k-modes algorithm based on all initial combinations 

Number 

of objects 

Number 

of clusters 

Optimal 

solution 

Number of initial 

combinations 

Number of 

distinct solutions 

Best 

solution 

AVG 

solution 

Dev. 

(%) 

Optimal 

found? 

Optimality 

rate (%) 

1 10 2 16 45 3 16 16.6  3.6 Yes 64.4 

2 10 3 13 120 5 13 13.8  6.2 Yes 37.5 

3 10 4 11 210 5 11 12.3  12.1 Yes 4.8 

4 10 5 8 252 6 8 10.3  28.8 Yes 0.4 

5 12 2 23 66 5 24 24.8 7.8 No 0 

6 12 3 17 220 6 17 19.1  12.4 Yes 7.3 

7 12 4 13 495 8 13 15.2  17.0 Yes 8.3 

8 12 5 9 792 7 9 11.3  25.1 Yes 3.9 

9 14 2 26 91 6 26 27.0  4.0 Yes 37.4 

10 14 3 20 364 7 20 22.2  10.8 Yes 8.0 

11 14 4 16 1001 9 16 18.7  17.0 Yes 1.0 

12 14 5 12 2002 9 12 14.4  19.7 Yes 1.8 

13 16 2 26 120 7 26 28.6  9.8 Yes 18.3 

14 16 3 24 560 9 25 27.4 14.2 No 0 

15 16 4 19 1820 10 19 22.1  16.5 Yes 0.9 

16 16 5 17 4368 9 17 18.8  10.5 Yes 12.5 

17 18 2 31 153 9 31 32.5  4.8 Yes 58.2 

18 18 3 26 816 12 26 28.5  9.5 Yes 19.5 

19 18 4 24 3060 9 24 27.0  12.4 Yes 3.2 

20 18 5 21 8568 9 21 24.0  14.3 Yes 1.8 

21 20 2 35 190 9 35 37.9  8.4 Yes 14.2 

22 20 3 30 1140 10 30 31.9  6.3 Yes 23.1 

23 20 4 24 4845 11 24 26.3  9.5 Yes 6.2 

24 20 5 22 15504 16 22 26.6  21.1 Yes 0.7 

AVG        16.2  13.9 

Note: numbers indicated in boldface denote optimal values 

It can be observed from Table 1 that the ILP model has found optimal solutions for all tested problems. The k-

modes algorithm may have different results if started from different initializations, with an average optimality rate 

of 13.9% for the 24 test problems. We note that the k-modes algorithm has a zero optimality rate for instances No. 

5 and No. 14, thus indicating that irrespective of the combination of the selection of the initial centers, the optimal 

objective values, which are 23 and 24 for instances No. 5 and No. 14 according to the ILP model, respectively, 

will not be found by the k-modes algorithm. This is because the k-modes algorithm is a partial optimization process 

that performs iterative optimization on only one of the two variables Q and W at a time. So it is not a global 
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strategy and does not guarantee the result optimality. In particular, when a data object has an equal distance to 

multiple clusters, the algorithm has to assign the data to one of the clusters under certain policies (e.g., first-match, 

last-match, at random), which may cause the result losing optimality. For other instances, such as No. 4, 11, 12, 

15, 19, 20, and 24, the optimality rates are very low (approximately 1%), thus indicating that their optimal 

solutions are very difficult to find. The average deviation of the solutions by the k-modes algorithm is 

approximately 16.2% higher (or worse) than the optimal solutions found by the ILP model.  

We list instance No. 5 in Table A1 in Appendix for interested readers, whose optimal clustering result is c1 = 

{3,4,6,7,11,12} and c2 = {1,2,5,8,9,10} with respect to the cluster centers [3, 3, 4, 3] and [4, 1, 3, 1] respectively. 

The detailed result distribution of instance No.14 is shown in Fig. A2 in Appendix. More distributions of distinct 

solutions can be found in Fig. A3 for the problem instances with Nos. 21, 22, 23 and 24. The relations between 

the number of local optima and the total number of data objects with respect to different cluster numbers can be 

found in Fig. A4. The trend of the average deviation of solutions against the total number of data objects and the 

number of clusters can be found in Fig. A5. 

5.2 Numeric experiments on small-sized benchmark datasets 

Next, we use a group of well-known benchmark datasets published in the UCI repository 

(ftp://ftp.ics.uci.edu/pub/machine-learning-databases/) to test the performance of the ILP model and compare the 

results with the best ones provided in the literature. We select four larger datasets with object numbers 24, 132, 

432, and 432, to test the ILP model. Detailed features of these datasets are listed in Table 2, including the number 

of data objects, the number of attributes, the number of original classes into which the objects were originally 

classified in reality, the attribute domain, and the outlines of the original classes.  

Table 2 Benchmark datasets from UCI repository 
Dataset 

name 

Number of 

objects 

Number of 

attributes 

Number 

of classes 

Number of values in each 

attribute domain 

Number of objects 

in each class 

Lenses 24 4 3 {3, 2, 2, 2} {4, 5, 15} 

Hayes–Roth 132 4 3 {3, 4, 4, 4} {51, 51, 30} 

Monks-1 432 6 2 {3, 3, 2, 3, 4, 2} {216, 216} 

Monks-2 432 6 2 {3, 3, 2, 3, 4, 2} {216, 216} 

We first used the k-modes algorithm to solve these benchmark datasets and repeated 30 runs for each dataset 

with random initializations to obtain 30 random results. Subsequently, we used AMPL/CPLEX to solve these 

datasets with the ILP model formulated in Eq. (2) and Constraints (5)–(9) to obtain the optimal results. The cluster 

qualities (in terms of the objective function value) and performances are shown and compared in Table 3. 

Subcolumns “Best”, “AVG”, “Deviation (%)”, and “Time” under column “Thirty runs of k-modes algorithm” 

ftp://ftp.ics.uci.edu/pub/machine-learning-databases/
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represent the best solution of 30 runs, the average solution of 30 runs, the deviation of the average solution from 

the optimal solution found by the ILP model, and the average computational time used respectively. Subcolumns 

“Optimum” and “Time” under the column entitled “ILP model” represent the optimal solution obtained by the ILP 

model and the computational time used respectively. 

Table 3 Experimental results and comparisons 
Dataset  Thirty runs of k-modes algorithm  ILP model 

Name Best AVG  Deviation (%) Time  Optimum Time 

Lenses 27 30.4 12.6 <1s  27 <1 s 

Hayes–Roth 201 210.6 6.3 <1s  198 36.8 s 

Monks-1 1256 1338.5 6.6 <1s  1256 27.5 s 

Monks-2 1256 1333.5 5.8 <1s  1256 28.7 s 

AVG   7.1     

    Note: boldface numbers denote optimal values 

It can be observed in Table 3 that the optimal results obtained by the ILP model for datasets “Lenses”, “Hayes–

Roth”, “Monks–1”, and “Monks–2” are 27, 198, 1256, 1256 respectively, they are always smaller than or equal 

to the best results obtained by the k-modes algorithm. Notably the k-modes algorithm found the optimal result of 

dataset “Lenses” (which is 27) only once in 30 runs, but could not find the optimal result for the dataset “Hayes–

Roth” in 30 runs. The deviations of the average results the k-modes algorithm with respect to the optimal results 

are also quite large, which for example can be as high as 12.6% and 6.3% for datasets “Lenses” and “Hayes–Roth” 

respectively.  

The benchmark datasets in the UCI repository provided their actual cases of class partitions in reality, which 

often serve as benchmarks for comparison in categorical clustering research studies (Saha and Das, 2008; Wu et 

al., 2007). For examples, dataset “Lenses” has been partitioned into three classes in reality with the object numbers 

of 4, 5, and 15 respectively. However, our ILP model shows that these actual class partitions of the datasets may 

not be optimal in terms of their clustering quality evaluated by the total inner-distance objective function. In Table 

4, we compare the cluster qualities of the actual cases with those of the optimized ones obtained using the ILP 

model. Column “Known-best” represents the actual class partitions provided in benchmark datasets, and Column 

“ILP model” represents the optimal results found by the ILP model. It can be observed that the objective values 

of the ILP model are much lower than those of the actual class partitions. We may thus say that the original 

classifications for these datasets are not optimal in terms of the objective function towards the minimization of 

the total inner-distance. Therefore, the clustering results of this study may serve as a new benchmark for future 

research studies in the field of categorical clustering. 

Table 4 Experimental results and comparisons 
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 Known-best ILP model Improved (%) 

Lenses 34 27 −20.6 

Hayes–Roth 280 198 −29.3 

Monks-2 1565 1256 −19.7 

Monks-1 1500 1256 −16.2 

Note: numbers in boldface indicate new, optimal values 

6. Computational experiments--part II 

In this section, we conducted computational experiments on small, medium, and large-sized datasets to test the 

performance of the IPO-ILP-VNS algorithm and compare the results with several enhanced k-modes algorithms 

in the literature. All experiments were run on a PC server with two 2.30 GHz Intel@ Xeon(R) CPUs (32 cores) 

and 110 GB memory. The improved ILP model were coded by AMPL and solved with the well-known MIP solver 

CPLEX (Version 12.6.1.0). We first tested the optimality of the IPO-ILP-VNS algorithm using small-sized 

benchmark datasets in Section 6.1, and then tested the effects and efficiencies of the IPO-ILP-VNS with medium 

and large-sized benchmark datasets in Section 6.2.  

6.1 Optimality test 

We ran the IPO-ILP-VNS algorithm to solve the UCI benchmark datasets in Table 2. The calculations were 

repeated 30 times and started from a random k-modes initialization, such that 30 random results were obtained. 

The cluster qualities (in terms of the objective function) and performances are shown and compared in Table 5. 

Subcolumns “Best”, “AVG”, “Deviation (%)”, and “Time” represent the best solutions for 30 runs, the average 

solutions for 30 runs, the deviation of the average solution from the optimal solution by the ILP model, and the 

average computational time used, respectively. 

Table 5 Experimental results and comparisons 
Dataset  Thirty runs of IPO-ILP-VNS  Thirty runs of k-modes  ILP model 

Name Best AVG  Deviation (%) Time  Best AVG  Deviation (%) Time  Optimum Time 

Lenses 27 27 0 <1s  27 30.4 12.6 <1s  27 <1s 

Hayes–Roth 198 200 1.01 26.9s  201 210.6 6.4 <1s  198 36.8s 

Monks-1 1256 1257.1 0.09 15.1s  1256 1338.5 6.6 <1s  1256 27.5s 

Monks-2 1256 1256.8 0.06 13.6s  1256 1333.5 6.2 <1s  1256 28.7s 

AVG   0.29     7.9     

It can be observed in Table 5 that the IPO-ILP-VNS algorithm could find optimal solutions for all the test 

datasets, exhibiting good optimalities and high-computational efficiencies as well. The average deviation from the 

optimal solutions is as low as 0.29%, which is much lower than the average deviations of the k-modes algorithm, 

which is 7.9, and ranges from 6.2% to 12.6% in comparison to the IPO-ILP-VNS algorithm in 30 random runs.  

6.2 Comparison of existing algorithms on medium and large-sized datasets 

We used another group of medium and large-sized datasets in the UCI repository to compare the IPO-ILP-VNS 
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algorithm with three improved k-modes algorithms in the literature (Cao et al., 2009; and Wu, 2007; Khan, 2013). 

Detailed features of these datasets are listed in Table 6, including the number of objects, the number of attributes, 

the number of classes (i.e., the objects were originally classified in reality), the attribute domain, and class outlines. 

Note that although datasets “Zoo”, “Soybean”, and “Lung-cancer” have only small numbers of data objects, they 

may have large numbers of attributes, target classes, or attribute domains, so they cannot be solved directly using 

an MIP solver. Therefore, we categorized these problems into a medium-sized class. Datasets “L1”, “L2”, and 

“L3” are large-sized datasets randomly generated in this study that respectively contain 20000, 50000, and 100000 

distinct data objects with 10 categorical attributes and 2–8 categorical values in each of them. 

Table 6 Medium and large-sized benchmark datasets 
Dataset name Number of 

objects (n) 
Number of 

attributes (m) 
Number of 
classes (l) 

Number of categorical values 
in each attribute domain 

Number of objects in 
each class 

Lung-cancer 32 56 3 2–3 {913, 10} 

Tic-tac-toe 958 9 2 3 {626, 332} 

Vote 435 16 2 2 {168, 267} 

Soybean   47 21 4 2–7 {10, 10, 10, 17} 

Car 1728 6 4 3–4 {1210, 384, 69, 65} 

Zoo  101 16 7 2, 6 {41, 20, 5, 13, 4, 8, 10} 

Mushroom  8124 22 2 1–10 {626, 332} 

L1 20,000 10 3 2–8 -- 

L2 50,000 10 2 2–8 -- 

L3 100,000 10 2 2–8 -- 

A preliminary analysis had been conducted to fine-tune the parameters Kmax, Lmax, and R, for the IPO-ILP-VNS 

algorithm with respect to different sizes of datasets. Our choice of parameter values may not be the best possible. 

However, the settings used generally worked well on our test datasets. For medium-sized datasets, including 

“Lung-cancer”, “Tic-tac-toe”, “Vote”, “Soybean”, “Car”, “Zoo”, and “Mushroom”, we applied the DPP policy in 

the random shaking of data objects for partial optimization, which helped us find higher quality solutions. For the 

large-sized datasets “L1”, “L2”, and “L3”, the TPP policy was applied to improve the computational efficiencies. 

The clustering results/solutions (in terms of the objective function value) are shown in Table 7 and are compared 

with the results of the traditional k-modes algorithm and with four existing results of k-modes-based algorithms 

in the literature (Wu et al., 2007; Khan et al., 2013; Jiang et al., 2016). Column “VNS parameters” indicates the 

numbers of selected data objects in different neighborhoods. Subcolumns “Best,” “AVG,” “Deviation (%),” and 

“Time” under column “Ten runs of IPO-ILP-VNS” represent the best results, the average results, the deviations, 

and the CPU time used of the IPO-ILP-VNS algorithm respectively. Column “Ten runs of k-modes” lists the results 

of the k-modes algorithm with randomly initialized centers. Note that the values shown in Columns “Jiang et al. 

(2016)” and “Khan et al. (2013)” are the best objective values re-calculated based on the confusion matrices 

provided in their publications. It can be observed that the IPO-ILP-VNS algorithm provided new results that are 
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the best for all tested datasets and superior to all other methods, based on a comparison in terms of the cluster 

qualities evaluated by objective values. Five out of the seven tested datasets were updated with new, best-known 

results, which are “Lung-cancer”, “Tic-tac-toe”, “Car”, “Zoo”, and “Mushroom”, and the remaining two datasets 

were also solved with the existing best-known solution. For large-sized datasets “L1”, “L2”, and “L3”, it can be 

observed that the best/average results of 10 runs of the IPO-ILP-VNS are always better than those of the traditional 

k-modes algorithm. However, the k-modes algorithm has still efficiency advantages as it requires less CPU time. 

Note that both algorithms began their execution from randomly selected clusters. 

Table 7 Comparison of existing k-modes algorithms 
 

Dataset 
name 

 
VNS Parameters 

(Number of 
selected objects) 

Ten runs of IPO-ILP-VNS 
(Kmax = 3, Lmax = 10) 

 Ten runs of k-modes Jiang et al. 
(2016) 

Jiang et al. 
(2016) 

Wu et al. 
(2007) 

Khan et 
al. (2013) 

Best AVG D.% T. (s)  Best AVG T. (s) Distance Entropy   

Zoo 0.1n, 0.2n, 0.3n 132 139.1 5.38 14  150 166.9 <1s 141 151 211 146 

Soybean 0.1n, 0.2n, 0.3n 199 203.6 2.31 7  199 210.4 <1s 199 199 285 199 

Lung-cancer 0.1n, 0.2n, 0.3n 481 483 0.42 19  484 490.7 <1s 486 495 623 498 

Car 0.1n, 0.15n, 0.2n 5134 5180.3 0.90 74  5200 5319.9 <1s -- -- 5725 - 

Tic-tac-toe 0.1n, 0.2n, 0.3n 4149 4176.6 0.67 27  4149 4227.5 <1s - - - - 

Vote 0.1n, 0.2n, 0.3n 1539 1539 0.00 11  1539 1540.5 <1s 1539 1539 1921 1539 

Mushroom 0.1n, 0.2n, 0.3n 62106 62439.9 0.54 2374  62107 63102 3.9 70372 -- 68005 67712 

L1 1000, 1500, 2000 130835 132971.7 1.63 619  132027 133079.6 2.7 -- -- -- -- 

L2 1000, 2000, 3000 311355 311813.5 0.15 516  311493 313869 7.2 -- -- -- -- 

L3 1000, 2000, 3000 623238 623681.9 0.07 937  623333 630787.6 16 -- -- -- -- 

Note: numbers in boldface indicate previous best values, while numbers in bold italics indicate new best values.  

In Fig. 4, we show some detailed processes of the IPO-ILP-VNS algorithm on three selected datasets “Zoo”, 

“Tic-tac-toe”, and “L3”. The objective value of the incumbent solution and the elapsed time were recorded for 

every when a better solution is found during the entire process of the IPO-ILP-VNS algorithm. It can be observed 

that the objective values of the incumbent solution dropped very quickly at the beginning of the algorithm (e.g., 

in the first neighborhood by K = 1), and gradually slowed down after the algorithm moved to search farther/larger 

neighborhoods. The process stopped after the farthest/largest neighborhood (by K = 3) had been searched. 

 
           (A) Zoo                    (B) Tic-tac-toe         (C) L3 

Fig.4 Convergence trends of the incumbent solutions 

7. Summary and conclusions 
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In this study, we built an integer linear programming (ILP) model for the k-modes clustering on categorical 

datasets based on which optimal results can be directly obtained by an MIP solver. Thus, there is no need to use 

initial centers/modes. We also developed a heuristic algorithm which conducts iterative partial optimizations of 

the ILP model under a VNS framework, known as IPO-ILP-VNS, to search for near-optimal results for medium 

and large-sized categorical datasets. Experiments on synthesized datasets and benchmark datasets showed that the 

ILP model solved with an MIP solver was able to deliver optimal clustering results for small-sized datasets, and 

the IPO-ILP-VNS algorithm could identify better clustering results for medium and large-sized datasets, thus 

outperforming all existing k-modes-based algorithms based on comparisons. We updated the best-known results 

for the benchmark datasets from the UCI repository, and provided new benchmark values for future research 

studies of categorical clustering. Notably, our numerical experiments also revealed that the conventional k-modes 

algorithm as well as those enhanced k-modes algorithms with novel initial methods might not be able to identify 

the optimal clustering results for some particular datasets. Future works can be on two aspects: (1) to apply the 

proposed approaches on clustering dataset with mixed data types, and (2) to improve the fuzzy k-model clustering 

algorithm with optimal mathematical programming. 
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Fig. A1 AMPL/CPLEX code used for the ILP model. 

 

Table A1 Data for instance No. 5 
Object ID Attributes 1 Attributes 2 Attributes 3 Attributes 4 

1 1 2 2 1 

2 4 1 3 4 

3 1 3 4 3 

4 3 3 4 2 

5 4 1 3 3 

6 3 4 4 4 

7 3 3 2 2 

8 4 2 2 1 

9 1 1 3 4 

10 2 4 1 1 

11 3 1 1 3 

12 2 2 1 3 
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Fig.A2 Solution distribution of k-modes algorithm for instance No. 14 

 

  
(A) No. 21                                               (B) No. 22 

 
(C) No. 23                                             (D) No. 24 

Fig.A3 Solution distributions of k-modes algorithm for instances No.21, 22, 23, and 24 

 

(25)
7.5%

(26)
31.3%

(27)
21.8%

(28)
13.7%

(29)
11.3%

(30)
9.3%

(31) 
0.6%

(33)
0.2%

(32)
0.4%

35 36 37 38 39 40 41 42 43 44 45
Objective value

0

10

20

30

40

R
es

ul
tp

er
ce

nt
ag

e
(%

)

No. 21: n=20, m=2

30 31 32 33 34 35 36 37 38 39
Objective value

0

10

20

30

40
R

es
ul

tp
er

ce
nt

ag
e

(%
)

No. 21: n=20, m=3

24 25 26 27 28 29 30 31 32 33 34
Objective value

0

10

20

30

40

R
es

ul
tp

er
ce

nt
ag

e
(%

)

No. 21: n=20, m=4

22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
Objective value

0

2

4

6

8

10

12

14

16

18

20

R
es

ul
tp

er
ce

nt
ag

e
(%

)

No. 21: n=20, m=5



26 
 

 
Fig.A4 Trends of local optima against object number 

 

 
 

Fig.A5 Trends of average deviation against object number 
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