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Abstract

This investigation provides a critical analysis of the development of PEM fuel cells and related 

research with specific focus on the membrane material. The catalytic membrane is the most 

important component of the PEMFC giving rise to the need for the use of efficient, durable and 

cheap material to reduce the overall cost of the fuel cell. In this work, the need for materials 

other than Nafion to be used as PEM membranes is established and a case for the use of 

composite membranes material in fuel cells is made. Composite membranes increase the cell 

voltage by up to 11% even at high cell operating temperature of 95°C. They also increase the 

overall performance of the cell by up to 17% when dry hydrogen is utilised.

Non-fluorinated membranes are also suitable for use in fuel cells for portable applications but 

they are very expensive and less conductive. Partially fluorinated membranes have good 

mechanical stability but expensive. The fluorinated membrane has high stability under oxidation 

and reduction conditions. Unfortunately, they only reach their optimum performance at 
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temperatures below 100°C which makes them of limited use in PEM fuel cells application at 

higher temperatures.

Keywords: PEM fuel cells, electro-catalyst layer, proton electron membrane (PEM), bipolar plate 

(BP) and gas diffusion layer (GDL), Composite membrane

1.   Introduction
Energy is one of the driving factors that determine the overall sustainability of humanity. It was 

one of the critical issues that led to several political debates in recent elections (United States, 

2016 and France, 2017). The high rate of depletion of the ozone layer and climatic changes 

continue to be a key determiner for the need for cleaner and environmentally friendly mode of 

energy generation[1–3]. Fossil commodities remain the highest form of energy generation but in 

the last decade have seen a sharp decline. This is because of the harmful effect they have on the 

environment which has been scientifically proven. The prices of fossil fuel are unstable and vary 

from time to time. In the political terrain, regions where these fossil products are harnessed have 

experienced serious unrest often leading to the loss of lives and properties. All these issues are 

some of the binding reasons for scientist around the world to consider alternative form of energy 

generation[4–6]. PEM fuel cell is regarded as an alternative because it gives near zero emission, 

high efficiency and near zero noise pollution. It offers all these possibilities by using hydrogen as 

a fuel to generate electrical energy through a chemical reaction which can also be used with other 

clean energy sources like solar energy [7]. 

PEM fuel cells have many advantages compared to other sources of power. Some of these 

benefits comprise of factors include burning in reduced temperature. Fuel produced from PEM 

fuel cells is said to be clean and stable when compared to other energy generating mediums. PEM 

fuel cells are very reliable for a broad range of portable and stationary power applications. This 

include their utilization in the transport industry as a replacement for engines that functions using 

fossil commodity like diesel and petrol. Besides using PEM fuel cell as a standalone power 

generator, the PEM fuel cell can also be implemented with a renewable energy system for energy 

storage application. It can be used as a single cell for small power requirement or as a cell stack 

where many cells are combined to achieve higher voltage and electricity[4,5,8,9].

Despite all the notable achievement in the development of the PEM fuel cell and it excellent 

feature as a power source, commercialization is still a major concern. It faces serious challenges 
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regarding cost, durability, and performance. Fuel cell technology (particularly PEM type) use 

platinum as a catalyst. Platinum catalyst form one of the largest cost components in the fuel cells. 

Fuel cell design with an efficient utilization of platinum catalyst could contribute directly to cost 

reduction. Also, finding a Platinum-alternative catalyst will cause further cost reduction of the 

fuel cell. In general, Fuel cells are slightly bigger than batteries with the same capacity. However, 

to meet the full requirements of portable applications, manufacturers and researchers of PEM fuel 

cells have in recent times performed many experiments aimed at reducing the size and weight of 

fuel cells. As a power source, the mechanical durability of the fuel cell is considered as a key 

performance factor particularly for transport applications[10]. 

However, it is strongly believed that discovering the right material can be a lasting solution to 

the problem. Improving PEM components like the membrane, bipolar flow plate, gas diffusion 

layer, electro-catalyst layers, etc. has shown over time to have direct influence on performance 

and durability. High cost and low durability of the PEM fuel cell are the main barriers to 

commercialization of this technology. An insight into the materials used for manufacturing the 

main components of the PEM fuel cell and their status of development may contribute directly to 

solve the problems related to the main challenges of the PEM fuel cell (i.e., high cost and low 

durability) which should lead subsequently to the world-wide commercialization of the 

technology[10–12]. Research work conducted in the last few decades are aimed at investigating 

the performance of membrane with respect to proton conductivity, electrical conductivity and 

mechanical stability. Most membranes used in fuels functions effectively only when they are 

humidified at higher cell operating temperature and they often come as perfluorinated proton 

exchange membrane. Other investigators are considering on expanding the operating parameters 

of the fuel cell beyond 80oC for instance. The performance of the fuel cell will increase 

appreciable if the membranes used were designed to function without any form of humidification 

at varying operating cell temperature. This will in effect reduce the cost of the fuel cell because 

the platinum used at higher cell operating conditions is less compared to that used when the fuel 

cell is operating at low cell temperature. This work therefore intends to establish more facts on the 

requirements needed for membranes to function effectively and clearly define the impact that the 

types of membranes will have on the overall performance of the fuel cell. Different types of 

membranes are thoroughly discussed. An up to date material used in the production of membranes 

are also carefully presented in this report. The types of membranes used in proton exchange 



ACCEPTED MANUSCRIPT

3

membrane fuel cell classified as fluorinated membranes, partially fluorinated membranes, non – 

fluorinated membranes and acid-based composite membranes are also presented in this paper. 

Other properties of the membrane like protonic conductivity, ion exchange capacity and 

permeability of the reactive substances are also presented. 

2.   The PEM fuel cells

     Fuel cells are defined as a device which electrochemically converts chemical energy into 

electrical energy. They are made up of an electrolyte, anode (negative electrode) and the cathode 

(positive electrode). The H2 gas is transmitted to the fuel cell through the anode. The fuel on 

reaching the catalyst layer at the anodic region of the fuel cell split into two ions (Protons and 

electrons). The proton ions then go through the membrane but the membrane electrode assembly 

(MEA) is not permeable to electrons. Hence, the electrons flow through the circuit connected to 

the cell externally to produce electricity. This is because the electrolyte is made up of a proton 

conductive material. The protons then meet the air/oxygen at the cathode to produced 

water[13,14]. The half reaction of acid and basic electrolyte for PEM fuel cells can be found in 

the Table 1 [4].
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Table 1: PEM fuel cells half reactions [4]

Reactions Acid electrolyte Basic electrolyte

Anode reaction H2   2H+ + 2e-→ H2 + 2OH-
   2H2O + 2e-→

Cathode reaction O2  + 2H+ + 2e-  H2O
1
2 → O2 + H2O + 2e-  

  2OH-1
2 →

Overall reaction H2  + O2   H2O
1
2 → H2  + O2   H2O

1
2 → 

Generally, fuel cells develop their names according to the type of electrolyte and reacting 

substances as shown in Table 2. Table 3 also shows the types of fuel cell characteristics. In a 

PEM fuel cell, the electrolyte used is proton exchange membrane (PEM) or polymer electrolyte 

membrane (PEM). The equation for the reaction is hydrogen combining with oxygen to give 

water, electricity and waste heat. Fig. 1 shows a schematic diagram of a 2-stack PEM fuel cell 

connected by a bipolar plate [15] and Fig. 2 shows PEM fuel cell planar diagrams at UWS fuel 

cell laboratory [16][6]. In Fig. 1, the two-membrane electrode assembly (MEA) were connected 

by the bipolar plate. The materials used to make up the system included bulb for electricity, 

hydrogen, oxygen, bipolar flow plate and the membrane and a more comprehensive view of all 

components of the proton membrane fuel cell is shown in Fig. 2. 

Fig.1: Detailed analysis of 2-stack PEM fuel cell connected by polar cell
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Fig.2: PEM fuel cell planar diagrams at UWS fuel cell laboratory [16]

Table 2: Types of fuel cells and their characteristics 

Fuel Catalyst Electrolyte

Low-Temperature 

Proton Exchange 

Membrane Fuel 

Cells (LT-PEMFCs)

Platinum supported on 

carbon

Solid polymer membrane 

(Nafion)

High-Temperature 

Proton Exchange 

Membrane Fuel 

Cells (HT-PEMFCs)

Hydrogen 

(H2)

Platinum-Ruthenium 

supported on carbon

Nafion/PBI doped in 

phosphoric acid

Phosphoric Acid 

Fuel Cells (PAFCs)

Hydrogen 

(H2)

Platinum supported on 

carbon

Liquid phosphoric acid 

(H3PO4) in silicon carbide 

(SiC)

Direct Methanol 
Liquid 

methanol-

Platinum/Platinum-

Ruthenium supported on 
Solid polymer membrane 
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Fuel Cells (DMFCs) water 

solution

carbon (Nafion)

Direct Ethanol Fuel 

Cells (DEFCs)

Liquid 

ethanol-

water 

solution

Platinum/Platinum-

Ruthenium supported on 

carbon

Solid Nafion/Alkaline 

media/Alkaline-acid media

Alkaline Fuel Cells 

(AFCs)

Hydrogen 

(H2)

Nickel/Silver supported on 

carbon

Potassium hydroxide 

(KOH) in water 

solution/Anion exchange 

membrane (AEM)

Molten Carbonate 

Fuel Cells (MCFCs)
Methane

Nickel Chromium 

(NiCr)/Lithiated nickel 

(NiO)

Liquid alkali carbonate 

(Li2Co3/Na2CO3/K2CO3) 

in Lithium aluminate 

(LiAlO2)

Solid Oxide Fuel 

Cells (SOFCs)
Methane

Nickel-YSZ 

composite/Strontium-doped 

lanthanum manganite 

(LSM)

Solid yttria-stabilized 

zirconia (YSZ)

Proton Ceramic 

Fuel Cells (PCFCs)
Methane Nickel Protonic/Zirconia

Zinc-Air Fuel Cells 

(ZAFCs)
Zinc

Non-noble metal oxides 

(such as manganese oxide - 

MnO2)

Liquid alkalines

Direct Borohydride 

Fuel Cells (DBFCs)

Sodium 

borohydride 

(NaBH4)

Gold/Silver/Nickel/Platinum 

supported on carbon

Solid Nafion/Anion 

exchange membrane 

(AEM)
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Direct Formic Acid 

Fuel Cells (DFAFCs)

Liquid 

formic acid 

(HCOOH)

Palladium/Platinum 

supported on carbon
Solid Nafion

Direct Carbon Fuel 

Cells (DCFCs)

Solid 

carbon 

(coal, coke, 

biomass)

Graphite or carbon-based 

material/Strontium-doped 

lanthanum manganite 

(LSM)

Solid yttria-stabilized 

zirconia (YSZ)/Molten 

carbonate/Molten 

hydroxide

Enzymatic Fuel 

Cells (BFCs)

Organic 

matters 

(glucose)

Biocatalyst supported on 

carbon

Ion exchange 

Membrane/Membrane-less

Microbial Fuel Cells 

(BFCs)

Any 

organic 

matter 

(glucose, 

acetate, 

waste-

water)

Biocatalyst supported on 

carbon/Platinum supported 

on carbon

Ion exchange Membrane
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Table 3: Operating characteristics of the types of fuel cells 

   Electrical efficiency
Operating 

Temperature
Charge carrier

Low-Temperature Proton 

Exchange Membrane Fuel Cells 

(LT-PEMFCs)

40% - 60% 60°C - 80°C

High-Temperature Proton 

Exchange Membrane Fuel Cells 

(HT-PEMFCs)

50% - 60% 110°C-180°C

Hydrogen Ion 

(H+) (proton)

Phosphoric Acid Fuel Cells 

(PAFCs)

36% - 45 % (85% 

with cogeneration)
160°C - 220°C

Hydrogen ion 

(H+) (proton)

Direct Methanol Fuel Cells 

(DMFCs)
35% - 60% Ambient - 110°C

Hydrogen Ion 

(H+) (proton)

Direct Ethanol Fuel Cells 

(DEFCs)
20% - 40% Ambient - 120°C

Hydrogen ion 

(H+) (proton)

Alkaline Fuel Cells (AFCs) 60-70 %
Below zero - 

230°C

Hydroxyl ion 

(OH)-

Molten Carbonate Fuel Cells 

(MCFCs)

55% - 65% (85% 

with cogeneration)
600°C-700°C

Carbonate ion 

(CO3)2-

Solid Oxide Fuel Cells (SOFCs)
55% - 65% (85 % 

with cogeneration)
800°C – 1000°C

Oxygen Ion 

(O2-)

Proton Ceramic Fuel Cells 

(PCFCs)
55% - 65% 700°C – 750°C

Hydrogen ion 

(H+) (proton)

Zinc-Air Fuel Cells (ZAFCs) 30% - 50 % Below zero – Hydroxyl ion 
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60°C (OH)-

Direct Borohydride Fuel Cells 

(DBFCs)
40% - 50% 20°C – 85°C

Sodium ion 

(Na+)

Direct Formic Acid Fuel Cells 

(DFAFCs)
30% - 50% 30°C – 60°C

Hydrogen ion 

(H+) (proton)

Direct Carbon Fuel Cells 

(DCFCs)
70% - 90% 600°C – 1000°C

Oxygen Ion

(O2-)

Enzymatic Fuel Cells (BFCs) 30% 20°C – 40°C

Microbial Fuel Cells (BFCs) 15% - 65% 20°C – 60°C

Hydrogen ion 

(H+) (proton)

It is established according to research that PEM fuel cell has a lot of advantages which includes 

low operating temperature, high efficiency, quick start-up and low CO2 emission. A good 

knowledge of the overall fuel cell operating conditions will in effect reduce the possibility of the 

fuel cell being damaged. Performance of a PEMFC can be determined by identifying the losses. 

Fig. 3 below shows the 3-major type of losses in the fuel cell. They are; activation losses 

(kinetics losses), ohmic losses, concentration losses (mass transport loses which are due to the 

water generated from the reaction blocking the channels and leading to the limited diffusion of 

reactant gases) [17][18]. This is as shown in Fig. 3 and could also be referred to as polarization 

curve [19]. These losses occur in the fuel cell because not all the protons are able to go through 

the membrane and some of the hydrogen forcefully flows through the membrane indicating that 

not all electrons can be captured from the quantity of fuel supplied to the cell through the anode 

bipolar channels. Again, for the electrons to flow through the external circuit, they must be in an 

excitation state and for this to occur, the electrons use existing energy already in the cell. These 

are some of the reasons why there are losses in the fuel cell [20]. 

During the operation of fuel cells, so many reactions occur at the same time. Therefore, a slight 

change in any parameter causes a shift in at least two other parameters and therefore has an 

overall effect on the fuel cell. The factors listed below influence the performance of the PEM 
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fuel cell considerably that is; Change in the operating parameters [21], types of electrolyte used 

[22], and catalyst used [23,24]. Performance of a fuel cell can be described by a characteristic 

curve which plot the voltage output as a function of electrical current density, called as (I–V) 

curve, as shown in Fig. 3. The ideal the theoretical cell voltage is 1.23V but this is not the case as 

there are losses for practical fuel cells operating under thermodynamic conditions. These losses 

have been mentioned above.

Fig.3: Showing PEM fuel cell losses[25]

Normal salt used for cooking and domestic purposes (sodium chloride, NaCl) is normally 

obtained through electrodialytic concentration of sea water. Ion exchange membranes are used in 

this process to obtain the edible salt. It functions as a separator during the electrolytic process in 

desalination of water that is saline by means of electrodialysis. Ion exchange membrane is also 

used when separating material that is ionic from other materials that are not ionic through 

electrodialysis. During diffusion dialysis in order to recover acid and alkali from waste solution 

that is acid or basic in nature, ion exchange membrane is used as well. It is also used in the 

dehydration of water by means of pervaporation. The membranes used in proton exchange 



ACCEPTED MANUSCRIPT

11

membranes are polymeric in nature and are designed mainly to allow the easy transfer of protons 

through them [26]. Ionic polymers used for membranes in fuel cells are gel – like in nature. 

Protonic conductivity through these membranes is reduced during low humidification conditions. 

It implies that well humidified membranes used for PEM fuel cells allow easy flow of protons. 

Nafion membranes were developed by DuPont in 1970 and they were developed to be 

chemically stable. Nafion membranes are manufactured from sulfonated polytetrafluoro–

ethylene [27,28]. Today, Nafion is also used in the chlor–alkali production companies. Nafion 

has now become a brand and standard used for PEM fuel cell membranes [29]. The ion exchange 

membrane and the period there were developed is captured in Fig. 4. They are categorised 

depending on the specific kind of ionic group fused to the matrix of the membrane. Ionic 

exchange membranes are grouped into cation exchange membranes and anion exchange 

membrane. -SO3
-, -COO-, -PO3

2-, -PO3H-, -C6H4O- are the main composition for cation exchange 

membranes attached to the backbone of the membrane. Cations are permeable to these 

membranes, but anions are blocked. Exchange membranes purposely for anions also allow the 

passage of only anions but reject cations. Anion exchange membranes are also often made up of 

-NH3
+, -NRH2

+, -NR3
+, -PR3

+, -SR3
+ and they are attached to the membrane for easy rejections of 

cation [30]. Ion exchange membranes are also categorised as homogenous and heterogeneous 

membranes. For the homogenous ion exchange membranes, the charge groups are bonded 

together chemically but that of the heterogeneous membranes are done physically. The strength 

of the homogenous ion exchange membranes is low, but they have excellent electrochemical 

characteristics [31]. On the other hand, the electrical characteristics of the heterogeneous ion 

exchange membrane are low, but they have good strength mechanically. The dimensional 

stability for the heterogeneous ion exchange membrane is also good compared to that of the 

homogenous ion exchange membrane [30].   
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Fig. 4: Various kinds of membranes developed in the last three decades [31].   

3.   Proton Electron Membrane

The fuel cell operates as a single unit therefore each of the material and component should be 

taken as important. This is because a defect in a material can affect one of the parameters and 

according to the 1st law of fuel cell, a change in a parameter affects at least two other parameters. 

The activities taking place is determined both by materials and component with the operating 

parameters. The major components are the electrolyte, electrodes, gas diffusion layers and bipolar 

flow plates. The electrolyte, gas diffusion layer and the electrodes are sometimes grouped together 

and called the Membrane electrode assembly (MEA) [32,33]. Fig. 2 shows the detailed 3D planar 

image of a PEMFC at University of the West of Scotland fuel cell laboratory.

The membrane is regarded as the most important component in the PEM fuel cell and fuel 

cells as a whole. It is in the centre of the fuel cell. The membrane is so important that it is used in 

the classification of fuel cells. The membrane determines the name of the fuel cell. For example, 

in a PEM fuel cell, the proton electrolyte membrane (PEM) is used. Most research conducted in 

recent times is related to PEM fuel cells. This is because it is the most promising of all the fuel 

cells. There are different types of membranes and the differentiation is based on the types of 

materials used in the production [25].
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There are so many different types of membrane and they are made using different types of 

materials. The choice of materials used as membrane is dependent on the physical and chemical 

properties needed to ensure efficient performance in the membrane. Irrespective of the type of 

fuel cells, the following identified properties must be met [34];

i. The ionic conductivity must be high

ii. It must be chemically stable

iii. It must have good mechanical properties 

iv. It must be easy to get or produce and not expensive

Getting a material that meets all these identified criteria may be difficult. Nafion as described 

earlier can meet all these requirements hence they are the most recommended brand for fuel cell 

membranes as explained earlier. Polymer membranes used in fuel cells have three crucial 

functions in the fuel cells. They are responsible for easy transfer of protons, support in effective 

separation of the fuel and oxygen being supplied to the fuel cell and finally act as barrier to 

prevent the passage of electrons through it due to the presence of SO3
-. As stated earlier, Nafion® 

being perfluorosulfonic acid was developed by DuPont in 1970. The membranes have high ionic 

conductivity with very good life time of almost 105 hours. Some companies like Dow chemical 

company and Asahi chemical company synthesized perfluorosulfonic acid membranes having 

very short chains but high ratio of SO3H to CF2 [35,36].  Some companies that produce cation 

exchange membranes are captured in Table 4. 

Table 4: Characteristics of materials used for cation exchange membranes
Membrane Membrane 

types
IEC 
(mequiv/gr)

Thickness 
(mm)

Gel water 
(%)

Conductivity 
(S/cm) at 
30oC and 
100% RH

Asahi Chemical Industry Company Ltd, Chiyoda-ku, Tokyo, Japan 
K101 Sulfonated 

polyarylene
1.4 0.24 24 0.0114

Asahi Glass company Ltd., Chiyoda-ku, Tokyo, Japan
CMV Sulfonated 

polyarylene 
2.4 0.15 25 0.0051

DMV Sulfonated 
polyarylene

- 0.15 - 0.0071

Flemion Perfluorinated - 0.15 - -
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Ionac Chemical Company, Sybron Corporation, USA
MC 3470 - 1.5 0.6 35 0.0075
MC 3142 - 1.1 0.8 - 0.0114
Ionics Inc., Watertown, MA 02172, USA
61AZL386 - 2.3 0.5 46 0.0081
61AZL389 - 2.6 1.2 48 -
61CZL386 - 2.7 0.6 40 0.0067
DuPont Company, Wilmington, DE 19898, USA
N 117 Perfluorinated 0.9 0.2 16 0.0133
N 901 Perfluorinated 1.1 0.4 5 0.01053
Pall RAI Inc., Hauppauge, NY 11788, USA
R-1010 Perfluorinated 1.2 0.1 20 0.0333

The Nafion membranes have its structure being in the form of copolymer obtained from flouoro-

3, 6-dioxo 4, 6-octane sulfonic acid with polytetra-flu-orethylene (PTFE) that Teflon backbone 

of this structure makes the membrane hydrophobic and at the same time hydrophilic because of 

the sulfonic acid, HSO3
- attached to the membrane. The ionic nature of the membrane supports 

good absorption of water making the membrane moist constantly [37]. According to some 

research conducted on membranes of PEM fuel cells, the thickness of the membranes and 

hydration of the membranes are the main determiner for the overall performance of the fuel cell 

[38,39]. The rate of protonic conductivity through the membrane contributes to the increase in 

performance of the fuel cell but this phenomenon occurs when the membrane is well humidified. 

Reducing membrane thickness curb the possibility of water cross over or water drag on the 

membrane and this enhances the performance of the membrane [40]. The resistance of the 

membrane is also reduced when the thickness of the membrane is reduced as well. This process 

also increases the performance of the fuel cell and affects the general cost of the fuel cell.  

Hydration of membrane becomes easy when the thickness of the membrane is small [41,42]. 

Membranes in general must be cheap, repel electrons and allow easy passage of electrons with 

little resistance. They must also not allow the passage of fuel to the cathode electrode and oppose 

the flow of air or oxygen to the anode electrode. Fig. 5 shows the structure of Nafion® 

chemically and other kinds of Perfluorinated electrolyte membranes.
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Fig. 5: Chemical composition of Polymer electrolyte membranes for PEM fuel cells [43].

During the evaluation of proton exchange membrane fuel cell, one of the critical issues 

considered is the easy flow of protons through them. At high current densities, the membrane is 

expected to allow easy flow of protons and lower loss due to resistivity. The resistivity of the 

membrane is directly proportional to the surface area of the membrane [44]. The protons flow 

through the membrane molecularly by two mediums and these are proton hopping or Grotthuss 

Mechanism and movement by means of diffusion [45,46]. There is movement of the protons 

from one a specific hydrolysed ionic site (SO3
- H3O+) to another specific region on the 

membrane. As the fuel flow through the flow channels of the bipolar plate on the anodic region 

of the fuel cell, it breaks into two ions once it reaches the catalyst area. The protons then stick to 

water molecules present on the membrane and this leads to the formation of hydroxonium ions. 

Another separate proton from the hydroxonium ions then moves from one water molecule to 

another. This results in percolation which aids the easy movement of protons and causes swelling 

of the membrane due to the formation of ionic clusters [30]. The conductivity of the protons is 

not influenced significantly by the hopping process shown in Fig. 6.
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Fig. 6: The hopping process of protons on the membrane of fuel cells [30]

Movement of the protons due to diffusion occurs when protons that carriers water from the 

surface of the membrane flow through due to electrochemical differences on the membrane 

surface. Transfer of protons through the membrane occurs because the protons carry one 

molecule of water through the membrane by means of diffusion (H+(H2O)x) or electroosmotic 

drag. Most proton exchange membranes have unoccupied spaces (volumes) which support the 

easy movement of the hydroxonium ions. Transfer of protons through pristine and 

nanocomposite membranes is presented in Fig. 7 (a and b). Transfer of water on the membrane 

occurs by two mediums. These are electroosmotic drag and concentration gradient due to 

diffusion. The membranes of PEM fuel cells as described earlier have Teflon backbone which is 

hydrophobic. This helps in easy movement of water via the membrane because water is repelled 

because of the nature of the hydrophobic surface [47]. The level at which the membrane is well 

humidified determines the kind of mechanisms likely to occur on the surface of the membrane. 
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Fig. 7: Diagram of proton movement by means of diffusion in a) pristine membranes b) 
polymer/ Nano particle membrane [47].

3.1 Categories of membranes used in fuel cells

Membranes used in fuel cells are grouped into 3 main categories. These are Perfluorinated, 

partially fluorinated and non-fluorinated membranes. However, in addition to these we have 

other membranes derived from these major categories or using additional materials. The various 

types of membranes used in the fuel cells are shown in Fig. 8.
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Perfluorinated

• PFSA
• PFCA
• PFSI
• Gore-select

Partially fluorinated

• PTFE-g-TFS
• PVDF-g-PSSA

Non-fluorinated

• NPI
• BAM3G
• SPEEK
• SPPBP
• MBS-PBI

Acid-base blends

• SPEEK/PBI/P4VP
• SPEEK/PEI
• SPEEK/PSU(NH2)2

• SPSU/PBI/P4VP
• SPSU/PEI
• SPSU/PSU(NH2)2

• PVA/H3PO4

Others

• Supported 
composite 
membrane

• Poly-AMPS

Fig. 8: Categorises of membranes used in PEM fuel cells [48]
 
3.1.1 Fluorinated membrane

Fluorinated membranes are the most popular membranes used in PEM fuel cells. The most 

common type used is the perfluorosulfonic polymers called Nafion membranes made by Dow 

Chemical Company developed with patent in 1966 (Connolly and Gresham 1966) and 1982 [39]. 

In the material, a sulfonic acid group is bonded with the fluoropolymer which is the backbone as 

explained earlier.

Sulfonated polymers comprising of Perfluorinated back bones and sulfonated side-chains such as 

Nafion are the most popularly used membrane for PEM cells because they function properly 

within operating temperatures below 100oC. They are only used when operating at low 

temperature. This type of membrane has a lot of problem with water (Swelling). All the 

alternatives to Nafion membranes have failed to achieve an acceptable level of conductivity. 

Therefore, a lot of work is ongoing to determine a low cost and high proton conductive 

membrane [50]. Sulfonated side-chains aggregate and facilitate hydration while perfluoroether 

are responsible for chemical stability. The Nafion membrane is manufactured by DuPont and has 

the chemical formula stated in Fig. 9 below.

Fig.9. Showing Chemical formulae for Nafion membrane [43]
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The use of Nafion as a membrane is often recommended by researchers around the world and it 

is also used commercially in industrial applications. Being a fluorinated membrane, it has a high 

stability in both oxidation and reduction environment. It also has a high proton conductivity 

which is the most important properties for a material to be used as membrane. Increasing the 

hydration level of polymer increases the efficiency in ion conduction. The Nafion membrane has 

several challenges. This is its high cost and inability to cope at high temperature. At high 

temperature, it has low proton conductivity, low mechanical stability and low swelling properties 

[41]. The Nafion membrane structure is as shown in Fig. 10. Challenges for using Perfluorinated 

membrane include:

 Inoperability at high temperatures.

 High cost of materials.

 Need humidification equipment to reach the required level of humidity.

 Produces wastes that are harmful to the environment.

 Swelling and shrinking due to changes in water uptake during thermal and humidity 

cycling.

 Chemical degradation.

In other to cover for it deficiencies at high temperature, there is the need to use other materials 

alongside the Nafion. That is why the use of partially fluorinated membrane is very important. 

Despite all the challenges being faced by the Nafion membrane, it still produces the most 

acceptable properties and usually used as a benchmark when considering new membranes for 

PEM fuel cells. These types of membranes are produced when monomers are polymerized, and 

this is capable of being made anion or cation if it undergoes other chemical and physical 

treatment.  Some researchers also describe them as being fluorocarbon based ion exchange 

membranes. The various steps that were used in producing Nafion by DuPont are as shown in 

Fig. 9.
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Fig. 10: Step wise approach leading to the production of Nafion membrane [40].

These types of membranes in recent times have seen a sharp decline in their usage in fuel cells 

because they require high power density and are also described as high equivalent weight 

fluorinated membranes. Companies like Asahi and Aciplex - S® produces flemion® which has 

the same characteristics as Perfluorinated ionomeric membranes, but DuPont continue to 

dominate the production of membranes for fuel cells because of the high protonic conductivity of 

Nafion as well as excellent chemical and mechanical strength.

3.1.2 Partially fluorinated membrane

To resolve the hydration problem of Nafion membrane, Nanocomposite membranes were 

proposed which were just a modification of the Nafion membrane to increase water retention 

capability by including micron/submicron organic or inorganic additives like ZrO2, TiO2, TiSiO4, 

and Silica. This move improves the chemical and physical properties (elastic modulus, tensile 

strength, hydrophobicity) of the membrane without affecting its proton conductivity. In place of 

Nafion membrane were the hydrocarbon polymers e.g. sulfonated hydrocarbons, that enabled 
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manufacturing of non-fluorinated membrane for PEM fuel cell applications though bringing with 

it advantages and disadvantages. Fullerene based membrane enabled operation of PEMFC at 

temperatures greater than 150◦C while increasing the kinetic rate and reducing use of costly 

catalyst to cause overall improvement in fuel cell performance. 

Some other materials are used for the membranes in addition to fluorinated membranes. This is 

done to reduce cost compared to when only fluorinated materials were used. Some of these 

partially fluorinated membranes has been discovered to produce membranes which have a 

stability which is higher and better mechanical properties. Some popular Perfluorinated material 

include the following as listed [42].

a. Sulphonated α,β,β-trifluorostyrene and m-trifluoromethyl-α,β,β-trifluorostyrene

b. Sulphonated polymer of α,β,β-trifluorostyrene

c. Copolymer of α,β,β-trifluorostyrene, m-trifluoromethyl-α,β,β-trifluorostyrene and p-

sulfonyl fluoride-α,β,β-trifluorostyrene

d. Sulphonated copolymer of α,β,β-trifluorostyrene and p-fluro-α,β,β-trifluorostyrene

e. Copolymer of α,β,β-trifluorostyrene, p-fluoro-α,β,β-trifluorostyrene and p-sulfonyl 

fluoride-α,β,β-trifluorostyrene

Just like fluorinated membrane, partially fluorinated membranes have succeeded in showing a 

high proton conductivity however it is expensive and cannot be referred to as low cost because 

expensive fluorinated materials are used. Additionally, commercialisation of these materials has 

not been visible due to cost and because the trifluorostyrene monomer is limited in availability.

The most popular partially fluorinated membrane is sulfonated copolymer incorporating α,β,β-

trifluorostyrene monomer (Basic Advanced Materials 3rd Generation, BAM3G) made by the 

company Ballard Advanced Materials. The structure of BAM3G is as shown in Fig. 11 [42]. This 

work [43] shows that the cost of BAM3G is low compared to the fluorinated membrane 

materials however more work still needs to be done to ascertain their properties and make 

possible recommendations for commercialisation. 
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Fig. 11: Chemical structure of (a) Perfluorinated sulfonic acid-based membranes like Nafion, 

Dow and Aciplex (b) Sulfonated trifluorostyrene copolymer membranes (BAM3G) [42].

These types of membranes are also often aliphatic or aromatic polymers made up of benzene 

rings structures. Using hydrocarbon polymer is currently being recommended by researchers 

around the world because they produce membranes that have high protonic conductivity [55]. 

These types of membranes are cheaper, readily available commercially and their general 

structure allows the usage of polar sites compared to fluorinated membranes. Hydrocarbons 

made up of polymer groups have high uptake of water when operated within varying 

temperatures. They water uptake is dependent on the polar group. Using good molecular design 

can aid in the easy decomposition hydrocarbon polymers. Using conventional approach can help 

in the recycling of hydrocarbon polymers. Fig. 12 can also be used to represent the structure of 

membranes made up of hydrocarbon chemically.
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Fig. 12: Hydrocarbon based membrane structure for PEM fuel cells [30] 

 

3.1.3 Non-Fluorinated membrane

Efforts were being made to produce low cost membrane. The focus of the effort is on the total 

replacement of the fluorinated membrane materials in the PEM fuel cells. Non-fluorinated 

membranes are used as replacement. Evidence from other research shows that reducing cost 

associated with the membranes also have significant effects on the overall cost of production.

Non-fluorinated membranes are made from polymer materials which are functional. These are 

materials which are not only cheap but also highly available.

The following are some of the materials used as non-fluorinated membranes [56];

a. Polystyrene membrane materials

b. Poly (arylene ether sulfone) membranes

c. Poly (arylene ether ketone) membranes

d. Acid-doped polybenzimidazole membranes 

e. Poly (vinyl chloride) membranes

Even though the use of polymer materials is promising, it currently shows lesser conductivity, 

reduced thermal and chemical properties. Some authors [43] believe that manufacturers should 

be ready to sacrifice some of the properties in favour of cost. This will help to encourage 

research and development. Studies on polymeric membrane were done by Fathima et al [57]. The 
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low-cost membrane has been tested and has shown very good performance. It has recorded most 

success in the water industry where it is being used for purification and in the treatment system. 

This is an industry where the margin of profit is low so also the need for a very good method that 

saves cost.

Non-fluorinated membranes are also made using other materials different from polymer. PEM 

membrane with nanoporous hematite ceramic materials was prepared by Colomer et al [58]. It 

was shown that the membrane developed have lower cost, friendly with the environment, shows 

a good proton transport, high water uptake and high hydrogen permeability. In another work by 

Makinouchi et al [59], it was observed that the  nanofiber composite showed proton 

conductivities higher than Nafion and also a better mechanical stability. A water permeability 

which is good was also indicated.

3.1.4 Composite membranes

Compared to the other types of membranes, the composite membrane is cheaper, has a higher 

water uptake, has a high temperature range and can be recycled [60]. This is very good for the 

environment. However, there are problems associated with it thermal conductivity, chemical 

stability and proton conductivity because they are low compared to the other types of PEM 

membranes. They are recommended by scientist because they keep a constant protonic 

conductivity at higher temperatures without any form of dehydration. It involves fusing an acid 

component with a polymer that is alkaline in nature to enhance the protonic conductivity. Fig. 13 

depicts the structure of these types of membranes chemically. 
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Fig. 13: Basic polymer structure (a-d) and acid polymer (e,f) [48]

By using composites, many other types of membranes can be made. Researchers continue to 

carry out investigations aimed at studying the material composition of the membrane in order to 

increase its overall performance and this resulted in considerable advances in the formulation of 

catalytic membranes for PEMFCs. For example, in an investigation conducted by Tu et al [61] 

using composite membranes made of ePTFE matrix and short chain perflourinated sulfonated 

ionomers, they concluded that the performance of the fuel cell increased at 95oC even under 

unfavourable relative humidity conditions. The investigation also showed an increase in the stack 

voltage by 11% when the inlet gas temperature was varied between 75 – 80oC. Their results also 

indicated that using dry hydrogen and air also increased the voltage output by 17%. The 

investigation buttresses the future of these novel types of membranes in fuel cells for their 

application in the automobile industry. 

Table 5 shows the current uses of composite membranes in fuel cell applications including the 

materials used in the preparation, with many of these materials showing good performance. 

Composites of silica and graphite are also promising and they outperformed some Nafion 

membranes under some conditions. Although a lot of work needs to be done in research and 

development, the use of composite membranes should be encouraged especially in light 

applications where performance constraints are not demanding. 
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Table 5: Fuel cell applications of composite membranes 

Type of fuel cell 

membrane

Materials used as 

composite

Comments Ref

Ion-conducting 

membrane

Al2O3-NaAlO2 Al2O3 and Na2CO3 were used to prepare a novel oxide-salt Al2O3-nNaAlO2 composite which 

was characterized using X-ray diffraction (XRD) pattern, scanning electron microscopy 

(SEM) and impedance spectra to determine the structure, morphology and the electrical 

properties. The images showed good ion transport and the electrochemical impedance 

spectroscopy (EIS) indicated a promising future for composite materials.

[62]

Polymer 

electrolyte 

membrane 

Asymmetric silica Membranes made with asymmetric composites results in increased proton conductivity in a 

low humidity environment. Due to the presence of silica, analysis of the drain water and 

electrochemical characterisation showed that the structural arrangement supports efficient 

water management because the acceleration of water transport is increased.

[63]

Direct methanol 

fuel cell

Nafion-mordenite 

incorporated with 

graphene oxide

Research on graphene oxide is increasingly popular and in this work it was used to reduce 

permeability of methanol. In this instance, modification with 0.05% resulted in the highest 

proton conductivity. When compared with Nafion 117 membrane it recorded power density 

4-times higher with a model prediction having a very low error of 0.082%.

[64]

Fuel cells in 

general

Graphene oxide The graphene characteristics of high thermal/electrical conductivity, great mechanical 

strength, optical transparency, inherent flexibility, huge surface area, and unique two-

dimensional structure attracted the interest of many researchers.. Although more development 

work still needs to be done, its compatibility with many polymers and solvents increases the 

potential of it being used in the production of graphene-based membranes for fuel cells.

[65]

High temperature Polybenzimidazole- The work shows the fabrication of polybenzimidazole based composite membranes with [66]
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polymer 

electrolyte 

membrane fuel 

cells 

Ce0.9Gd0.1P2O7 

and 

polybenzimidazole-

Ce0.9Gd0.1P2O7-

graphite oxide

polybenzimidazole, Ce0.9Gd0.1P2O7 and graphite oxide by a procedure called solution casting. 

Characterisation of the phosphoric acid-doped composite membranes was done for fuel cells 

applications given the favourable microstructural, mechanical and electrical properties of the 

material. The material gives better proton conductivity compared to that earlier reported for 

phosphoric acid-doped polybenzimidazole membranes and that can be attributed to the 

addition of graphite oxide. The major challenge for this type of material is that above 160°C 

the maximum power density decreases irrespective of the conductivity value.

Direct methanol 

fuel cell 

Homogeneous 

polymer/filler

A comparison between the composite membranes made using a spraying method and a 

conventional Nafion membrane using solution casting was made when mordenite was used as 

a filler in both cases. Images from the SEM showed that the spraying method produced a 

more homogeneous composite membrane.The membrane with 5 wt% mordenite from the 

spraying method showed greater improvement in DMFC performance and produced better 

performance than that of commercial membrane with 5 wt % mordenite produced by the 

solution casting method.

[67]

Nanohybrid 

proton exchange 

membrane fuel 

cells

Highly sulfonated 

poly(ether ether 

ketone) grafted on 

graphene oxide 

(GO)

Hydrogenation of highly sulfonated poly(ether ether ketone) (PEEK) polymer is done and 

grafted with GO to produce nanohybrid material GO-g-SPEEK. Upon testing, the material 

showed good properties that are needed for preparing the PEM. 

These results indicated that Nafion might serve only as an enhancer of compatibility between 

membrane and the Nafion-supported catalyst phase in the membrane electrode assembly, and 

therefore suggest that the GO-g-SPEEK may be a promising membrane material for 

application in proton exchange membrane fuel cells.

[68]

Anion exchange Ionic-liquid-coated The performance of anion exchange membranes (AEMs) was enhanced by fixing ionic- [69]
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membrane fuel 

cells

silica/quaternized 

poly (2,6-dimethyl-

1,4-phenylene 

oxide)

liquid-coated silica in trimethylamine functionalized poly(2,6-dimethyl- 1,4-phenylene 

oxide). The structure of the modified silica and polymer backbone was crosslinked to 

improve the performance of the AEMs. Improvements were noticed in the hydroxide ion 

conductivity, mechanical properties, dimensional stability, and chemical stability of the 

quaternized poly(2,6-dimethyl-1,4-phenylene oxide)/ modified silica composite membranes 

(designated as QAPPO/IL-SiO2). It showed higher dimensional stability after hot pressing 

than pristine membrane. Therefore, the QAPPO/IL-SiO2 composite membranes proved to be 

a promising AEM material for fuel cells. 

Fuel cells in 

general

Cross-linked 

PVA/SSA/GO

PVA/SSA when cross-linked with GO showed improved performance but the performance is 

affected when GO was in excess so there is a need to optimise the use of GO and other 

composite material so that they can give the optimum membrane performance.

[70]

Proton exchange 

membranes for 

fuel cell 

application

novel sulfonic acid 

functionalized 

zeolites

Sulfanilic acid functionalized poly(1,4-phenylene ether ether sulfone) (SPEES- SA) 

membrane was prepared and further modified by the incorporation of different mass % of 

sulfonic acid functionalized zeolites for the development of the composite membranes. The 

functionalization of zeolites was confirmed by wide-angle X-ray diffraction and X-ray 

photoelectron spectroscopy. The resulting SPEES-SA and its composite membranes were 

subjected to various techniques to investigate their physico-chemical properties. The 

morphology of the membranes was studied using both atomic force microscopy and scanning 

electron microscopy. The performance of the membranes was studied in terms of swelling 

behaviour, water uptake, ion exchange capacity and proton conductivity with respect to the 

mass % of the functionalized zeolites. The results showed that the data sets were better than 

[71]
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those obtained for a commercially available Nafion® 117 membrane giving potential for their 

use in fuel cells. 

fuel cells in 

general

sulfonated 

PEEK/sulfonated 

nanoparticles

PEM fuel cells having varying quantities of sulfonated nanoparticles and different sulfonation 

reaction times of PEEK polymer were studied. The best performance for different 

concentrations of PS-SO3H particles is determined by measuring proton conductivity, water 

behaviour in the membrane and mechanical properties. The composite membrane showed 

higher proton conductivity when compared with pure sPEEK membrane.  An increase in the 

content of PS particles increases proton conductivity because of the presence of hydrophilic 

nanoparticles which has been incorporated into the membrane material. 

[72]
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fuel cells in 

general

sulfonated poly 

ether ether ketone 

(sPEEK)/ CNTs

In the evaluation of Sulfonated poly ether ether ketone (sPEEK) membrane after being 

synthesized for PEM applications. Success in sulphonation of PEEK was confirmed using 

Fourier transform infra-red (FT-IR) and Ultra-violet (UV) visible spectra. The results showed 

reduction in water uptake and swelling ratio which are desired qualities of a good membrane. 

In terms of conductivity, this composite membrane gave values more than twice those 

obtained from sPEEK (22.44 mS/cm and 9.93 mS/cm). 

[73]

Non-humidified 

Proton Exchange 

Membrane Fuel 

Cells 

Protic plastic 

crystal/PVDF

The development of composite membranes based on the protic plastic crystal N, N-

dimethylethylenediammonium triflate [DMEDAH][TFO] and poly(vinylidene fluoride) 

(PVDF) nanofibers was done for use in proton exchange membrane fuel cells (PEMFCs) 

under non-humidified conditions. The researchers reported that the acid-doped plastic crystal 

produced more than two-times the ionic conductivity of the pure plastic crystal. The 

application of composite membranes based on PVDF nanofibers and [DMEDAH][TFO] in a 

single PEMFC confirmed the potential of these composite membranes for use as electrolytes 

in this electrochemical application without external humidification.

[74]

Fuel cell 

applications

Silica Silica is the most common inorganic filler used in membranes destined for use in fuel cells 

including PEMFC and DMFC. Silica has played an important role in improving the 

performance of fuel cells by enhancing the membrane properties and it has been used in 

different membranes such as fluorinated membranes (Nafion), sulfonated membranes 

(SPEEK, SPS, SPAES, SPI) and other organic polymer matrices. Addition of silica into the 

membrane matrices has improved their thermal stability, mechanical strength, water retention 

capacity and proton conductivity. Although there are currently some challenges associated 

with the use of silica as part of the membranes material, nevertheless it is predictable that 

[75]
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silica has a promising future in membrane-based fuel cell applications. 

fuel cell in 

general

Mechanically 

stable nanofibrous 

sPEEK/Aquivion®

The preparation of nanocomposite PEM using fibrous sulfonated poly(ether ether ketone) 

(sPEEK) and Aquivion® were made using electrospinning and impregnation processes. 

Although in the reported work the composite membrane has a lower proton conductivity, an 

improvement in its mechanical properties and stability were noted. Additionally, when 

crosslinked with sPEEK, its behaviour in terms of swelling ratio and mechanical properties 

were the best when compared with those with no crosslinking.

[76]

High temperature 

proton exchange 

membrane fuel 

cells

Phosphonate ionic 

liquid immobilised 

SBA-15/SPEEK 

composite

Composite membranes can be used for high temperature PEM fuel cells. A composite 

membrane was prepared using phosphonate ionic liquid immobilised SBA-15 as filler and 

SPEEK as matrix. Morphology studies were conducted using characterisation techniques 

such as SEM and XRD. An increase in the ion exchange capacity, proton conductivity and 

water uptake were observed and this was attributed to the presence of PIL-SBA-15. The 

mechanical strength was improved by the filler and a maximum power density of 183 

mW/cm2 was achieved when used at a temperature of 140 °C. 

[77]
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3.2 Preparation of Membrane 

In terms of cost, the material used for the membrane account for the majority therefore materials 

and component that is cost-effective would go a long way in reducing the total cost of 

production. At the moment, the raw materials used are Nafion made by DuPont USA, Aciplex 

and Flemion made by Asahi japan and the composites. These above-mentioned materials are 

expensive and the need for a material that is cheap with a better performance is becoming very 

important. Composite Membranes have been made from materials like hydrocarbons 

[43,54,56,78–82], ceramics [83][22,58,83], graphene [65,84–87] among others. Current research 

efforts aims to produce catalytic membranes wholly made of composites thus replacing Nafion.

The membrane can be prepared using different types of method. The method used usually 

depends on the type of membrane to be made and the available materials and equipment. The 

different preparation methods for the membrane are listed below;

3.2.1 Irradiation grafting polymerization method 

This method has been used to prepare different types of membranes like anion exchange proton 

membrane fuel cell [88], proton exchange membrane [89,90] and alkaline proton exchange 

membrane [82]. Four processes were involved; pre-irradiation, grafting reaction, sulfonation 

reaction and alkylation reaction. An example of this process is as shown in the Fig. 14  [91] 

below. Effort to prepare the membrane using this method was intensified because membranes 

made using this method has shown to have some advantage over those prepared using other 

methods. As deposited by Zhou et al [82], the composition is well controlled and has a high level 

of functionality among other advantages. The reaction is simple and highly effective. It is cost 

effective and the requirements for base polymer is fewer compared to other methods[92].
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Fig. 14: Stages involved in the preparation of fuel cell membrane using irradiation grafting 

polymerization method  [91].

3.2.2 Crosslinking method

In this method two compounds combine to form a crosslink. This method has been used in the 

preparation of PEM [93], alkaline membrane [94], direct methanol fuel cell [95] In a work by An 

et al [96], the crosslink was formed by Benhydrol and sulfonic acid and this was shown on NMR 

and FTIR.  Crosslinking method is a widely used in the preparation of membrane. This is 

because it helps to improve the properties of the membrane. It has been reported that it provide 

solution to the problems associated with conductivity-swelling in anion exchange membranes 

[97], improves tensile strength [96]. Some cross-linked anion membrane used for alkaline fuel 

cell application can be recycled and reprocessed for use. In an experiment by Hou et al [98], 
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some crosslinked membranes after been recycled showed an acceptable conductivity that could 

be compared to Nafion.

Work by Shin et al [99] showed the effect of crosslinking on durability and electrochemical 

performance of sulfonated aromatic polymer membranes at high temperatures. It was reported 

that crosslinked membranes show better thermal and mechanical properties compared Nafion up 

to 200oC, it also showed improved power densities. The durability of fuel cell were also shown 

to be enhanced in alkaline anion exchange membrane electrolyte [100]. 

3.2.3 Plasma grafting polymerization method

Plasma grafting polymerization method is used in for preparing proton exchange membranes 

used for miniaturized fuel cells. The system used to perform plasma polymerization system for 

preparation of acrylic acid plasma polymerized poly(3-hydroxybutyrate) fuel cell membranes is 

shown in the Fig. 15 below [101]. Materials needed included two different gases labelled gas 1 

and 2, gas mixer, flowmeters, analogue pressure monitor, plasma reactor having substrate, liquid 

monomer, diffusion pump, rotary vane pump and liquid cold trap.  Using plasma grafting, the 

degree of crosslinkage in the polymerized films is high, making the thickness of the pinhole 

small. This leads to a decreased resistance and reduced permeability. However, it also shows a 

reduction in the ionic conductivity. This is because of the limited movement of water. Effort to 

solve this problem has been made through the development of plasma polymerized electrolyte 

membranes. It has been used in the preparation of organic/inorganic composite membranes[102]. 

Plasma graft polymerization was used by Akamatzu et al [103] to prepare low-fouling 

membranes making use of poly(2-methoxyethylacrylate). The membrane developed showed 

excellent low-fouling properties when tested using 1000 ppm of aqueous solution of BSA.A 

review on membranes prepared using plasma-treated phosphoric acid-based material was done 

by Bassil et al [104]. These membranes after undergoing some preliminary tests shows it can be 

good for proton exchange membrane fuel cells although accepted more work still needs to be 

done. They have been used in the synthesis of an hydroxide exchange membrane that is highly 

stable [105]. This was done by adding the functional group into the PEK-C matrix. Plasma 

grafted polymerization is believed to have the potential to be applied in direct alcohol fuel cell 

[106] and also in anion exchange membrane preparation [107]. It has been used to modify 

existing proton electron membrane fuel cell and this has led to plasma polymerized PEMs which 
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are sulfonic acid functionalized and other functional groups like phosphoric acid or carboxyl acid 

groups and the anion exchange membranes [19].

Fig. 15: Plasma polymerization system for preparation of acrylic acid plasma polymerized 

poly(3-hydroxybutyrate) fuel cell membranes [101]

3.2.4 Sol-gel method

The sol-gel method is usually used in the preparation of inorganic and composite membranes. In 

this method, pure inorganic phase combined to form a polymeric matrix. Two materials sols and 

gels are important and were used. The preparations of the sols were usually made using metallic 

alkoxides which are dissolved in alcohol. The principle used in this method is the change in the 

state of the gel with respect to change in properties and a technique used in drying. Two major 

reactions are involved; hydrolysis and then, condensation. The formation of the polymeric matrix 

starts with the addition of water to the sol, which is hydrolysis and then condensed. The reaction 

is as stated below[30].

The equation for hydrolysis is 

   M ― O ― R +  H2O→M ― OH + R ― OH

And for condensation reaction, it is

     M ― OH + HO ― M→M ― O ― M + H2O

Addition of both reactions gives



ACCEPTED MANUSCRIPT

36

   M ― O ― R +  HO ― M→M ― O ― M + R ― OH

In the equation above, M stands for inorganic material and R stands for inorganic member of the 

alky family. Examples include methyl and ethyl. 

This method is a popular method and it has been adopted by many researchers in the field. It was 

applied during membrane preparation using ceramic materials [108] and preparation of inorganic 

membrane for direct methanol fuel cell using silica electrodes [109]. Also in the synthesis of 

polybenzimidazole membrane[110] and in the experiment for preparation and characterization of 

Nanoporous silica membrane[111]. The sol-gel method has been used in some proton exchange 

membrane fuel cell applications. An example is when 40SiO2-40P2O5-20ZrO2 sol-gel is 

infiltrated in sSEBS membranes [112]. When a nanocomposite, Ag-silica is prepared using the 

sol-gel method, it gives a high electrical conductivity and regularly used for phosphoric acid fuel 

cells [113]. The chemistry of sol-gel prepared membranes can be optimized. This is done using 

tools such as atomic force microscopy (AFM) and Raman micro-spectroscopy. This is as shown 

in the work by Cosas et al [114].

3.2.5 Direct polymerisation of monomers 

Although this is a new method, it is the popular method used in the preparation of proton 

electron membrane. It involves two processes; polymerization and sulfonation. Monomers like 

styrene were polymerized directly and then passed through sulfonation process. When the 

monomer used is sulfonated, and then there would be no need for additional sulfonation. This 

method is a popular method and it has been adopted by many researchers in the field. It was used 

in the preparation of ultrafiltration membranes[115]. In a work done by Kazeroonian et al [116], 

direct polymerization of monomers improved the diffusivity of hydrogen while studying 

molecular dynamics simulation involving carboxylated and sulfonated poly(arylene ether 

sulfone). The carboxylation in the polymer helps to increase the hydrophilicity of the membrane 

and therefore increase the conductivity [116]. Different monomers of so many polymers have 

been used. A review into the radical polymerization using monomers of N-vinyl was done. It 

showed the development achieved in this area reviewing how the properties, structures and 

architectures of N-vinyl monomers like N-vinylcarbazole, N-vinylpyrrolidone and N-

vinylformamide among others has improved the reaction [117]. Stacking of polymer chains has 

been shown to enhance the performance of the materials used for fuel cell applications. In the 
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work by Yao et al [118], for perylene-based sulfonated aliphatic polyimides, the hydrophilic 

interactions shown by the sulfonated group were believed to be responsible for the high 

performance shown in the membrane. Considering a tetra-ammonium monomer while 

synthesizing and characterizing imidazole containing PEEK for anion exchange membrane fuel 

cell, the conductivity of the hydroxide increases as the number of the functional groups increases 

in the membrane [119]. This shows how effective direct polymerization of monomers method 

can have on the resulting membrane.

Looking at all the above preparation method discussed, it is observed that almost all the methods 

are relatively new and requires further work for development. Table 6 below shows a 

comparison of different membrane preparation methods highlighting the advantages and 

disadvantages.

Table 6: Comparison of different membrane preparation methods

Method Advantages Disadvantages Reference

Irradiation 

grafting 

polymerization 

method

The composition and 

functionality of chemicals is 

well-controlled.

Development of strong 

interaction between the 

interfacial matrix-

nanostructure.

The method is versatile and 

green.

The chemicals involved in 

the process is expensive

The process is difficult and 

requires expert knowledge 

of chemistry

Requires improvements in 

many areas and new.

[82,120]

Crosslinking 

method

Improved chemical, thermal 

and mechanical properties 

exhibited compared to non-

crosslinked membrane.

Conductivity showed by 

membrane can be compared 

to Nafion.

Prevent over swelling and 

Low activation energy

Reduce water uptake when 

crosslinked into s-IPN.

More work needed to be 

commercialized. 

[93,94,96,98,99,121]
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improves tensile strength.

Can be recycled.

Improved durability in the 

long-term.

Best performance observed 

at 120oC.

Plasma 

grafting 

polymerization 

method

Helps to preserve the 

polymer structure and it 

functional group. Chemical 

stability of membranes 

produce is high.

PEMs produced using the 

method shows properties 

that are superior to other 

methods.

Can be used to modify 

existing PEMs or synthesis 

new ones directly. 

Technology is still new and 

promising.

Can be used at temperature 

less than 100oC. 

Grafting efficiency is low.

Further research needed to 

enhance performance of 

overall plasma-grafted 

membranes. 

[103,122–125]

Sol-gel 

methods

The set-up is flexible and 

can accommodate different 

characteristics.

It is one of the most popular 

methods used for catalyst 

preparation.

Produce higher 

conductivities when used in 

the preparation of the 

nanocomposites of Silver-

Silica. 

Although appears simple, it 

is a complex physical and 

chemical process that needs 

the knowledge of an expert.

[126,127]
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It is a versatile method 

which can be used for spin 

coating of film, co-polymer-

based synthesis of porous 

silica and electrospinning of 

fiber. 

Direct 

polymerization 

of monomers

Used to produce membrane 

that shows high proton 

conductivity and exhibited 

swelling ratio that is low and 

acceptable. The performance 

of fuel cell was excellent 

when tested for validation.

Method is highly versatile 

and can be used to produce 

so many new membranes 

depending on creativity of 

ideas.

Membrane properties were 

affected by carboxylation. 

Needs a comprehensive 

study of monomer properties 

before been selected for the 

reaction.

[116,118,119]

3.3 Membrane properties

During the operation of fuel cells, so many reactions occur at the same time in the membrane. A 

slight change in any parameter causes a shift in at least two other parameters and therefore has an 

overall effect on the fuel cell. So many physical and chemical factors have been identified which 

can affect the performance of the fuel cell[128][129]; they include operating pressure, operating 

temperature[130], The type of electrolyte in use, The efficiency of the fuel cell, the catalyst used,  

reactant flow rates, reactants humidity, fuel cell mass balance (inlet flow rates and outlet flow 

rates), fuel cell energy balance among others.  Experimental study of the effect of variable 

operating parameters on overall PEM fuel cell performance and spatial performance distribution 

by Zhang et al [131] shows that they have a huge effect. It was shown that when the back 

pressure is high the fuel cell shows an overall increase in performance, also relative humidity and 
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air stoichiometry. An increase in these other parameters corresponds to increase performance and 

improved homogeneity of current distribution of PEM fuel cells. Overtime the performance of 

fuel cell reduces after a period of time, this is due to decrease in durability often as a result of 

loading cycle and flooding[132].

For these review, some key properties have been identified and would be the focus of the review. 

They are as listed below; water uptake, physical properties, proton conductivities, gas 

permeation and water transport. Failure to manage these properties leads to another secondary 

scenario. For example, poor water transport can lead to poor water management which can result 

in either drying or flooding.

The properties of the membrane are very important as it determines the performance and 

durability. Although every property of the membrane is important, it is generally believed that 

the most important property of a membrane is proton conductivity. For a material to be 

considered as a membrane, it should have a high affinity for protons. The membrane should as 

well be durable, robust and resistant to chemical attack. The operating temperature range is an 

important factor to be considered when choosing the membrane materials thus it should have a 

wide temperature range about -30 to 200◦C. For a material to be developed as a composite 

membrane, it must show the following properties discussed below.

3.3.1 Water uptake 

The effect of water uptake on the fuel cell cannot be overestimated. This is because performance 

increase with increased proton conductivity which is dependent on water content [30].  It is 

calculated considering the weight of wet sample and the weight of the dry sample of the 

membrane expressed as a percentage of the dry sample as shown below[133];

                                   (1)Water uptake =  
(Wwet ― Wdry)

Wdry
 X 100%

Water uptake changes with differences in the temperature therefore it values for water at room 

temperature is different to that of vapour. Though water uptake is necessary for the normal 

running of the fuel cell, it however results in swelling. The problem with swelling is that the 

membrane might not go back to its initial state after experiencing it and it is necessary for a 

membrane to have good water uptake qualities [28]. Chien et al [134] studied and develop a 

method to produce activated carbon/Nafion hybrid membrane for proton electron membranes. 
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The membrane when tested shows having high water-uptake properties improves proton 

conductivity, gave a better performance than Nafion-211 and also has lower resistance. 

Furthermore Silva et al [135] went further to identical key parameters to be used in the selection 

of membrane for PEMFC and DMFC. It is worthy of note that water uptake and pervaporation 

were also included.

3.3.2 Physical properties and operating parameter 

A lot of operations within the PEM fuel cell allow it to lose it physical appearance. This is due to 

a change in Physical properties and these affects the performance of the membrane. It either 

improves it or reduce it performance. Parameter such as operating temperature, operating 

pressure, membrane thickness can be regarded as physical properties. The effect of the operating 

temperature on the membrane is highly significant. This is because so many important activities 

that enable efficient performance are dependent on it. Properties like protonic resistance and gas 

diffusion which are necessary for mass transport are highly dependent on the operating 

temperature. Operating temperature also affect the conductivity of the membrane. At higher 

temperature there will be creation of more protons and increased rate of electrochemical reaction. 

On the other hand, it leads to increased resistance in the membrane. However, the effect of the 

increased resistance is reduced because more water molecule which has been formed in the 

cathode due to increased electrochemical reaction helps to keep the membrane hydrated thereby 

reducing the resistance towards the ions. Experiments by Belkhiri et al [136] shows better 

polarization curve and increased power density at increased temperature with increased 

hydration. For a material to be a good membrane it needs to have good physical properties. 

Fathima et al [57] while studying and characterizing polymeric membranes was able to show that 

they have good physical properties. This includes good thermal stability, good mechanical 

properties and accepted level of conductivity with regards to sulphonation level. Increase 

temperature usually leads to increased pressure when other condition remains constant. This is 

the same with the relationship between operating temperature and operating pressure. 

Literatures have established that the fuel cell performs better with a thinner membrane. 

Investigations into water profile in PEM fuel shows that resistance increases as thickness 

increases. This was shown in an experiment involving Nafion 112 and 115 (thicker). Also, the 

tendency of having a drying effect is low with thinner membranes. This is because of the ability 
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of the back diffusion of water to suppress it [137]. Additionally, because of the reduced 

resistance, the number of protons which is responsible for conductivity increases and therefore 

an increase in flux is observed [138]. 

3.3.3 Proton conductivity 

Proton conductivity is the most important properties of a membrane to be used in a fuel cell. It 

increases with increasing temperature and increasing water content. It is also affected by the 

reaction environment. Work by Chaiwat and Stuart [139] shows that the reaction environment 

also affects proton conductivity. Proton conductivity was shown to increase with increased 

acidity. This is supported with experiments by Kuwert et al [140], Zhang et al and Yin et al [71-

72]. Hydration also had effects on conductivity. More water shows more H+ ions and therefore 

increased concentration. Furthermore, with either hydration or acidity, proton conductivity 

increases with increasing temperature. 

Rikukawa and Sanui [43] in their work on proton-conducting polymer electrolyte membrane 

established that hydrocarbon polymers can be used to produce membranes with high protonic 

conductivity. They were able to cover for the deficiencies of the perfluorinated polymers 

electrolytes; it being expensive and exhibiting low protonic conductivities at low humidity and 

high temperatures. However further work still needs to be done to improve it durability and also 

optimization of it performance in the fuel cells. Another work on proton conducting PEM was 

also done by Rao et al [143].

The Nafion membrane is popularly used because of it proton conductivity which is very good, 

and attempts were presently being made to develop a membrane of similar properties or better. 

3.3.4 Water transport 

The major problem facing the membrane is the water management. The consequence of not 

getting this right leads to problems associated with durability, water transport in the stack and 

thermal management [144]. Too much water can result in flooding and shortage of water can 

also result in drying. None of these is acceptable as they both have effect on the performance of 

the PEM fuel cells as usually shown on the polarization curve. It is necessary to know how the 

properties of different component like gas diffusion layer, bipolar plates etc. affects gas structure 
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and water transport in a PEM fuel cell. Efficient understanding of water transport will help to 

solve various issues associated with water management and leads to improvements in stack 

component design[145].

In a PEM fuel cells, due to the electrochemical reaction, production of water occurred at the 

cathode side. This is because of the dragging of water by protons passing the electrolyte from the 

anode to the cathode. This is described as electroosmotic drag. The rate at which water is 

generated can be calculated. It is dependent on the current density (A/cm2) and Faraday constant 

(F). It unit is mols-1cm-2
. Water generation is dependent on the current density and Faraday 

constant. The electroosmotic drag and water generation has a linear relationship. Water has a 

great influence on membranes in PEM fuel cells. Roy et al [146] studied the influence of it 

chemical structure and it composition and revealed strong relationship existed between 

morphologies, structures and composition of different types of water. It helps to determine the 

relationship it has with the other materials and components in the fuel cell.

3.3.5 Gas permeation 

Theoretically a material used as membrane should be impermeable however due to it having 

other important characteristics like porosity, water content and hydrogen and oxygen solubility 

in water, gases were able to permeate through the membrane and these permeations is one of the 

major causes of membrane poisoning. 

Permeability is dependent on properties such as diffusivity and solubility. The relationship that 

can be expressed as [147] 

 Pm = D ×  S

Where Pm ꞊ Permeability, molcms-1cm-2Pa-1 called Barrier

D ꞊ diffusivity, cm2s-1

S ꞊ solubility, molcm-3Pa-1

Fig. 16 [148] shows a diagrammatical representation of gas transportation in a membrane of 

proton electron membrane coated with catalyst including all the different activities represented 

with arrows. These activities are labelled using arrows 1 through 5. Arrow 1 shows reverse 

diffusion by water from cathode to anode, arrow 2 shows the permeability of hydrogen without 

electrochemical oxidation from anode to cathode. Permeability of oxygen was shown with arrow 

3 and then water generation and nitrogen permeability represented with arrows 4 and 5. It is 
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worthy of note that gases like Helium, carbon gases, ammonia that can be found in atmospheric 

air can be present.

Fig. 16 Gas transport and permeability in a proton electron membrane coated with catalyst [148]

4.1   Future work

All the achievements recorded so far in the fuel cell technology has been due to continued 

research on PEM fuel cell and renewable energy in general [149–160]. Discussions in this work 

showed that a comprehensive knowledge of materials and properties is necessary toward 

choosing the correct preparation method. The preparation method, on the other hand, determines 

the final product and it quality. It is believed that further work and research in the following area 

discussed below will help to improve the preparation methods.

In the irradiation grafting polymerization method, there are so many areas that need to be 

improved. This is because the method is relatively new. It involves a lot of expensive chemicals 

and a deep understanding of chemistry. More research needs to be focused on stoichiometry and 
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relationships between different reactants. The process needs to be made simple so that it can be 

easily reproducible.

The crosslinking method have a potential to be used in high temperature PEM fuel cell.  This is 

noted in membranes whose sulphonation is of higher degree. Further work needs to be done to 

confirm it suitable and possible upscale. In addition, more work needs to be done to improve the 

activation energy and increase water uptake especially when it is crosslinked with s-IPN.  

The plasma grafting polymerization method is very promising and new. It can be used to modify 

existing PEMs or produce new ones. More work needs to be done to establish areas of high 

performance so it advantages can be maximized.

The sol method is popular and have been used. It physical and chemical process is complex, and 

efforts can be made to simplify it. It has been confirmed that the properties of the membrane are 

affected by carboxylation in direct polymerisation of monomers method. Further work could be 

done to ensure the right sets of monomers is selected for reaction.

4.2 Conclusion 

This work presented a thorough investigation into the state of PEM fuel cell membranes with 

more emphasis on the methods of preparation and the important properties needed for good 

performance. PEM fuel cell technology is indeed the future of the renewable energy sector but 

there is a need for cheaper but effective material that will reduce the overall cost of fuel cells 

without any limitation to its performance. The membrane performance depending on the 

preparation approach used is also captured in this investigation. In a nut shell, the work exposes 

the need for further research to be carried out to increase the overall performance of the fuel cell. 

For instance, investigations must be carried out on the membrane to increase the protonic 

conductivity of the membrane and the platinum on the catalyst layer must be reduced further. 

Composite membranes are suitable for use in fuel cells for the automobile industry due to their 

wider operating temperature range above 95°C. Fuel cell with composites showed voltages 

increase by up to 11% when used at 95oC and up to 17% when the reactive substances used are 

dry hydrogen and air [61]. There is still the need for further research to be carried out to increase 

the overall characteristic performance of the fuel cell when composite membranes are used. 

Other types of membranes like the commonly used fluorinated membranes are still undergoing a 

change in terms of their operating ranges even though they have high stability in oxidising and 
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reducing environments. Currently fluorinated membranes function best at temperatures well 

below 100oC [30] and this limits their use in several applications. The conductivity of non-

fluorinated membranes is low, and their material cost is high, and more research is needed to 

reduce the cost and improve their other characteristics. Partially fluorinated membranes have 

good stability [Ref] but again just like non-fluorinated membranes their cost makes them less 

favourable and more work is required to achieve reductions in cost. 
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