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A B S T R A C T  

 

We report on combined experimental and theoretical investigations of the water/micelle interface of 

cationic, anionic, zwitterionic, and non-ionic surfactants using a new hydrophobic acid-base indicator 2,6-

dinitro-4-n-dodecylphenol. The indices of the so-called apparent ionization constant, app

apK , of the 

indicator fixed in the micellar pseudophase are determined by the spectrophotometric method. The data 

allows estimating the Stern layer’s electrostatic potential of the ionic micelles  . Molecular Dynamics 

modeling was used to locate the dye molecule and, in particular, its ionizing group OH   O– within the 

micelles of the studied surfactants. The comparison of the   values estimated using 2,6-dinitro-4-n-

dodecylphenol with both our computer simulation and literature experimental results reveals obstacles in 

monitoring electrical interfacial potentials. In particular, the   values of the surfactant micelles with 

alkylammonium groups determined via 2,6-dinitro-4-n-dodecylphenol are overestimated. The reason is 

specific interactions of the indicator anion with the surfactant head groups. For anionic surfactants, 

however, this indicator is quite suitable, which is confirmed by the location of HA and A– equilibrium 

forms in the pseudophase.   
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Highlights  

 

2,6-Dinitro-4-n-dodecylphenol is a useful indicator for examining micelles  

The indicator’s long tail ensures similar positioning of the molecule and its anion  

The interaction of the surfactant’s alkylammonium groups with the indicator’s nitro groups is revealed  

2,6-Dinitro-4-n-dodecylphenol is more appropriate for anionic micelles  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



1. Introduction 

 

Acid-base indicators are universal tools for examining versatile colloidal aggregates and interfaces [1–3]. 

They are widely used for studying surfactant micelles [1–3], drops of microemulsions [2, 3], phospholipid 

bilayers [1], gelatin layers [4], polymers [5], etc. Not only color transitions, but also light emission of 

fluorescent indicators is often used for monitoring properties of micelles [6, 7]. Among other aims, the 

estimation of the electrostatic surface potential of micelles and related aggregates is of special interest. 

Meanwhile, the information derived using the acid-base indicators depends fundamentally on the locus of 

these molecular probes within the micellar pseudophase. Nowadays, this issue can be elucidated using the 

molecular dynamics modeling of a micelle plus indicator complex immersed into aqueous environment. 

This, in turn, allows validating different indicators from the viewpoint of their usefulness for the declared 

aim. The present paper demonstrates a step in this direction.  

     For the ionization of an indicator acid, HA, completely fixed in a micellar pseudophase, the so-called 

apparent app

apK  value can be obtained using the spectrophotometric procedure, Eq. (1).  
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The concentration ratio indicator : micelle in the solution should be around unity. Normally, the bulk pH 

value is determined potentiometrically with a glass electrode in a cell with liquid junction. The brackets 

denote the equilibrium concentrations of the corresponding forms. The app

apK  value can be represented as 

shown in Eq. (2), which is sometimes called the Hartley–Mukherjee–Fromherz–Funasaki (HMFF) 

equation [8–13].  
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Here w

aK  is the thermodynamic ionization constant in water, i

aK  is called ‘intrinsic’ constant, 
A
   and 

HA  are the activity coefficients of the transfer of the indicator forms from water to the micellar 

pseudophase,   stands for the electrostatic potential of the micellar surface of an ionic surfactant, that is 

the Stern layer, F, R, and T have their usual meanings. The spectroscopic method gives the ratio of the 

equilibrium concentrations of HA and A– forms. Contrary to the app

apK  value, direct determination of 

i

apK  is challenging, however, some indirect methods are developed [1–3, 9, 11–15]. Clearly, from the 

app

apK  and i

apK  values, it is possible to estimate the   value for the given ionic micelle, Eq. (3).   
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     This approach can also be used for droplets of microemulsions [3], phospholipid liposomes [16, 17], 

monolayers [10, 18], etc; see ref. [1–3, 14, 15, 19–22] for details.  

     However, using different indicators for these measurements provides different   values for the same 

system [2, 3, 23]. Therefore, some conditions should be established to minimize the variability. Such 

‘best’ indicators should be firmly fixed in the pseudophase and its ionizing group should be located in the 

Stern layer. Though some disturbances of the microenvironment by the indicator molecule are inevitable, 

they should be as small as possible. Hence, the size of the molecule should be not too large. Finally, as 

the i

aK  value is usually modeled by the ionization constant either in nonionic micelles or in water–organic 

mixtures, the location of the acidic and basic forms of the indicator in the micellar pseudophase should be 

similar. After the publications by Fromherz et al. [10, 11], the coumarin indicators with long hydrophobic 

hydrocarbon tails were often used for these purposes [15, 16]. Also, the solvatochromic betaine dye, the 

so-called Reichardt’s dye, which is also an acid-base indicator, was utilized [2, 14]. Some other 

hydrophobic, especially long-tailed indicators were examined [20]. A hydrophobic dye N,N/-di-n-

octadecylrhodamine was also proposed for   estimation [2, 21]. Though the molecule of this dye is 

rather bulky, and the ionization of the COOH group displays only a small spectral effect, the N,N/-di-n-

octadecylrhodamine was proposed because the change of the apK  values of rhodamines in going from 



water to water-organic mixtures [24] and the micelles of nonionic surfactants [2, 21] is small. This is 

because the acid-base couple is of cation/zwitterion type. Therefore, it can minimize the errors in 

modeling the i

apK  values in ionic micelles by those in nonionic ones. 

    NMR spectroscopy was often used for revealing the location of the indicators within the micellar 

pseudophases [20, 25, 26], together with theoretical approaches applied to the same or similar systems 

[27–31].  

     We performed several Molecular Dynamics (MD) simulations of Reichardt’s betaines in their cationic 

and zwitterionic forms in micelles of various surfactants [32–34]. In a special paper [22], we applied MD 

modeling to the first acid-base indicator used in 1940 by Hartley and Roe for estimating the electric 

potential of micelles [8] and discovered some peculiarities in location of this dye molecule and its anion 

in cationic and anionic micelles.  

In the present paper, we propose a new indicator, 2,6-dinitro-4-n-dodecylphenol (DDP), as a possible 

suitable tool for examining the micellar surfaces. The rationale is as follows. (i) The dodecyl chain 

ensures the fixation of the indicator in the micelles of surfactants of any types. (ii) The aromatic moiety is 

not very large. (iii) Based on our previous studies [22, 32–34], the HA and A– forms are expected to have 

similar orientation in the interfacial micellar layer. (iv) The apK  values of nitrophenols undergo rather 

small changes in going from water to water-organic mixed solvents [35–37]. Therefore, we expected that 

the variations of the i

apK  value in going from nonionic to ionic micelles will be caused mainly by the   

values of the latter. 

Various alkyl derivatives of nitro- and dinitrophenols were often used in biophysical research [38–

39]. Hence, the indicator considered in the present study may be useful in examining biological objects.   

This indicator was synthesized and its app

apK  value was determined in the micellar solutions of N- 

cetylpyridinium chloride (CPC), cetyltrimethylammonium bromide (CTAB), cetyldimethylammonium 

propanesulfonate (CDAPS), Triton X 100 (TX 100), and sodium n-dodecylsulfate (SDS). MD modeling 

was carried out for the HA molecule and the A– anion in micelles of ionic surfactants. The molecular 

structures of the indicator and the surfactants are shown in Scheme 1.  



     We show that this indicator can be used for reliably measuring the   values of anionic surfactant 

micelles, while for surfactants possessing alkylammonium head groups the   values obtained this way 

are biased. We suggest a molecular explanation for this effect.  

 

Scheme 1. Molecular structures of the studied dye (DDP) and surfactants.  

 

 

2. Materials and methods 

 

2.1. Chemicals  

     Hydrochloric, hydrobromic, sulfuric, and acetic acids, sodium and potassium chlorides were of 

analytical grade. The aqueous solution of NaOH was prepared from a saturated solution using CO2-free 

water and it was kept protected from the atmosphere. Standard buffers with pH 1.68 (oxalate); 4.01 (o-

phthalate); 6.86 (phosphate); and 9.18 (borate) at 25 oC were used for pH standardization. CPC (1 H2O, 

Merck, 99 %), CTAB (Sigma, 99 %), CDAPS (Fluka, >99%), SDS, (Vekton, Russia), TX 100 (Sigma) 

were used as received.  

 

2.2. Synthesis of 2,6-dinitro-4-n-dodecylphenol and its sodium salt  

     The sample of 4-n-dodecylphenol was prepared as described in the literature [40, 41]. To the solution 

of 0.262 g of 4-n-dodecylphenol in 1.5 mL of glacial acetic acid 0.3 g 99 % nitric acid was added under 



stirring. After 1 h, the reaction mass was poured on the mixture of 5 g ice and 1 ml of 10 % aqueous 

ammonia. The deposited precipitate was extracted with several 2 mL-portions of dichloromethane. The 

extract was evaporated in vacuum, and thus obtained substance was three times re-crystallized from 

ethanol containing an excess of aqueous ammonia. The orange ammonium salt of 2,6-dinitro-4-n-

dodecylphenol was heated for 1.5 h at 160 oC and 60 mm Hg. After the quantitative decomposition of the 

salt, 2,6-dinitro-4-n-dodecylphenol was obtained; m.p. 60.0–60.5 oC. The compound was diluted on 

heating in 10 mL of ethanol containing 0.04 g of NaOH. After cooling, the red crystals of the sodium 2,6-

dinitro-4-n-dodecylphenolate were deposited. The product was twice re-crystallized from 50 % aqueous 

ethanol. The yield was 0.13 g. 1H NMR of 2,6-dinitro-4-n-dodecylphenol in CDCl3: 
1H NMR (CDCl3), δ  

ppm): 11.26 (1 H, s), 8.11 (2 H, s), 2.66 (2 H, t, J = 7.9 Hz), 1.63 (2 H, m), 1.36-1.18 (18 H, m), 0.86 (3  , 

t, J = 6.1 Hz).    

 

2.3. Preparation of indicator + surfactant systems  

     Weight amounts of the indicator and the surfactant were pounded and transferred into a 25 or 50 mL 

volumetric flask. A small amount of water was added and the mixture was heated on a water bath. After 

eight-minute sonication it was placed in a thermostat. After making up to the required volume and careful 

mixing, the working solutions were prepared by diluting an aliquot (1 or 2 mL) of the initial solution with 

a buffer mixture and a salt solution and topping up to 10 mL. The indicator concentration in the working 

solutions in different surfactant systems was (3 to 8)10–5 M.1 The preparation of the solutions, the pH 

and spectra measurements have been carried out at 25 oC.  

2.4. Spectrophotometric determination of the apparent ionization constants  

     The absorption spectra were measured with the Hitachi U-2000 spectrophotometer against solvent 

blanks, at 25.0 ± 0.1 oC. The pH values were determined using the R 37-01 potentiometer and pH-121 

pH-meter (Russia) with an ESL-43-07 glass electrode (Gomel, Belarus) in a cell with liquid junction (3 

M KCl). An Ag|AgCl electrode was used as a reference electrode. The glass electrode was calibrated 

with standard buffer solutions (pH 1.68, 4.01, 6.86, and 9.18 at 25 oC).  The particle size distribution and 

                                                
1 Hereafter, 1 M = 1 mol dm–3.  

 



the zeta-potentials were determined by dynamic light scattering (DLS) using Zetasizer Nano ZS Malvern 

Instruments.  

 

2.5. Experimental procedure   

     The concentration of CTAB in the working solutions was 0.003 M, the pH values were adjusted using 

either HBr, with NaBr addition (ionic strength 0.1 M) or HCl, with KCl addition (ionic strength 4.00); the 

spectra of HA and A– were measured in 0.66 – 1.0 M HBr and 0.09 M HCl solution and in borate and 

phosphate buffer solutions, at pH 9.2 and 6.9, respectively. The concentration of other surfactants in the 

working solutions was 0.01 M. In CPC and CDAPS solutions, the pH values were adjusted using HCl, the 

ionic strength 0.10 M was maintained by adding NaCl. The spectra of HA and A– were measured in 4.5 

M H2SO4 and 1 M HCl, respectively. In the solutions of TX 100, the acetate buffers (CH3COOH + NaOH 

mixtures) were used, whereas in the SDS solutions, besides acetate, several phosphate buffers were also 

used. The ionic strength of 0.10 M was maintained by NaCl additions. In these two surfactant systems, 

the spectra of the HA form were measured in 0.05 M HCl solutions. The spectra of A– were measured in 

borate and phosphate buffer solutions.  

     The ratio of the equilibrium concentrations of the acidic and basic forms was determined 

spectrophotometrically using the standard procedure. For each system, around 8 solutions with different 

pH values were normally used. As analytical positions, ca. 20 wavelengths with 1 nm-interval around 

max  of A– were used.  

 

2.6. Simulation protocol 

The computational part of the work was done using GROMACS 5 software package [42] The 

simulations were carried at standard conditions (the temperature of 298 K; the pressure of 1 bar), which 

were maintained by the Berendsen algorithms with the thermostat time constant of 1 ps and the barostat 

time constant of 1.5 ps. 3D periodic boundary conditions were imposed. The time step equaled 2 fs for 

SDS or 1.6 fs for CTAB and CDAPS. The constraints were put on all bonds, the particle mesh Ewald 

method was used for electrostatics, and van der Waals interactions were cut at 1 nm. 



For each system, the initial configuration was a water box containing the micelle with the dye 

molecule placed inside. The length of the box and the number of monomers in the micelle was equal to 8 

nm and 60 for SDS or 9.7 nm and 80 for CTAB and CDAPS, respectively. 60 and 80 were the 

aggregation numbers of the first two surfactants [43], while for CDAPS, the value equal to CTAB was 

taken to facilitate the comparison of computed characteristics between CTAB and CDAPS. As we have 

revealed for Reichardt’s dye in CTAB micelles [34], the aggregation number value does not considerably 

affect the computed state of the indicator molecule. Three initial configurations were prepared for each 

particular system. They were qualitatively similar and differed in the location of the dye molecule inside 

the micelle only. The initial configurations were subject to a 10 ns equilibration after which 30 ns 

productive runs were performed. During the 10 ns period the dye molecule relocated from the micelle 

interior to the micelle surface, and the rest of the run resided there. Reaching equilibrium was estimated 

by computing orientation of the molecule and hydration of the hydroxyl O atom (as described in sections 

3.4, 3.5) by 0–5 ns, 5–10 ns, 10–15 ns, and 10–40 ns intervals and comparing them. The 5–10 ns, 10–15 

ns, and 10–40 ns averages were generally close to one another while 0–5 ns usually outstood indicating 

10 ns is enough for equilibration of such systems. For each system the characteristics computed for each 

of the three runs, were averaged. 

The simulations were performed using the well known OPLS-AA force field [44]. The models for 

SDS and CTAB were taken from our previous works [45,46], while the one for CDAPS was prepared as 

follows. In the CTAB potential model, one methyl group was replaced with the ethyl group, represented 

the standard OPLS-AA parameters. Then, the CH2–SO3
– group extracted from our potential model for 

sodium dodecyl sulfonate [22] was attached to the ethyl group. 

The dye was parameterized in accordance with the standard OPLS-AA methodology in order to keep 

the mutual compatibility of all used potential models. Even though the force field contained the values of 

the atomic point charges for the hydroxyl, nitro, and methyl groups, bonded to a benzene ring, we decided 

to recalculate these charges for the DDP molecule because the built-in charges were obtained for single-

substituted benzene derivatives, while in the case of DDP the interactions between the substituents leads 

to redistribution of the electronic density. At the first stage, quantum-chemical geometry optimization of 



the molecule at the RHF level of theory using the 6-31G(d) basis set was performed. Then, fitting the 

distribution of the electrostatic potential around the molecule with a system of atom-centered point 

charges using the CHELPG algorithm [47] was done.  

We used the RED server [48] linked to Gaussian 09.E to perform the procedure [49]. The point 

charges were computed for the 2,6-dinitro-4-methylphenol molecule, while for the rest of the 

hydrocarbon tail they were taken from the force field. This is justified because the inductive effect of the 

benzene ring on the hydrocarbon chain quickly diminishes. 

We also prepared the potential models for two other dyes 2,6-dinitro-4-pentylphenol (PDP) and 2-

nitro-4-nonylphenol (NNP). For deriving the potential model of the latter compound, quantum-chemical 

computations were performed for the 2-nitro-4-methylphenol molecule. 

The counter-ion for the anionic forms was Na+, and water was represented by the SPC model. 

 

 

3. Results and Discussion 

3.1. Experimental determination of ionization constants in micelles 

The absorption spectra of 2,6-dinitro-4-n-dodecylphenol in micellar media at different pH values are 

presented in Figures 1 – 3. The maximal molar absorptivities of the HA molecule and the A– ion in 

various micellar systems are around 4.9103 M–1 cm–1 and 9.1103 M–1 cm–1, respectively. The 

isosbestic point is unambiguous, except the CDAPS and CTAB + 4.0 M KCl systems. In CDAPS, the 

working solutions were stable only for 10 min, after which some sediment was deposited. They were 

restored via slight heating.   

    Taking into account that the aggregation number of the surfactants in all systems is of the order of 102, 

the dye : micelle ratio was around unity or somewhat higher. The DLS study demonstrates that the 

micellar size with and without the indicator are approximately equal.  
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Fig. 1 Absorption spectra of 2,6-dinitro-4-n-dodecylphenol in 0.01 M CPC solutions, 0.1 M NaCl 

(a) and 0.003 M CTAB solutions, 0.1 M NaBr (b).  
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Fig. 2 Absorption spectra of 2,6-dinitro-4-n-dodecylphenol in 0.01 M CDAPS solutions, 0.1 M 

NaCl (a) and 0.003 M CTAB solutions, 4.0 M KCl (b).  
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Fig. 3 Absorption spectra of 2,6-dinitro-4-n-dodecylphenol in 0.01 M TX 100 solution, 0.1 M 

NaCl (a) and 0.01 M SDS solution, 0.1 NaCl (b).  

 



     The dependences of the ionization degree of the indicator on pH are shown in Fig. 4. The solid lines 

correspond to the ionization degrees calculated using the app

apK  values.  
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Fig. 4 Dependence of ionization degree of 2,6-dinitro-4-n-dodecylphenol fixed in micelles vs pH of the 

bulk (aqueous) phase in micellar solutions of CPC (1); CTAB (2, 4); CDAPS (3); TX 100 (5); SDS (6). 

Surfactant concentrations: 0.01 M (CPC, CDAPS, TX 100, SDS) and 0.003 M (CTAB); ionic strength of 

the bulk phase for (2) and (4): 0.1 M NaBr and 4.0 M KCl, respectively; in all other cases: 0.10 M 

(NaCl); 25 oC.  

    

    The app

apK  and max  values are collected in Table 1. The data qualitatively agree with the data 

published for nitrophenols in micellar media [37, 50, 51]. The app

apK  value in CPC micelles is lower than 

in CTAB (Table 1). This is in line with the data for a number of nitrophenols [50] and other dyes [2, 3]. 

Also, the app

apK  of a given indicator is as a rule lower in a cationic micelle with Cl– counterion as 

compared with that with Br–, everything else being equal [2, 3]. The results for 2,6-dinitro-4-

dodecylphenol obtained in the present study should be compared with those published in our previous 

paper devoted to nitrophenols, including 2,6-dinitrophenol in cationic and zwitterionic micelles [52].      

Table 1. Indices of apparent ionization constants of 2,6-dinitro-4-dodecylphenol and related parameters a 

Surfactant, conc.  Salt 

background, 
max (HA) , nm 

max (A ) 
, nm 

app

apK  p app

aK  d  , mV 



M 

None b 0 345 430 3.71 c — — 

SDS, 0.01 M 0.1 362 459 5.41 0.02 +1.3 –82 

TX 100, 0.01 M 0.1  358 462 4.02 0.01 –0.1 0 

CDAPS, 0.01 M 0.1 358 469 2.00 0.02 –2.1 +120 

CTAB, 0.003 M  4.00 (KCl) 356 472 2.20 0.02 –1.9 +108 

CTAB, 0.003 M  0.1 (Br–) 359 469 1.35 0.05 –2.8 +158 

CPC, 0.01 M 0.1 359 465 1.01 0.02 –3.1 +178 

 

Note. a Ionic strength 0.10 (buffer + NaCl), if not otherwise specified; b data for 2,6-dinitrophenol, ref. 

[52]; c thermodynamic value for 2,6-dinitrophenol, w

apK ; in ref. [35], w

apK  = 3.70. d For p app

aK  

calculation, a value of w

apK  = 4.1 was used, see the text.  

 

    It is also interesting to compare the max  values with those for 2,6-dinitrophenol [52]. In CDAPS and 

CTAB micelles, max (A )   for 2,6-dinitrophenol is 450 and 455 nm, respectively. These are higher than in 

water (430 nm) but lower than those for the hydrophobic analogue in the same micelles, which are around 

470 nm (Table 1). This gives evidence for deeper penetration into the micellar pseudophase of the 2,6-

dinitro-4-dodecylphenolate as compared with the less hydrophobic analog.  

     The app

apK  values of the hydrophilic dinitrophenol are always higher than for the hydrophobic dye in 

the above micelles. In CDAPS, at 0.05 M Cl–, app

apK  = 2.53 0.02 at the maximal surfactant 

concentration (0.005 M) [52], whereas the extrapolation to complete binding of HA and A– by the 

micelles results in app

apK  = 2.76 0.02 [52]. For 2,6-dinitro-4-dodecylphenol in CDAPS micelles, app

apK  

= 2.00 0.02 (Table 1). In 0.01 M CTAB solution at 4.00 (KCl), app

apK  of 2,6-dinitrophenol is 2.51 0.02 

[52], which is also substantially higher than app

apK  = 2.20 0.02 of the hydrophobic indicator (Table 1). 

Finally, in CTAB at 0.05 M Br–, the app

apK  value of 2,6-dinitrophenol is 1.31 0.01 [52]. The 

extrapolation to 0.1 M Br– using the well-known approaches [2] leads to a value of 1.5–1.6, which is also 



higher than 1.35  0.05 in Table 1. Concluding, in all cases the app

apK   of 2,6-dinitro-4-dodecylphenol in 

cationic and zwitterionic micelles is lower than for the indicator without the C12H25 tail. A possible 

explanation is that the hydrophobic dye penetrates deeper into the micellar pseudophase in accordance 

with the max  values (see above).  

    Another problem is that the thermodynamic w

apK  value of 2,6-dinitro-4-dodecylphenol in water is 

unavailable experimentally. For 2,6-dinitrophenol w

apK  = 3.71. Using the Hammett’s   = 0.15 and   = 

2.1 constants for 4-alkyl radical and phenol in water the w

apK  = 4.02 value can be predicted. However, 

the nitro groups in 2- and 6-positions can influence the electronic effect of the alkyl chain. For 4-methyl-

2,6-dinitrophenol, an experimental value of 4.35 is available [53], whereas for 4-isobutyl-, 4-isoamyl-, 

and 4-isooctyl- derivatives of 2,6-dinitrophenol, the values of 4.3, 4.1, and 4.1, respectively were 

determined [38]. In any case, the difference between the app

apK  in TX 100 and w

apK  is small, thus 

confirming the choice of the indicator. 

 

3.2 Micellar effects and estimation the electrostatic surface potential  

    The values of app

apK  = app

apK  – w

apK  calculated using the w

apK  value of 4.1 are shown in Table 1. 

The sign of the effects is predictable: increasing app

apK  in SDS micelles and decreasing in cationic ones. 

An important detail is a substantial app

apK  decrease in the zwitterionic micelles and in the case of a 

cationic surfactant under the condition of strong shielding of the micellar surface charge via 4 M KCl.  

    The calculation of the   values using Eq. (3) was done following one of the most recognized 

procedures. Namely, the i

apK  value in ionic (including zwitterionic) micelles was equated to the app

apK  

value in nonionic micelles (= 4.02, Table 1). First of all, with such approach the screening of the surface 

charge even by 4 M KCl is far from being complete. Also, the   value in micelles of the zwitterionic 

surfactant is surprisingly high (Table 1). This should be attributed to the local electrostatic potentials in 

the interfacial layer. Finally, the   value in anionic micelles in the presence of 0.1 M NaCl is 

approximately two times lower than in the cationic micelles at the same ionic strength. Similar proportion 



was observed with N,N'-di-n-octadecylrhodamine as indicator [2, 21], but the absolute values are 

markedly lower.   

    These conclusions rest on the assumption of the equality of i

apK  in all kinds of micelles. This, in turn, 

is true at least if the location and hydration of the indicator and especially of the ionizing group is similar 

in different pseudophases. We used MD modeling to clarify these issues.  

 

3.3 Molecular dynamics modeling of indicator localization 

     Using the MD simulations the location of the phenolic moiety of the dye molecule in the micelles was 

estimated by the analysis of the distribution functions of the distances (DFD) between the micelle center 

of mass (COM) and the chosen atoms of the dye. We selected two atoms: i) the O atom of the 

dissociating hydroxyl group (it will be further denoted OOH) and ii) the C atom of the hydrocarbon tail 

bonded to the benzene ring (denoted Cα). The graphs are shown in Fig. 5. The peaks on these DFDs 

indicate the preferable region of the micelle where the particular atom is located. For comparison, DFDs 

between the micelle COM and the atoms S or N of the surfactant ions are calculated, as well, because 

they indicate the location of the micelle surface layer. 

 

 

Fig. 5 Distribution functions of the distances between the micelle COM and the Cα, OOH atoms of DDP or 

S (N) atoms of the surfactant ions; solid curves are for the neutral form, dashed curves are for the anionic 

form.  

 

    The results show that the hydroxyl group is situated in the surface layer and it is not immersed into the 

micelle, while the Cα atom is situated much deeper in it. Importantly, the difference between the average 



location of the neutral and anionic forms is very small, the corresponding peaks almost coincide. A 

notable difference is observed for the Cα atom in CDAPS micelles only.  

 

3.4 Modeling of indicator orientation 

    Deeper understanding of the dye molecule location in the micelle is provided by its orientation with 

respect to the micelle surface. To quantify it, we introduced the pitch angle θ defined as  (the micelle 

COM, the Cα atom of DDP, the OOH atom of DDP). Its distribution functions shows show the molecule is 

aligned. The definition of the angle and the results of calculations are shown in Fig. 6.  

 

   

Fig. 6 Left: the definition of the angle θ (gray zone depicts the micelle hydrocarbon core); right: the 

distribution functions of θ. 1 — SDS solution, 2 — CTAB solution, 3 — CDAPS solution; solid curves 

are for the neutral form, dashed curves are for the anionic form.  

 

    For the anionic form, the θ values around 160° are typical for all micelles. This corresponds to the 

orientation that is roughly parallel to the micelle radius with the hydroxyl group pushed towards the bulk 

phase. A similar picture is observed for the neutral form in SDS micelles, but the maximum is at 140° and 

the peak is wider that means a stronger inclination of the molecule. In CTAB and CDAPS micelles this 

effect is even more pronounced: the high probability of the values 80–120° means that the orientation 

with the molecule lying roughly parallel to the micelle surface is populated, too.  

 



3.5 Modeling of indicator microenvironment 

    Apart from the location of the dye molecule the composition of the medium where it resides (its 

microenvironment) is important as it ultimately determines the i

apK  shift upon binding by the micellar 

pseudophase. We employed the same approach for its description as in our previous works devoted to the 

Reichardt’s solvatochromic indicators and the azo dye [22, 32–34]. The atoms of the solution that 

surround the phenolic moiety of the DDP molecule (i.e. which are located within 0.4 nm of at least one of 

its atoms) were classified into three categories: atoms of water molecules, the atoms of surfactant head 

groups, and the atoms of surfactant hydrocarbon tails. The average numbers of atoms in these categories 

characterize the microenvironment of the dye molecule. The results are shown in Fig. 7. 

 

 

Fig. 7 Numbers of atoms of various kinds in the microenvironment of the phenolic moiety of the DDP 

molecule (left) and of the hydroxyl O atom (right); gray: atoms of hydrocarbon tails, blue: atoms of water 

molecules, orange: atoms of surfactant head groups, white: the H atom in the hydroxyl group.  

 

    In the SDS micelles, the dye is much better hydrated than in the CTAB and CDAPS ones. The 

difference between CTAB and CDAPS is quite small (10–15%). Moreover, in CDAPS micelles only the 

positively charged [CH2–N(CH3)2–CH2]
+ fragments contribute to the microenvironment of the hydroxyl 

group, while there are no contacts with the negatively charged SO3
– fragments. The contact of the whole 

dye molecule with the SO3
– fragments is non-zero but very small. Therefore, the dye should be 

considered as situated in the electric field with positive potential despite the surfactant zwitter-ions as a 

whole are neutral. This should have consequences related to the value of pKa
app in these micelles.  



    Importantly, for both the whole molecule and its individual hydroxyl group the microenvironment 

remains almost unchanged upon going from the neutral form to the anionic one in all micelles. The 

differences are 2.9 atoms in SDS, 0.9 atoms in CTAB, and 1.0 atom in CDAPS, which are less than for 

the other dyes that we studied previously, the Reichardt’s betaines [32–34] and the azo dye [22]. This fact 

together with the similarity of the location of these two forms provides microscopic justification of the 

application of the proposed dye as a suitable probe of the micelle electrostatic potential. 

     In order to elucidate the role of the hydrocarbon tail length, a dye with C5H11 group, PDP, was 

examined. The location of PDP in SDS micelles is shown in Supporting Information, Fig. S1. In general, 

both forms of PDP are situated 0.1 – 0.2 nm closer to water phase than DDP, which shows that the length 

of the hydrocarbon radical does affect, albeit weakly, the dye location in the micelles.  

 

 

3.6 Comparing with data obtained using other indicators  

 

    Most experimental data obtained in the present study refer to the ionic strength 0.10 M. This is because 

of the low app

apK  values in cationic micelles, which requires using relatively high HCl and HBr 

concentrations. However, the obtained app

apK  values can be re-calculated to the ionic strength (in this case 

it is the counterion concentration) of 0.05 M using the well known slopes of the app

apK  vs logarithm of 

counterion concentration dependences [2, 3, 21], Eq. (4, 5) for cationic and anionic micelles, respectively.  

app

a

w

p

log[Br ]
T

K




 
 

 
          (4) 

app

a

w

p

log[Na ]
T

K




 
 

 
          (5) 

    Here,   is the degree of counterion binding [2, 3]. It means that the   values in SDS, CTAB, and 

CPC micelles as obtained via Eq. (3) should be increased by 13 mV, using the   = 0.75 value. For 

example,   is equal to –95 mV for SDS and to +171 mV for CTAB micelles at counter-ions Na+ or Br– 

concentration of 0.05 M.  



    In Table 2 and 3, the   values estimated obtained with 2,6-dinitro-4-n-dodecylphenol are compared 

with the data obtained with other indicators, most often applied for   determination, first of all the 

hydrophobic hydroxycoumarins.  

 

Table 2. The values of the electrostatic potential of SDS micelles estimated by various methods  

Indicator   , mV 

0.05 M Na+ 

2,6-Dinitro-4-n-dodecylphenol, this work –95 a 

4-Heptadecyl-7-hydroxycoumarin  –114 b 

4-Octadecyloxy-1-naphthoic acid  –87 c 

Standard Reichardt’s dye d,e –95 

n-Decylfluorescein e –110 (–144) f 

N,N/-Di-n-octadecylrhodamine e –59 

Calculation via Ohshima–Healy–White 

equation, ref. [55]    

–66 g  

 

a At 0.10 M Na+,   = –82 mV, this work. b At 0.10 M Na+,   = –95 mV, ref. [15]. c From the value –93 

mV in ref. [20] recalculated to Na+ concentration of 0.05 M. d
 4-(2,4,6-triphenylpyridinium-1-yl)-2,6-

diphenyl phenolate. e Ref. [2, 3]. f The values in parenthesis are determined using the constants of two-

step equilibria of n-decylfluorescein. g Calculated using the values of micellar radius, molecular area of 

the ionic head group, and degree of counterions binding 2.0 nm, 0.60 nm2, and 0.75, respectively.    

 

Table 3. The values of the electrostatic potential of CTAB and CDAPS micelles estimated by various 

methods 

Indicator  

 

Ionic strength =  

 

 , mV 

CTAB micelles CDAPS micelles 

0.05 M 4.0 M KCl 0.05–0.10 

2,6-Dinitro-4-n-dodecylphenol, this work +171 +108 +120 

4-Heptadecyl-7-hydroxycoumarin, 4-undecyl-7-

hydroxycoumarin, and 4-octadecyloxy-1-

naphthoic acid a 

+118 b — c — 

Standard Reichardt’s dye d  +99 (+117) e +30 +65 

n-Decylfluorescein d  +122 (+103) f +23 (+15) f +55 (+46) f  

N,N/-Di-n-octadecylrhodamine d +99 +16 +36 



Calculation via Ohshima–Healy–White equation, 

ref. [55] g   

+88 — — 

 

a Average values from ref. [11, 14, 20, 54] recalculated to Br– concentration of 0.05 M via Eq. (4), see 

also ref. [21].  b At NaBr concentration of 0.05 M the value ca. +90 mV was given in Fig. 6 in ref. [11]. c 

For n-dodecyltrimethylammonium chloride micelles in 4.0 M NaCl solution,   = +43 mV with 4-

heptadecyl-7-hydroxycoumarin, ref. [54]. d Ref. [2, 3]. e Recalculated via Eq. (4) from the value +141 mV 

determined at low ionic strength published in ref. [14]. f The values in parenthesis are determined using 

the constants of two-step equilibria of n-decylfluorescein. g Calculated using the values of micellar radius, 

molecular area of the ionic head group, and degree of counterions binding 2.6 nm, 0.474 nm2, and 0.73, 

respectively.    

 

    With 4-heptadecyl-7-hydroxycoumarin, the values   = –122, –110, and –95 mV were obtained in 

SDS micellar solutions with ionic strength (NaCl) 0.025, 0.065, and 0.102 M, respectively [15]. 

Fernandez and Fromherz [11] and Drummond and Grieser [54] reported   values obtained with 4-

undecyl- and 4-heptadecyl-7-hydroxycoumarins, respectively; these data agree with those published by 

Hartland et al. [15] and are considered in ref. [21]. The 4-octadecyloxy-1-naphthoic acid was also used 

[20]. As the ionic strength in these studies [11, 20, 54] was substantially lower compared to our 

experiments, the corresponding corrections would make the difference smaller. Only these recalculated 

values are compiled in Table 3. However, the electrostatic potential estimated with the coumarin 

indicators [11, 15, 54] shows somewhat more negative   values than were estimated with 2,6-dinitro-4-

dodecylphenol.  

    It should be stated that, in the case of SDS micelles, the proposed indicator 2,6-dinitro-4-

dodecylphenol provides the   values agreeing roughly with other estimates (Table 2). Further pro et 

contra for using just this indicator should be followed from the results of MD modeling, see above. This 

is not the case with the CTAB micelles at 0.05 M Br– (Table 3).  

    For CTAB micellar solutions, the   values were obtained by several authors with the hydrophobic 

coumarins at ionic strengths < 0.05 M [11, 14, 20, 54]. In Table 3, these and some other values are re-

calculated to [Brw
–] = 0.05 M using Eq. (4). In addition, we obtained some values using the Reichardt’s 



betaine dye, n-decylfluorescein, and N,N/-di-n-octadecylrhodamine [2, 3, 21]. They are also compiled in 

Table 3.  

     The inspection of Table 3 allows stating that the indicator 2,6-dinitro-4-dodecylphenol shows 

substantially more positive   values in cationic micelles: in the case of CTAB micelles at 0.05 M Br–, 

the results obtained with the new indicator are evidently different (Table 3).  

     The overestimate of the   values obtained with 2,6-dinitro-4-dodecylphenol may also be proven 

using the Ohshima–Healy–White equation [55], which allows calculating the electrostatic potential values 

for well-defined surfactant micelles [2, 21], although these results depend to some degree on the values of 

the molecular area of the head groups and  . This equation for spherical micelles is given below, Eq. (6).  
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     Here, is  is the area of charged head group (molecular area), /Y F RT ,   is the Debye length, o  

= 8.85410–12 F m–1, o = 78.5 at T = 298.15 K. Actually, the left hand side in Eq. (6) is the surface 

charge density.  

     Eq. (6) may also be used for verifying the experimentally estimated value   = +171 mV for CTAB 

micelles. At [Br–] = 0.05 M this value corresponds to a micellar surface charge density value of 2.45 

elementary charges per nm2, if the micellar radius is 2.6 nm. If   = 0.75, the molecular area of the head 

group is 0.10 nm2, which is impossible taking the van-der-Waals value of 0.38 nm2 [56]. Even for   = 

0.60, is  is also as low as 0.16 nm2. So, this also confirms the overestimated   value for cationic 

surfactant micelles obtained with the 2,6-dinitro-4-dodecylphenol. Indeed, if, for instance,   equals to 

100 mV, the surface charge density is 0.762, and the molecular area at   = 0.75 and 0.60 is 0.328 and 

0.525 nm2, respectively.  

    Furthermore, for CTAB micelles in 4.0 M KCl solution,  = +16 mV and + 30 mV as obtained with 

N,N/-di-n-octadecylrhodamine and Reichardt’s dye, respectively [2], while the value of +108 mV was 

obtained for CTAB with 4.0 M KCl with the hydrophobic dinitrophenol in the present study (under these 

conditions, the CTAB micelles convert into the CTAC ones).   



     Moreover, whereas for the zwitterionic CDAPS micelles, the   value obtained with N,N/-di-n-

octadecylrhodamine and Reichardt’s dye equal to +36 and + 65 mV, respectively [2], the application of  

2,6-dinitro-4-dodecylphenol leads to   = +120 mV (Tables 1, 3). 

    As one of possible explanations it can be assumed that the strong decrease in the app

apK  value of 2,6-

dinitro-4-dodecylphenol reflects only the local electrostatic potentials at the location of the ionizing group 

of the indicator. However, the simulations in comparison with another phenolic indicator, cation of the 

Reichardt’s dye [32–34], does not support such explanation, as it is seen in Table 3. Also, the orientation 

of the 2,6-dinitro-4-dodecylphenolate, A–, in CTAB, CDAPS, and SDS micelles is similar, but the 

negative   value in SDS is certainly not overestimated.  

    A probable reason may be some specific interaction in the micelles with alkylammonium moiety. 

Indeed, the contacts of the phenolate oxygen of A– with the cationic headgroups of surfactants are evident 

(Fig. 7). The same refers to the nitro groups, which favor the delocalization of the negative charge in the 

indicator anion, thus stabilizing it and decreasing the i

apK  value. This, in turn, leads to overestimating the 

  value, if such specific effect is not taken into account.  

     The strong delocalization of the negative charge in nitrophenolates is known to reduce the apK  

increase in going from water to polar non hydrogen bond-donor solvents. For example, in 

dimethylsulfoxide (DMSO), the rise of apK  is 6.4 units for phenol [57], 3.8 for 2-nitrophenol [57], 1.66 

for 2,5-dinitrophenol [58], 1.2 for 2,6-dinitrophenol [57], and 0.9 for 2,4-dinitrophenol [58]. For the last-

named indicator, the apK  even drops from 4.11 in water to 3.56 in 65 vol. % aqueous DMSO [59]. In our 

case, the mechanism of the additional stabilization of the anion is somewhat different from that in DMSO, 

and probably consists in further shifting the electron density from the phenolate oxygen caused by the 

interaction of the electrophilic electronically unsaturated NO2 substituents with the tetraalkylammonium 

groups.  

    To support this hypothesis we used the data reported by Seguchi [50]. In his work, the app

apK  = 2.40 

value of 2,4-dinitrophenol in CTAB solutions (in the presence of 3 % ethanol, 30 oC) [50] corresponds to 

the same value (2.37 in 0.016 M CTAB, 0.05 M KBr, 25 oC) of this indicator obtained in our laboratory 



[52]. Therefore, the value app

apK  = 5.86, reported by Seguchi for the 2-nitro-4-n-nonylphenol in CTAB 

micellar solutions, can be attributed to the Br– concentration of ca. 0.05 M. In Brij 35 micellar solutions, 

app

apK  = 8.52 for the same indicator [50], which allows estimating the   value in CTAB micelles as 

+157 mV. Though it is again somewhat lower compared to the +171 mV value obtained with 2,6-dinitro-

4-dodecylphenol, but still overestimated. Indeed, by Eq. (6) the is  = 0.130 and 0.209 nm2 values can be 

estimated for   = 0.75 and 0.60, respectively. These molecular areas of the head groups are again 

unlikely small, although the indicator used bears only one nitro group.  

    Note, that for the anionic surfactant, the data with 2-nitro-4-n-nonylphenol [50] gives  the   value 

around o –90 mV, which is close to that obtained with 2,6-dinitro-4-dodecylphenol (–95 mV, see above). 

This supports the hypothesis of specific interactions between our indicator and ionic head groups only in 

the case of cationic and zwitterionic surfactants.  

    Accordingly, it may be concluded that the excessive polarizability of the electrophilic NO2 groups may 

cause a substantial change in the intrinsic value, i

apK , of corresponding indicators in Stern layer of 

micelles with alkylammonium groups. This results in overestimation of the   value. In contrast, 2,6-

dinitro-4-dodecylphenol is quite suitable for examining micelles of anionic surfactants.  

    Therefore, we performed MD simulations for 2-nitro-4-n-nonylphenol. The location of NNP in CTAB 

micelles is shown in Supporting Information, Fig. S2. The difference between the locations of NNP and 

DDP is of the same magnitude, despite the absence of one nitro group.  

    In order to make these comparisons clearer, the average distances of the Cα and O atoms to the micelle 

COM were computed for each case. The values for DDP are collected in Table 4, while for other dyes the 

results are listed in Table 5. The difference of the quantities between anionic and neutral forms can easily 

be calculated, which are also listed in Table 4 (the ‘delta’ values). 

 

Table 4. Average distances of the Cα and O atoms of DDP to the micelle COM (nm). 

micelles Cα atom OOH atom 

HA A– delta HA A– delta 



SDS 1.23 1.16 –0.07 1.62 1.66 0.04 

CTAB 1.48 1.30 –0.18 1.78 1.81 0.03 

CDAPSn 1.57 1.30 –0.27 1.85 1.80 -0.05 

 

Table 5. Average distances of the Cα and O atoms of PDP and NNP to the micelle COM (nm). 

dye micelles Cα atom OOH atom 

HA A– HA A– 

DDP SDS 1.42 1.27 1.68 1.73 

NNP CTAB 1.31 1.40 1.64 1.85 

 

   The microenvironment of NNP is shown in Fig. S3. Interestingly, removing one nitro group causes 

different shifts in hydrations of the neutral and anionic forms. As a result, the difference between the 

hydrations of these forms increases in comparison with DDP and becomes 4.0 atoms in CTAB micelles.  

 

4. Conclusions  

 

 

    In search of an optimal acid-base indicator for examining micelles of ionic surfactants, 2,6-dinitro-4-n-

dodecylphenol was synthesized and the indices of the apparent ionization constants, app

apK , were obtained 

by the spectrophotometric method supplemented by potentiometric pH determination. Molecular 

Dynamics simulations demonstrate that in micelles of any kind, the location of the HA and the A– forms 

is quite similar. Additionally, simulations were made for two other hydrophobic nitrophenols and their 

anions in micelles.   

     The values of the electrostatic interfacial potential of the micelles, that is the potential of the Stern 

layer,  , were determined by the standard procedure, using the app

apK  value of the indicator in nonionic 

micelles as the indices of the intrinsic ionization constant i

apK  in ionic micelles. Thus obtained   values 

in the micelles of surfactants bearing alkylammonium and alkylpyridinium groups appeared to be much 

higher than those either estimated using other indicators or calculated by the Ohshima–Healy–White 

equation. This was explained in terms of the specific interactions between the nitro groups of the indicator 



with alkylammonium or pyridinium groups in the Stern layer of the micelles: these interactions 

additionally stabilize the A– form of the indicator, thus decreasing the i

apK  value. The latter is therefore 

difficult to predict. On the other hand, the indicator 2,6-dinitro-4-n-dodecylphenol is suitable for 

examining anionic micelles. So, the  value for the SDS micelles is –95 mV (at ionic strength 0.05 M).  
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