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Abstract 

This paper examines the dynamic relationship between the oil market and stock markets from 

two perspectives: dependence between the crude oil market (WTI) and stock markets of the 

US and China, and volatility spillovers between them during 1991-2016. We further analyze 

structural breaks of market dependences and consider the extent of their influence on such 

relationships. Our vine-copula results show that the dependences between the three paired 

markets, WTI-US, WTI-China and US-China, vary dynamically across the six identified 

structural break periods. In particular, the dependence between WTI-US is stronger and more 

volatile than that between WTI-China during most of the periods. The dependence between 

US-China remains at a lower level in the earlier periods, but increases in the final period. Our 

VAR-BEKK-GARCH results demonstrate distinctive volatility spillovers across these periods, 

with varying directionality, in response to the structural changes. Overall, our results indicate 

that the oil market stimulates rapid and continual fluctuations in market dependences, which 

become manifest most acutely in the aftermath of the Financial Crisis of 2007-08, 

demonstrating the increasing interdependence between the oil and stock markets. Further, the 

growing influence of China on the dynamics of these relationships, in the period following the 

Great Recession, presents evidence that it begins to assume an increasingly important role in 

global economic recovery. 

Keywords: Oil market; Stock market; Dependence; Volatility spillover; Copula model; 

Multivariate GARCH model. 
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Dependences and volatility spillovers between the oil and stock markets:  

New evidence from the copula and VAR-BEKK-GARCH models 

 

1. Introduction 

Oil-price volatility has increasingly been the focus of extensive research, as fluctuations in the 

oil price have generated an unpredictable impact on the trajectory of world oil pricing and, in 

turn, financial markets (Kang et al., 2015; Wen et al., 2012; Bai and Kai, 2018). Complicating 

this relationship is the propensity of movements in the stock market to spill over into the oil 

market, and vice versa. The development of effective techniques to predict market movements, 

and evaluate the effects of such interactions, is an objective that researchers have long been 

seeking to achieve (Naifar and Dohaiman, 2013). With the increased complexities of world 

economies and financial markets, coupled with the growing power of emerging market 

economies, fluctuations in oil and stock market movements would arguably have even greater 

endogenous and exogenous consequences for the interactions between the world oil and 

financial markets. It is with these issues in mind that we examine the dependence between the 

oil and stock markets and the trajectories of spillovers amongst them, founding our study on 

West Texas Intermediate (WTI) and the US and China stock markets. 

    Existing research examines numerous complexities in the relationship between oil prices 

and equity returns based on statistical regularities of pricing (Hamilton, 2009). Many studies 

use linear models, such as the vector autoregressive (VAR), to examine the dynamic 

relationship between the oil and stock markets in respect of their mutual dependence 

(Antonakakis and Filis, 2013; Arouri et al., 2010; Bjørnland, 2009; Broadstock and Filis, 

2014; Filis et al., 2011; Lee and Zeng, 2011; Wang et al., 2013). However, these models have 

been unable to capture nonlinear aspects of the complex relationship, whether it be 

dynamically or asymmetrically (tail) dependent. 

  Recent investigations have employed the time-varying copula model to account for 

non-linear oil and stock market dynamics. A number of studies demonstrate variously a 

nonlinear relationship; increased tail dependence among international stock markets 

(Christoffersen et al., 2012); a dynamic tail dependence exhibited in crude oil prices (Avdulaj 

and Barunik, 2015); a dynamic dependence between the oil market and stock markets before 
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and after the financial crisis (Zhu et al., 2014); and strength of tail dependence and contagion 

risk in transition economies (Aloui et al., 2013). Although the time-varying copula can 

determine the dependence between two paired markets, it is not directly applicable when the 

interactions of multi-markets are the subjects of analysis.  

Further studies overcome these limitations by adopting the vine copula model to account 

for the dependence among markets with high-dimensional complexity. These studies 

consistently show that this model can effectively capture the dependences among high 

dimension relationship (Weiß and Supper, 2013; Kraus and Czado, 2017; Allen et al., 2013; 

Brechmann et al., 2013); while it has also demonstrated superior performance in estimating 

the nonlinear relationship, including tail dependence (Charpentier and Segers, 2007). Despite 

these advantages, the vine copula model is unable to ascertain the direction of such 

dependences. 

 At the same time, researchers explore price volatility using multivariate GARCH 

models to facilitate analysis of multi-dimensional relationships among the markets (e.g., 

Awartani and Maghyereh, 2013; Du and He, 2015; Zhang and Wang, 2014; Jouini, 2013; 

Sadorsky, 2012). Chuang (2007) and Salisu and Mobolaji (2013) use the 

VAR-BEKK-GARCH model to analyze the role of volatility spillovers among multi-markets, 

arguing that this model can produce more accurate forecasts than traditional multivariate 

GARCH; while some of the traditional GARCH models are limited to modelling extreme 

cases of risk spillover, such as the GED-GARCH model (Fan, 2008); or require more 

parameters for estimation, such as the DCC-MECGARCH model (Tsuji, 2018). Further 

research finds supportive evidence that the VAR-BEKK-GARCH is more efficient, as it 

requires fewer parameters when analyzing spillovers among several markets (e.g., Schreiber, 

2012; Stelzer, 2008; Carpantier and Samkharadze, 2013). 

    While acknowledging the valuable contribution made by prior research, we contend that 

shortcomings still remain. First, relationships between and among the markets have become 

increasingly complicated and multi-dimensional, and early research has been unable to 

account for dependence and volatility together, to gain a more complete understanding of the 

nature of underlying risks (Reboredo, 2015; Bekiros and Uddin, 2017; Liu et al., 2017). 
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Moreover, most existing studies investigating multi-market dependence relationships have not 

considered structural breaks and regime changes, which may have stimulated rapid and 

continually changing volatilities in markets over an extended period of time (e.g., Nguyen, 

2012; Sukcharoen et al., 2014; Ji et al., 2018; Zhang, 2017). Even when structural breaks are 

considered, these studies examine structural breaks in relation to stand-alone markets, rather 

than dependences between multi-markets that are interacting (e.g., Aloui and Aïssa, 2016), 

failing to account for structural changes to the interdependence between the markets across 

temporal subdivisions.  

    Thus, in our study, we seek to overcome the limitations of earlier researches by 

examining high-dimensional dependences and risk transmission between the oil and stock 

markets, and, at the same time, incorporate structural breaks of market dependence into the 

analysis of such/these relationships. The areas of interest are the crude oil market, West Texas 

Intermediate (WTI), and two stock markets: the US and China’s stock markets. First, we 

employ the time-varying copula model to examine the dynamics of the relationships among 

these three markets. Second, to refine our investigation of these relationships still further, we 

conduct an analysis of structural breaks of the dynamic relationship among the three markets. 

Our study covers a period of 26 years, during which there have been structural changes 

caused by significant global events of an economic or political nature. As our focus is on 

dependences between the three markets, we choose to test and distinguish each structural 

break in their interdependence, rather than a structural break in each individual market, to 

account for the nature of regime changes taking place with the power to drive fluctuations in 

the dynamic relationships. Third, we apply the vine copula model to estimate the dependence 

relationship between the three paired markets: WTI-US, WTI-China and US-China, across the 

structural break periods. Fourth, we take one step further to ascertain the direction of such 

dependences across the temporal subdivisions by examining volatility spillovers between the 

markets utilizing the trivariate VAR-BEKK-GARCH model. 

    We choose WTI to represent the oil market because it is one of the foremost global oil 

markets and is used predominantly as a benchmark in world oil pricing in existing studies 

(Bekiros and Diks, 2008). We choose the US and China’s stock markets for the analysis 
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because their economies are the two most powerful and dynamic in the world. The US stock 

market is the most influential in global financial markets, and China’s stock market is also 

important in its own right, partly because it may act as a surrogate for emerging economies 

(Liu et al., 2018), and partly because its increasing economic power is likely to exert a 

considerable influence over world markets in the not-too-distant future (Jiang et al., 2018). 

We believe that a study of their interactions over a significant length of time is of interest, 

given the changing dynamics of the US and China in terms of their influence over the global 

economy, and thereby seek to demonstrate that this gradual transformation is reflected in the 

dependence and directionality of spillovers. More significantly, the global interdependence of 

national economies, aggravating the economic consequences of risk contagion between the oil 

and financial markets, make it imperative to comprehend this complex phenomenon and how 

it influences the magnitude and trajectory of financial market adjustments and their 

interactions with the oil market. 

    Our study derives several significant findings. First, we establish the existence of a 

dynamic dependence between the oil and stock markets and between the stock markets 

themselves. Second, our results clearly identify five structural breaks of market dependence, 

which correspond to dependence volatilities precipitated by significant structural changes of 

an economic or political nature. Third, our analysis demonstrates that the dependences 

between the oil market and the two stock markets become stronger, and their tail dependences 

become more asymmetric with the escalating gravity of regime changes. Among these, the oil 

market plays a dominant role in these relationships, stimulating rapid and continual 

fluctuations in market dependences and transmitting information that generates extreme 

volatilities. The dependence between WTI-US is stronger and more volatile than that between 

WTI-China during most of these periods. In comparison, the dependence between US-China 

remains at a lower level in the earlier periods, but increases in the final period, which is 

evidence of the increasingly important part that it plays in the ordering of global economics. 

Fourth, risk volatilities transmit among the three markets dynamically over the six periods in 

response to economic and political structural changes. Volatility spills unidirectionally from 

the oil market to the US and China’s stock markets, demonstrating that the crude oil market is 
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dominant in determining the direction of volatilities between the markets, whose effect 

becomes manifest most acutely in the aftermath of the Financial Crisis of 2007-08. Risk 

volatility is transmitted, however, unidirectionally from the US market to China’s stock 

market during the early periods, and turns bidirectional in the final period, providing further 

evidence that the increasing power of China’s stock market is strengthening the financial 

signals that it transmits. 

    Our contribution to the literature consists in presenting new evidence of the dependence 

relationships and spillovers between the oil and stock markets. First, we establish the 

interdependence and spillovers between the crude oil market and the two most important 

economies in the world: namely the US and China’s markets, over an extended horizon, 

which has not been explored in previous studies. Second, we introduce structural breaks of 

market dependence, for the first time, into an analysis of the dependence relationship and risk 

transmission between the oil and stock markets over a protracted period, incorporating 

significant political and economic structural changes that may have exerted a transformative 

effect on the global economy, thus offering a new insight into economic horizon analyses. 

Third, we construct an evaluation procedure for measuring and analyzing dependence and 

spillovers between oil and stock markets by means of the vine copula model and multivariate 

(trivariate) GARCH model, accounting for their connection with changing structural regimes. 

Our evaluation procedure has value for both practice and policy alike, aiding governments, 

market-makers and investors in the examination of similar phenomena in other countries and 

contexts. From a policy perspective, this lens provides a vital focus for policy-makers, 

enabling them to perceive the dynamic interactions of powerful markets and how these may 

impact upon other regions of the world, and meanwhile empower them to develop strategies 

to encourage long-term, maintainable economic growth. The insights gained from the 

investigation into the dynamics of interdependence between WTI, US and China may be 

fruitfully applied to other economies, their national idiosyncrasies notwithstanding. From a 

practice perspective, our research will enable investors to identify the causes and trajectories 

of volatilities and manage the investment risk and efficiency of their portfolios at a time of 

increasing global market instability. 
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    The rest of the paper is organized as follows. Section 2 discusses the methods, including 

the time-varying copula model, vine copula model and multivariate GARCH model, as well 

as structural break tests. Section 3 discusses the data and sample. Section 4 presents and 

discusses the empirical results. Section 5 summarizes our main findings and considers 

policy and practical implications. 

2. Modelling framework 

We proceed in four steps. First, we adopt the time-varying copula model for estimating the 

dynamic dependence relationship between the crude oil market and stock markets in the US 

and China. Second, major economic and political events have occurred during our extended 

period of study, which may have impacted upon the relationships among the markets. To 

account for structural changes, we identify what we term the structural break of market 

dependence, precipitated by economic or political events, and examine the dependence and 

spillovers between the paired markets over each of the identified temporal subdivisions. Third, 

we consider the dependence between the three paired markets: WTI-US, WTI-China and 

US-China, in each period that we identify, by applying the vine copula model. The latter has 

an ability to estimate high-dimensional dependence and tail dependence among different 

markets, and can capture the nonlinear relationship in multi-markets. During this process, we 

also identify the root nodes for each period, facilitating our examination of how the risk 

information is received and disseminated in the course of market interactions. Fourth, we 

adopt the VAR-BEKK-GARCH model to examine if, and how, volatility spills across these 

markets and periods, and employ the Wald test to determine the direction of the spillover 

effect between the markets. 

 

2.1. Estimation of the marginal distribution 

It is established that oil and financial data is characterized by fat tail and high kurtosis 

(Bauwens and Lubrano, 2002; Ghose and Kroner, 1995). The GARCH model has the ability 

to match fat tail and high kurtosis characteristics of data, and, thus, can be used to compute 

marginal distribution in order to transform oil and stock price data to make it suitable for 

estimation by the copula models. We adopt the Glosten-Jagannathan-Runkle GARCH (1, 1) 
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model (GJR-GARCH (1, 1) for short), and combine it with the AR(1), on the basis that the 

AR(1)-GJR-GARCH(1, 1) model is suitable for estimating the marginal distribution (Aloui et 

al., 2013). In this way, our estimations can better capture non-linear features of oil price and 

stock price, and ensure an accurate estimation of the time-varying copula model and vine 

copula model. Given that the standardized residual follows the skewed student-t distribution, 

the model of AR(1)-GJR-GARCH(1, 1) is given below. 

 

1                                                                                                                                     

2 2 2
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                            t t t

tt t t t

r r
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                                                                                                              t t te 
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where rt is the return of market price, which is derived by using rt=lnpt+1-lnpt, where pt is the 

price of WTI, US stock market and China’s stock market at time t. σt and ɛt represent the 

conditional volatility and the residual, respectively; and et is the standardized residual and 

follows the skewed student-t distribution. Skewed student-t distribution can capture the excess 

kurtosis and skewness, and is, therefore, better fitted with the real data than the normal 

distribution. Kt-1 captures the leverage effect of the residual. When the residual, ɛt, is positive, 

Kt-1 equal to 0; and Kt-1 equal to 1 when the residual, ɛt, is negative. 

    After these procedures, oil and stock market price characterizing fat tail and high 

kurtosis will be transformed into data that follows a uniform distribution within [0, 1], which 

are suitable for estimation by the copula models. 

2.2. Time-varying copula model 

To examine the dynamic relationship between each paired market, we adopt the time-varying 

copula model. Both the Clayton copula model (Clayton, 1978) and symmetrized Joe-Clayton 

(SJC) copula model (Patton, 2006) have the ability to address tail dependence in the financial 

data. The two models differ in respect of tail dependence. The Clayton copula model deals 

with lower tail dependence, while the SJC copula model deals with both upper and lower 

dependence. The Clayton copula model is defined below. 

1/
1 2 1 2( ) ( 1)                                                       (2)ClaytonC u u u u       ，   
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where ɛ∈(0,∞). ɛ is the parameter of the Clayton copula model; u1 and u2 are two variables. 

The SJC copula model is an extension of the Clayton copula model. It is specified below. 

1 2 1 2 1 2 1 2( , ) 0.5 ( ( , ) (1 1 , ) 1)    (3)U L U L L U
SJC JC JCC u u C u u C u u u u            ， ， ，  

where λ
U 

and λ
L 

represent parameters of upper and lower tail dependence, λ
U ∈(0, 1), λ

L ∈(0, 1), 

respectively. CJC is the Joe-Clayton copula model, which is defined below. 

 
1

1
1 2 1 2( , ) 1 (1 1 (1 ) 1 (1 ) 1 )                   (4)U L

JCC u u u u
    


 

              ，  

where 21 log (2 )U    and 21 log ( )L   . 

    Both the Clayton copula and the SJC copula models can model tail dependence between 

the three paired markets using Eqs. (2) and (3). We adopt the Akaike Information Criterion 

(AIC), Bayesian Information Criterion (BIC), and Log-likelihood to determine a better copula 

model for our analysis, which will be applied to examine dynamic dependence relationships 

between the paired markets.  

    The dynamic Kendall’s τ is to measure the time-varying dependence relationship 

between each paired market. Kendall’s τ of the Clayton copula model is estimated below. 

, , 1 1, 1 2, 1( )                                                     (5)Clayton t Clayton t t tu u           

where δ is the constant; and ϕ and α are the parameters. 

   

    Different from the Clayton copula model, the SJC copula model is composed of both 

upper and lower Kendall’s τ, which can be estimated by Eqs. (6) and (7) below, respectively. 

10

, , 1 1, 2,

1

1
( )                                  (6)
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U t U U U t U t i t i

i

u u      


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10

, , 1 1, 2,

1

1
( )                                     (7)

10
L t L L L t L t i t i

i

u u      



        

where Λ is a function with Λ(x) = (1+e
-x

)
-1

 and is used to maintain Kendall’s τ within (0, 1); 

δU and δL are the constant parameters of upper and lower Kendall’s τ; ϕU, αU, ϕL and αL are the 

parameters of upper and lower Kendall’s τ. τU,t and τL,t follow the ARMA (1, 10) as specified 

in Eqs. (6) and (7), respectively, and represent the upper and lower tail dependence 

relationship (Patton, 2006). 
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2.3. Structural break  

Based on the dynamic dependence relationship between the oil and stock markets, we 

consider if there are structural breaks of the dependence relationship between these markets 

over a 26-year horizon. During our study period, some major economic and political events 

occurred, such as the first Gulf War of 1991, the Iraq War of 2003, the September 11
th

 attack 

of 2001, and the financial crisis of 2007-08. As our focus is on the dependences between the 

three markets, we choose to test the structural breaks of the dependence between them, rather 

than a structural break in each individual market. Analyses based on an individual market 

cannot be extrapolated to capture the dependence between markets. By analyzing structural 

breaks of dynamic dependence among multiple markets, we are able to account for the 

stability of market interdependence in such relationships. 

    The Chow and BP structural break tests are widely used in empirical analyses. The Chow 

test (Chow, 1960) is applicable when the structural break date is known. The BP test, 

proposed by Bai and Perron (1998), has an advantage, in that it can test for multiple unknown 

breakpoints (Prodan, 2008; Aloui and Aïssa, 2016; Carrion-I-Silvestre, 2005). As our study 

covers an extended period, there may be a series of unknown structural breakpoints. Therefore, 

we employ the BP test to identify structural breaks of the dynamic relationships between each 

paired market. For t periods and n breakpoints, the linear regression model for the BP test is 

specified below. 

                                                                                                                        (8)t t t j ty x z      

where j represents the structural regimes and j=0, ..., n; xt represents variables that do not vary 

across the structural regimes; zt represents variables that have coefficients corresponding to 

their individual structural regime. Through comparing estimated values of these two groups 

with the true values, the breakpoints can be identified. We will then incorporate the structural 

breaks, which we term the structural break of the market dependence, into the examination of 

the dependence between the three markets by applying the vine copula model, and the 

spillovers between them by applying the VAR-BEKK-GARCH model. 
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2.4. Vine copula model 

The vine copula model is an extension of the time-varying copula model and is introduced to 

examine dependence among markets with high-dimensional complexity by Joe (1997) and 

Aas (2009). The vine copula model has the ability to analyze high dimensional dependence 

relationships among three markets or more. When more markets are included in the analysis, 

they interact with one another, so that the network of dependence relationships among them 

becomes increasingly complex. As a consequence, the parameters to be estimated increase 

exponentially. Clearly, modelling the interrelationships of the three-market networks in our 

study requires the application of the vine copula model.  

    The vine copula model uses a set of bivariate copula models and marginal density 

function to investigate high-dimensional dependence relationship. Two main vine copula 

models, C-vine copula and D-vine copula, have been used widely to analyze 

multi-dimensional dependence. For n-dimension dependence, the C-vine copula and D-vine 

copula models are specified below.  

C-vine copula model: 

--1

1 | 1, ..., - 1

1 1 1

1 - 1 1 - 1

( ,..., ) ( ) ,

                     [ ( | ,..., ), ( | ,..., )]                                                 (9)

n gn n

n i g g k g

i g k

g g g k g

f u u f u c

F u u u F u u u


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

  
 

 

D-vine copula model: 

--1

1 | 1, ..., - 1

1 1 1

1 - 1 1 - 1

( ,..., ) ( ) ,

                     [ ( | ,..., ), ( | ,..., )]                                      (10)

n gn n

n i g g k k k g

i g k

k k k g g k k k g

f u u f u c

F u u u F u u u

  

  
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    

where f (u1,…,un) is the joint density function; c represents any type of the copula models; F is 

the marginal distribution function; n is the dimension; g is the tree; and i is the edge of the 

tree. 

    For the n-dimensional dependence, the density function can be decomposed into n(n-1)/2 

pairs-copula models and n marginal density functions. In our study, there are three markets, 

i.e., n =3. When the number of variables is three, the C-vine copula and D-vine copula models 

have a common function (Aas, 2009), which is specified below. 
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    As we examine the three markets in our study, the C-vine copula and D-vine copula 

models have two trees and three edges, i.e., n=3, accordingly. Thus, both models have a 

common function for estimation. We, therefore, adopt the three-dimensional C-vine copula 

model, for convenience, to estimate the dependence relationship among the three paired 

markets. 

 

2.5. VAR-BEKK-GARCH model 

As shown, the vine copula model can only estimate the dependence relationship between the 

markets. The direction of their dependence, such as spillovers of risk volatility from one 

market to another, cannot be deduced from the copula models directly. To resolve this, we 

adopt the trivariate VAR-BEKK-GARCH model, which is able to ascertain the direction of 

volatility spillovers between multi-markets. The VAR-BEKK-GARCH model, a multivariate 

GARCH model proposed by Engle and Kroner (1995), estimates the conditional mean 

function and the conditional volatility function of high-dimensional relationships, which we 

use to test volatility spillovers between multi-markets. We add VAR (1) into the conditional 

mean function, Eq. 12, to improve the accuracy of our forecasts, as suggested by Jayasinghe 

et al (2014) and Mensi et al (2014). The VAR(1)-BEKK-GARCH(1, 1) model is thus 

specified below. 

 

t t-1 t                                                                                                                                                            +      (12)R R     

(0, )                                                                                             (13)t tN H   

t t-1 t-1 t-1H=CC +DH D +A( )A                                                                    (14)                              

where Rt is the returns matrix of the oil and stock markets;  is a 3×1 vector of constant; and ɛt 

is a 3×1vector of the residual and follows a normal distribution, in which the mean is zero. Ht 

is the conditional variance-covariance matrix. C is a constant matrix and 3×3 lower triangular 
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vector, where the constant, cij, is included. D is a 3×3 parameter matrix of conditional 

variance, where dij represents the relation of the conditional variance between market i and 

market j. A is a 3×3 parameter matrix of residual, where aij is included to capture the ARCH 

effect in the residual in market i and market j. To test the volatility spillover effect, we use the 

Wald test to test the null hypothesis that if the difference of A and D equals zero. For market i 

and market j, the Wald test hypothesize that A(i, j)=D(i, j)=0. The rejection of the null 

hypothesis indicates that the risk spills over from market i to market j. 

3. Data and basic statistics 

3.1. Data and sample  

We employ the daily crude oil future price of West Texas Intermediate and two stock market 

indices: the Dow Jones Industrial Average (DJI) and the Shanghai Composite Index (SHCI), 

which represent the stock markets of the US and China, respectively. We use the SHCI for 

China because it is the first index adopted by China’s stock market. Although the SHCI had its 

inception on December 19, 1990, we make use of the full range of datasets that were made 

available from the Wind database at the time when this research was conducted. WTI’s oil 

future closing prices are obtained from the US Energy Information Agency. Crude oil futures 

contracts are reported in detail on the EIA website (https://www.eia.gov/). The DJI and SHCI 

data are collected from the Wind database (http://www.wind.com.cn/en/). The dataset has 

5877 observations from the 2 May 1991 to 31 May 2016, excluding holidays, weekends and 

any other non-trading days.  

3.2. Descriptive statistics 

Table 1 reports the descriptive statistics and ARCH-LM test statistics for the marginal 

distribution of the returns of the three markets. The mean value of all returns is close to zero, 

and values of skewness (-0.2041, -0.2275, 5.1944) and kurtosis (5.3393, 9.3743,135.5430) 

appear to be a departure from the normal distribution, given that the skewness and kurtosis of 

the normal distribution should be 0 and 3, respectively. These statistics indicate that the 

returns of the three markets are characterized by fat tails. Additionally, the Jarque-Bera test 

rejects the null hypothesis, indicating that the returns do not follow the normal distribution. 

These results confirm that there is the ARCH effect in the oil price and stock market returns. 

https://www.eia.gov/
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Hence, we adopt the GARCH model (AR(1)-GJR-GARCH (1, 1)-Skew-t model) to account 

for the ARCH effect exhibited in the three market returns. 

 

Table 1. Descriptive statistics of daily returns of the oil and stock markets 

 Mean Variance  Min   Max Skewness Kurtosis Jarque-Bera test ARCH-LM (10) 

          

WTI 0.0001 0.0006  -0.1966 0.1641 -0.2041 5.3393 7028*** 675.7000*** 

US 0.0003 0.0001  -0.1127 0.1051 -0.2275 9.3743 21586*** 1308.5000*** 

China 0.0005 0.0006  -0.1791 0.7192 5.1944 135.5430 4527600*** 27.2980*** 

Notes. Table 1 reports the summary statistics of the daily returns of the oil market, the US stock market and 

China’s stock market. The Jarque-Bera test is for testing normality of oil price and market returns. The 

ARCH-LM (10) is the Lagrange Multiple test for the autoregressive conditional heteroscedasticity, with the 

degree of freedom=10. ***, ** and * indicate confidence levels at 1%, 5% and 10%, respectively. 

 

4. Empirical results and discussions 

4.1. Marginal distributions of market returns 

Table 2 reports the estimated results of the marginal distribution of market returns. The results 

show that most of the parameters in the GARCH model are statistically significant. Especially, 

the kurtosis parameters, χ, and asymmetry parameters, η, of the three residual series are both 

statistically significant. These results indicate that the market returns for our analyses are 

characterized by fat tail and are asymmetrical, providing supportive evidence that linear 

models with normal distribution are inappropriate for estimating the relationships among the 

three markets. 

Table 2. Estimation results of marginal distribution of market returns of the oil market, the US 

stock market and China’s stock market 

 WTI US China 

µ 0.0000 

(0.0002) 

0.0003*** 

(0.0001) 

0.0006*** 

(0.0002) 

β -0.0289** 

(0.0116) 

-0.0280 

(0.0202)  

0.0373** 

(0.0150) 

α 0.0000*** 

(0.0000) 

0.0000*** 

(0.0000)  

0.0000*** 

(0.0000) 

ϕ 0.0239*** 

(0.0056) 

0.0000 

(0.0219)  

0.0946*** 

(0.0184) 

φ 0.9577*** 

(0.0049) 

0.9152*** 

(0.0237)  

0.8647*** 

(0.0223) 
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γ 0.0321*** 

(0.0085) 

0.1407*** 

(0.0180)  

0.0715*** 

(0.0210) 

χ 6.2941*** 

(0.5351) 

6.5226*** 

(0.5958)  

3.9832*** 

(0.2406) 

η -0.0691*** 

(0.0210) 

-0.0880*** 

(0.0229) 

-0.0300** 

(0.0139) 

Notes: Table 2 reports the estimation results of the marginal distribution of the market returns of the oil market, 

the US stock market and China’s stock market based on the GARCH model in Equation 1. The standard errors 

are in the parentheses. µ and β are the parameters of the conditional mean function. α, ϕ, φ and γ are the 

parameters of the conditional variance function; χ and η represent the kurtosis parameter and asymmetry 

parameter of the residuals, respectively. ***, ** and * indicate confidence levels at 1%, 5% and 10%, respectively. 

4.2. Dynamic dependence relationships by time-varying copula model: results and 

discussions 

To capture the dynamic relationship between the three paired markets, we proceed in two 

steps. First, we estimate the time-varying Clayton copula and the time-varying SJC copula 

models to establish the dynamic relationship between the paired markets based on Eq. 2 and 

Eq. 3. Second, we choose better-fitted copula models, basing our selection on the criteria that 

the structural breaks are determined by the smallest values of AIC and BIC, and also by the 

largest values of Log-likelihood. The AIC, BIC and Log-likelihood results of the two 

time-varying copula models are reported in Table 3.  

    Table 3 shows that for WTI-China, the AIC, BIC and Log-likelihood are at -5.3931, 

14.6428 and 5.6966 from the time-varying Clayton copula model, respectively; and at 2.5649, 

42.6367 and 4.7176 from the time-varying SJC copula model, respectively. For US-China, the 

AIC, BIC and Log-likelihood are at 0.1649, 20.2008 and 2.9175 from the time-varying 

Clayton copula model, respectively, and at 14.0493, 54.1211 and -1.0246 from the 

time-varying SJC copula model, respectively. These results indicate that the time-varying 

Clayton copula model performs better than the time-varying SJC copula model for the paired 

markets of WTI-China and US-China. For WTI-US, the AIC and Log-likelihood are at 

-270.4411 and 138.2250 from the time-varying Clayton copula model and -280.0522 and 

146.0261 from the time-varying SJC copula model, indicating that there is not much 

difference between the two copula models in terms of model performance. Given the above, 

we adopt the time-varying Clayton copula model for our dependence analyses. 
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Table 3. Estimation results of the time-varying Clayton and SJC copula models for the three 

paired markets 

 WTI-US WTI-China US-China 

Time-varying Clayton copula model    

 0.1013*** 

(0.0235) 

-4.4400 

(3.3568) 

-10.0000*** 

(0.0002) 

ϕ -0.5285*** 

(0.1295) 

-1.8336 

(2.5059) 

4.8224*** 

(1.4361) 

α 0.9778*** 

(0.0060) 

-0.3677 

(0.8049) 

-0.5081*** 

(0.1516) 

AIC -270.4411 -5.3931 0.1649 

BIC -250.4052 14.6428 20.2008 

Log-likelihood 138.2250 5.6966 2.9175 

Time-varying SJC copula model 

σU 

 

ϕU 

 

αU 

 

σL 

 

ϕL 

 

αL 

 

AIC 

BIC 

Log-likelihood 

 

1.5926 

(1.8995) 

-9.9999 

(13.4900) 

0.7421* 

(0.3981) 

0.1715*** 

(0.0477) 

-0.7954*** 

(0.2285) 

0.9812*** 

(0.0058) 

-280.0522 

-239.9804 

146.0261 

 

-0.7272*** 

(0.0000) 

-0.2534*** 

(0.0028) 

1.8095*** 

(0.0000) 

-0.4762 

(18.6707) 

-0.3621 

(61.9643) 

1.1415 

(1.2150) 

2.5649 

42.6367 

4.7176 

 

-7.1650*** 

(2.7463) 

-1.9781 

(3.1897) 

8.4088*** 

(2.3386) 

-5.7303*** 

(2.1037) 

-1.7138 

(8.0599) 

6.9297*** 

(1.8283) 

14.0493 

54.1211 

-1.0246 

    

Notes. Table 3 reports the estimation results of estimations of the time-varying Clayton and SJC 

copula models. σ, ϕ and α are the parameters of the time-varying Clayton copula model. σU, ϕU and αU 

are the parameters of the upper tail in the time-varying SJC copula model, and σL, ϕL and αL are the 

parameters of the lower tail in the time-varying SJC copula model. Standard errors of parameters are 

reported in parentheses. ***, ** and * indicate confidence levels at 1%, 5% and 10%, respectively. 

 

4.3． Structural break analysis: results and discussions 

Figures 1-3 present the results of the BP test for the structural breaks of the market 

dependences, measured by Kendall’s τ estimated by the time-varying copula model. The 

Schwarz Criterion is used to determine the number of breakpoints for each paired market. 

    As shown in Figure 1, there are distinct fluctuations in the dynamic dependence 
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relationship between the oil price and the Dow Jones index across the six structural break 

periods. Specifically, we have identified five breakpoints in the paired WTI-US dependence, 

based on the Schwarz Criterion when it is at the lowest value (= −6.1024) at the 5% level of 

significance. These five breakpoints are: 7 October 1993, 5 November 2002, 19 October 2006, 

17 April 2009, and 18 April 2013. During the first four break periods, the dependence 

fluctuates within the range of 0 − 0.11. Subsequently, the dependence fluctuates more 

radically, displaying intensified volatilities over the last two periods. Most notably, during the 

period from 17 April 2009 to 18 April 2013, the fluctuation ranges from 0.05 to 0.50, 

demonstrating that the Financial Crisis of 2017-18 and the Great Recession that follows 

generate a marked effect on the dependence between the oil market and the US stock market. 

The dependence rises to the highest level throughout 2008-2013 and also demonstrates 

fluctuations of a high magnitude. The overall results show that the dependence between the 

crude oil market and the US stock market has grown stronger than ever in the aftermath of the 

global financial crash, providing us with an insight into how sensitively the market 

dependence responds to such extreme financial oscillations. 

 

Figure 1. Structural breaks of dynamic dependence between WTI and the US stock market  

 
Notes. Figure 1 presents the dynamic dependence relationship between WTI and the US stock market. The 

horizontal axis indicates the dates of the structural breaks of dynamic dependence between WTI and the US 

stock market based on the BP test, and the vertical axis indicates Kendall’s τ, which represents the strength of 

dynamic dependence between the two markets.  

 

Figure 2 shows that the dependence between WTI and the Shanghai Composite Index 

fluctuates within the range of 0.005 − 0.06. By the BP test, the Schwarz Criterion is the 
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smallest (-9.6009) when the number of breakpoints is zero, and when the number of 

breakpoints is one, the Schwarz Criterion is the second smallest (-9.5992). There is less 

evidential support for distinctive structural breaks of the dependence relationship between 

WTI and China’s stock market. 

 

 

 

 

Figure 2. Structural breaks of dynamic dependence between WTI and China’s stock market 

 

Notes. Figure 2 presents the dynamic dependence relationship between WTI and China’s stock market. The 

horizontal axis indicates the dates of the structural breaks of dynamic dependence between WTI and China’s 

stock market based on the BP test, and the vertical axis indicates Kendall’s τ, which represents the strength of 

dynamic dependence between the two markets. 

  

The dynamic dependence between the US and China’s stock markets is sustained at the 

lowest level throughout these periods, as depicted in Figure 3. The dependence fluctuates 

within the range of 0 – 0.14 in most observations. By the BP test, the Schwarz Criterion is the 

smallest (-8.8649) when the number of breakpoints is zero. When the number of breakpoints 

is one, the Schwarz Criterion is the second-smallest (-8.8627). These statistics show that the 

dependence relationship is relatively stable between the US and China’s stock markets in 

comparison to WTI and the US stock market. 

 

Figure 3. Structural breaks of dynamic dependence between the US and China’s stock markets 
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Notes. Figure 3 presents the dynamic dependence relationship between the US and China’s stock market. The 

horizontal axis indicates the dates of the structural breaks of dynamic dependence between the US and China’s 

stock market based on the BP test, and the vertical axis indicates Kendall’s τ, which represents the strength of 

dynamic dependence between the two markets.  

 

 

Overall, our results show that the dependence between WTI-US is much more volatile 

than that between WTI-China, while the US-China dependence is fairly stable. As the five 

structural breakpoints identified for WTI-US incorporate transformative events, influencing 

the global economy through these periods, it is to be expected that the stability of the oil and 

stock markets will be significantly affected across all the three paired markets. We thus apply 

the same structural breaks to WTI-China and US-China, so as to facilitate consistent 

comparisons based uniformly on the same periods. Therefore, we adopt the five structural 

breaks of the market dependence to determine the dependence and directionality of spillovers 

between the three paired markets. Based on these five breakpoints, we divide our data into the 

six periods as depicted in Figure 1: P1: 2 May 1991 to 7 October 1993; P2: 7 October 1993 to 

5 November 2002; P3: 5 November 2002 to 19 October 2006; P4:19 October 2006 to 17 April 

2009; P5:17 April 2009 to 18 April 2013; and P6:18 April 2013 to 31 May 2016. 

The foregoing analysis suggests that the generation of these breakpoints has resulted 

from economic stimuli. For example, the outbreak of wars in oil-producing countries affects 

the oil supply, which, in turn, is likely to increase the volatility of stock markets; while the 

shock of a financial crisis can render the latter even more unstable. A political crisis, possibly 
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resulting in a radical change of regime, can have similar, destabilizing effects. As the timeline 

of Figure 1 shows, the extended period of our study incorporates a series of such destabilizing 

events, not the least of which is the Financial Crisis of 2007-08, and we are confident that our 

analysis has identified the significant breakpoints, which correspond to dependence 

volatilities precipitated by changes in response to the political and economic events that occur. 

We will consider the impact of these structural breaks in detail in Sections 4.4 and 4.5.  

So far, we have examined the dynamic dependence of the three paired markets, based on 

the time-varying copula model, over the six structural periods. However, the time-varying 

copula model can deal with only one paired market, without the power to estimate the 

dependence when all the three paired markets interact simultaneously. In order to facilitate an 

examination of the multi-market dependences, we thus employ the vine copula model. 

4.4. Market dependence by vine copula model: results and discussions  

As is known, the vine-copula model has more than 30 different types. We choose the 

best-fitted copula models based on the AIC and BIC criteria. When the upper tail is equal to 

the lower tail, the tail dependence is symmetrical; otherwise, it is asymmetrical, which 

indicates that tail dependences are strong when extreme risk occurs. Based on Kendall’s τ for 

measuring strength of dependence, as in Eq. 11, the following copula models are selected: 

Student-t, Rotated Tawntype 2 (270 degrees), Rotated BB7 (90 degrees) and Rotated BB8 (90 

degrees), for estimating symmetrical tail dependence; and Clayton, Tawntype 1, BB7, BB1, 

and Gumbel, for estimating asymmetrical tail dependence (see Joe et al., 2010; Brechmann et 

al., 2013, for detail). The results of the vine copula model estimations are reported in Table 4.  

Our results demonstrate that the dependences among the three markets undergo dynamic 

shifts through the six periods in response to the political and economic events that occur. In 

the periods of P1, P4 and P5, the crude oil market is identified as the root node, 

demonstrating that it is at the nexus of the dependence relationships between the three paired 

markets during these phases. It appears that the dependences of WTI-US, WTI-China and 

US-China increase from 0.03, -0.04 and 0.00 in P1 to 0.04, 0.04 and 0.02 in P4, and then to 

0.34, 0.13 and 0.02 in P5, respectively, indicating that the dependences among the three 

markets grows stronger over the periods. The dependence manifests itself in the trajectory of 
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a series of significant events that occur within these breaks. In P1, the Gulf War breaks out, 

with an invasion of Kuwait that threatens to restrict world oil supplies. P4 incorporates 

adverse developments following the Iraq War and, in particular, the onset of the Financial 

Crisis of 2007-08, both of which arguably have a significant impact on oil prices (Silvapulle 

et al., 2017; Bhar and Malliaris, 2011). This is consistent with the surging volatilities 

observed in P4 as depicted in Figure 1. In P5, the dependence between WTI-US and 

WTI-China remains at the highest levels (Kendall’s τ = 0.34 and 0.13, respectively). The 

onset of the global financial crisis in 2007-08 produces the most extreme volatility of all 

breakpoints, as recorded in Figure 1, and this is further intensified in P5 by the European 

Debt Crisis and the Great Recession prevailing throughout this period, which threatens to 

destabilize the global financial system and world economy (Kousenidis et al., 2012). 

Notably, the strongest dependence between WTI-China occurs in P5, by which time China 

has become the world’s largest net importer of oil, with its increased demand having a 

significant effect on the oil market (Financial Times, 2015). Moreover, the energy market 

becomes more financialized at this time, with crude oil actively used as a hedging instrument 

in the spot and derivative markets (Bencivenga, 2012). Lin and Tamvakis (2001) find 

significant spillovers between crude oil futures markets between the New York and London 

markets; while Kang et al. (2017) show that spillovers from other commodity markets to the 

oil market, as the volatility receiver, increase during the 2008 Financial Crisis. It is therefore 

plausible to postulate that such crude oil derivatives stimulate spillovers from the oil market, 

and that they, in their turn, influence stock markets during periods of extreme volatility, thus 

strengthening the dependence between the oil and stock markets. Taking the observations 

together, it is reasonable to assert that dependence between the oil and stock markets grows 

stronger over these periods, in response to the escalating gravity of economic conditions. 

    In respect of market dependence at extreme risk, the tail dependence among the three 

paired markets during P1 is symmetrical (Kendall’s τ of upper tail = 0.04, 0.01 and NA; 

Kendall’s τ of lower tail = 0.04, 0.01 and NA for WTI-US, WTI-China and US-China, 

respectively), but turns asymmetrical during P4 (upper tail =0.03, NA and 0.02; lower tail 

=0.03, 0.00 and NA) and during P5 (upper tail = 0.19, 0.10 and NA; lower tail = 0.19, 0.03 
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and 0.04). Most noticeably, the tail dependence in P5 appears to be the strongest of the three 

periods, which is clear evidence showing robust market dependence associated with extreme 

risk in the wake of the Financial Crisis and Great Recession. Overall, these results 

consistently demonstrate that the oil market, whose volatility increases sharply during P4 and 

P5, exerts a dominant impact on the dependence relationships between the three paired 

markets. 

    Our results show that China’s stock market develops into the root node in the period of 

P2, when the Asian financial crisis of 1997 breaks out. Since this crisis has its origin in 

Southeast Asia, the impact on the US market and crude oil market is transmitted ultimately 

through China. It appears, however, that during this phase the dependences between the three 

paired markets, especially WTI-China and US-China, are lower than the dependences in the 

periods when WTI and US stock market are the root nodes. This is arguably because China’s 

stock market is not well integrated with the world economy after a long period of financial 

insularity, limiting its global influence. The dependence between the oil market and China’s 

stock market also remains low. Notwithstanding that China’s demand for oil increases during 

this period (Leung, et al., 2011), its dependence on this source of energy is far lower than that 

of the US, as much of its carbon-based power is derived from its vast coal deposits (Kumar et 

al., 2012). In addition, coal is significantly cheaper than oil (Chakravorty et al., 2008) and has 

its price controlled by the government (Chen and Lv, 2015). These observations are consistent 

with Figures 2 and 3, which depict a lack of volatility, confirming that the dependences 

between China’s stock market with the oil and US stock markets are not robust. The weight of 

evidence suggests that China, as the root node, is a volatility receiver from the oil and US 

stock markets, absorbing global volatilities during this phase.  

    Consistent with the above observations, the tail dependence among the three markets is 

symmetrical (upper tail = 0.00, NA and NA; lower tail = 0.00, NA and NA for US-China, 

WTI-China and WTI-US, respectively). The tail dependence between WTI-US is close to zero 

and there is no tail dependence between US-China and WTI-China. These results further 

support the contention that when the China’s stock market is the root node in P2, the impact 

of extreme risk on dependence between the three paired markets is limited. This is a further 
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illustration that China’s economy had not yet begun to exert a pervasive influence over world 

markets during this phase. 

Further, our results show that the US stock market becomes the root node in the periods 

of P3 and P6. Albeit that the terrorist attack of September 11 takes place at the end of P2, it 

casts a long shadow over P3, generating long-term economic ramifications for the world’s 

financial and oil markets and confirming that the US stock market is at the root of the 

contagion. Charles and Darné (2006), analyzing 10 daily stock market indexes, find 

supportive evidence that the terrorist attack and its aftermath cause large transient and 

permanent shocks to international stock markets. Similarly, the effects of the Afghanistan War 

of 2001, which occurs at the end of P2, arguably projects its influence over P3. Chossudovsky 

(2010) argues that a covert objective is to secure control of the country’s vast, but as yet 

underdeveloped oil, natural gas and mineral resources, besides which this country has a 

strategic position standing at the crossroads of “pipeline routes and major oil and gas 

reserves”. Therefore, it seems plausible that this geographically limited conflict would have 

ramifications much wider than its topographical scope, stimulating market interactions. 

Furthermore, the outbreak of the Iraq War of 2003 delivers an oil shock to the world economy 

that has a significant and far-reaching influence on world demand and supply, the effect of 

which is ultimately transmitted through the US market. In a similar way to Chossudovsky 

(ibid.), Williams (2010) suggests that the conflict is evidence of competition between the great 

powers of the US and China to control global oil resources. Such implicit economic rivalry 

must, of itself, significantly influence crude oil pricing, and this factor is likely to have a 

progressively greater influence as demand for energy from China and other emerging nations 

grows. 

Further, in P6, the world economy begins to emerge from the deepest recession since the 

Great Depression of the 1930s. Nevertheless, although this is characterized as a period of 

modest, economic recovery (United Nations, 2013), extreme volatility persists for the best 

part of a decade, as we observe in Figure 1. Such increasing instability towards the end of the 

period may also have been provoked by two major events: China’s stock market crash of 2016 

and the OPEC decision to cut oil production (The Economic Times, 2016), intensifying 
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market perceptions of risk and hence augmenting interactions among the three markets. This 

is supported by Kendall’s τ (=0.05), which is the strongest at this point, confirming that the 

dependence between the US and China markets strengthens during this period. The US stock 

market once more plays a fundamental role, transmitting information through the medium of 

its powerful, global influence. 

Concerning market dependence at extreme risk, the tail dependence is symmetrical in P3 

(upper tail =0.01, 0.02 and 0.01; lower tail =0.01, 0.02 and 0.01, for WTI-US, US-China and 

WTI-China, respectively), but turns asymmetrical in P6 (upper tail = 0.11, 0.06 and NA; 

lower tail = 0.03, NA and NA, for WTI-US, US-China and WTI-China, respectively). The 

asymmetric tail dependence is attributable to perceived market volatility resulting from the 

uncertainty of the protracted process of global economic recovery, which renders these 

markets increasingly sensitive to the extreme risks that they face.  

In summary, risk volatilities respond with great sensitivity to unfolding political and 

economic crises, with the strongest dependences created between the crude oil market and the 

US market among most of the periods observed. Dependence between the three markets, 

especially between WTI and China and the US and China stock markets, grows stronger and 

the tail dependence turns asymmetrical following the Financial Crisis and the Great Recession, 

presenting a strong case that significant economic and political events such as these play a 

decisive role in the nature of the interactions between the crude oil and world financial 

markets. Furthermore, information transmitted through the US node has a more powerful 

influence on the dependences between the markets than that transmitted through the China 

node. Above all, it is the crude oil market that dominates, standing at the nexus of all 

dependences, at most times, and transmitting economic shocks, directly and indirectly, that 

generate the greatest volatilities observed between the markets. 

 

Table 4. Estimation results of the vine copula model for the three paired markets during the six 

structural break periods 

 Pair-copula model Parameter1 Parameter2 Kendall’s τ Upper tail Lower tail 

P1(2 May1991-7 Oct 1993) (node: WTI)  

WTI-US 

 

Student-t 0.05 

(0.05) 

5.86 *** 

(1.73) 

 0.03 

 

0.04 

 

0.04 
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WTI-China Student-t -0.06 

(0.05) 

7.49 

(2.54) 

-0.04 0.01 0.01 

US-China|WTI Rotated Tawn type 

2 (270 degrees) 

-20 

(NA) 

0.00 

(0.00) 

0.00 NA NA 

       

P2 (7 Oct 1993-5 Nov 2002) (node: China) 

US-China Rotated BB7(90 

degrees)  

-1.02*** 

(0.01) 

-0.03 

(0.02) 

-0.03 NA NA 

WTI-China Rotated BB8(90 

degrees)  

-1.13 *** 

(0.08) 

-0.91*** 

(0.10) 

-0.04 NA NA 

WTI-US|China 

 

Student-t 

 

 

-0.02 

(0.02) 

16.42*** 

(5.73) 

-0.01 

 

0.00 

 

0.00 

 

P3 (5 Nov 2002-19 Oct 2006) (node: US) 

WTI-US 

 

Student-t 

 

-0.14*** 

(0.03) 

8.54*** 

(2.80) 

-0.09 

 

0.01 

 

0.01 

 

US-China 

 

Student-t 

 

0.05 

(0.04) 

7.81*** 

(2.75) 

0.03 

 

0.02 

 

0.02 

 

WTI-China|US 

 

Student-t 

 

0.03 

(0.04) 

8.56*** 

(3.02) 

0.02 

 

0.01 

 

0.01 

 

       

P4 (19 Oct. 2006-17 Apr 2009) (node: WTI) 

WTI-US 

 

Student-t 

 

0.07* 

(0.04) 

6.95*** 

(2.2) 

0.04 

 

0.03 

 

0.03 

 

WTI-China 

 

Clayton 

 

0.09** 

(0.04) 

-0.02*** 

(0.00) 

0.04 

 

NA  0.00 

 

US-China|WTI 

 

Tawn type 1  

 

4.61* 

(2.37) 

5.56*** 

(1.14) 

0.02 

 

0.02 

 

NA  

 

P5 (17 Apr2009-18 Apr2013) (node: WTI) 

WTI-US 

 

Student-t 

 

0.51*** 

(0.03) 

0.2*** 

(0.05) 

0.34 

 

0.19 

 

0.19 

 

WTI-China 

 

BB7 

 

1.08*** 

(0.04) 

NA  0.13 

 

0.10 

 

0.03 

 

US-China|WTI 

 

Survival Joe 

 

1.03*** 

(0.03) 

 

 

0.02 

 

NA 

 

0.04 

 

       

P6 (18 Apr2013-31 May 2016) (node: US) 

WTI-US 

 

BB1 

 

0.18*** 

(0.07) 

1.09*** 

(0.04) 

0.16 

 

0.11 

 

0.03 

 

US-China Gumbel 1.05*** 

(0.03) 

NA 0.05 0.06 NA 
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WTI-China|US Rotated Tawn type 

2 (270 degrees) 

1.94* 

(0.99) 

0.01*** 

(0.00) 

-0.01 NA NA 

Notes. Table 4 reports the estimation results of the vine copula model for the three paired markets, WTI-US, WTI-China and 

US-China, during the six structural break periods based on Equation 1l. Parameter 1 and Parameter 2 are two parameters used 

to determine the pair-copula model. The conditional paired markets are represented by a sign of | followed by WTI, US and 

China to represent the oil market, US stock market and China’s stock market serving as a root node. For example, 

US-China|WTI indicates the dependence between US and China stock markets when the oil market is the root node. The types 

of copula models selected for the three paired markets, based on AIC and BIC Criteria, are presented in the second column, 

headed “Pair-copula model’.  The values in the columns headed ‘Upper tail’ and ‘Lower tails’ represent tail dependence by 

Kendall’s τ; and NA in the column indicates that the value of tail dependence is non-existent. The values in parentheses are the 

standard errors. ***, ** and * indicate confidence levels at 1%, 5% and 10%, respectively. 

 

    When the dependence that exists among markets grows stronger, significant risks are 

more likely to be transmitted from one market to another. We consider the nature of the 

transmission in the next section.  

4.5. Volatility spillovers by VAR(1)-BEKK-GARCH (1, 1) model: results and discussions 

We now consider volatility spillovers between the three markets during the six structural 

break periods. Table 5 reports the results of the conditional variance and residual, obtained 

from estimation of the VAR(1)-BEKK-GARCH (1, 1) model.  

Table 5. Estimation results of the VAR-BEKK-GARCH model for the three paired markets 

during the six structural break periods 

 P1 P2 P3 P4 P5 P6 

Matrix C 

C(1,1) 

 

0.0046*** 

 

-0.0012*** 

 

-0.0010*** 

 

0.0006 

 

0.0017*** 

 

0.0026*** 

C(2,1) 0.0001 0.0002 -0.0013** 0.0096*** -0.0005 0.0003 

C(2,2) -0.0000 0.0030*** 0.0000 0.0000 0.0000 0.0001 

C(3,1) 0.0024 0.0016** -0.0046*** -0.0047*** 0.0026* 0.0000 

C(3,2) 0.0000 0.0001 0.0000 -0.0000 0.0003 -0.0004 

C(3,3) 

 

Matrix D  

D(1,1) 

-0.0000 

 

 

0.0380 

0.0012*** 

 

 

0.2577*** 

0.0000 

 

 

0.2061*** 

-0.0000 

 

 

0.2391*** 

0.0045*** 

 

 

0.3336*** 

0.0000 

 

 

0.4432*** 

D(1,2) 

D(1,3) 

D(2,1) 

D(2,2) 

D(2,3) 

D(3,1) 

-0.0244 

0.0523 

0.0132 

1.1071*** 

0.0435** 

0.0713** 

-0.0218 

-0.1550*** 

0.0065 

0.4455*** 

-0.0252** 

-0.0064 

-0.0539 

-0.3473*** 

0.0371** 

0.1732*** 

0.0898* 

0.0252** 

-0.1862*** 

-0.1786** 

0.0009 

0.1987*** 

-0.0791** 

0.0612*** 

-0.0122*** 

-0.0566 

-0.0198 

-0.1075*** 

-0.1006* 

0.0225 

0.1759*** 

0.0791 

-0.0455 

0.1746*** 

0.1165*** 

0.0132 
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D(3,2) 

D(3,3) 

 

Matrix A 

A (1,1) 

A (1,2) 

A (1,3) 

A (2,1) 

A (2,2) 

A (2,3) 

A (3,1) 

A (3,2) 

A (3,3) 

-0.1115*** 

0.3375*** 

 

 

-0.2205 

-0.1032* 

1.8150*** 

-0.0015 

-0.7341*** 

0.0009 

-0.3489*** 

-0.0685 

-0.1993 

-0.0203** 

0.1156*** 

 

 

0.9622*** 

0.0046 

0.0447*** 

-0.0030** 

0.9130*** 

0.0069** 

0.0027 

0.0025 

0.9874*** 

-0.0647*** 

0.0643** 

 

 

0.9334*** 

-0.3460* 

0.0940 

-0.1357** 

-0.9281*** 

-0.3317 

-0.0322*** 

-0.1040 

0.9545*** 

0.0939*** 

0.1765*** 

 

 

0.9666*** 

0.0333 

0.1189*** 

-0.0117 

0.8895*** 

0.1069*** 

-0.0227*** 

-0.0229** 

0.9468*** 

0.0237 

0.2833*** 

 

 

0.9490*** 

0.0974 

0.1120** 

-0.1077** 

-1.0164*** 

-0.2305 

-0.0145 

0.1627* 

0.9183*** 

-0.0898*** 

0.1911*** 

 

 

0.8273*** 

-0.1021 

-0.0342*** 

0.0159*** 

0.9778*** 

-0.0373*** 

0.0010*** 

0.0293*** 

0.9791*** 

Notes. Table 5 reports the estimation results of the conditional variance for the three paired markets, WTI-US, 

WTI-China and US-China, during the six structural break periods based on the VAR(1)-BEKK-GARCH (1, 1) 

model. The numbers, 1, 2 and 3, in the parentheses represent the US stock market, China’s stock market and oil 

market, respectively. A, D and C are the parameter matrix of residual, conditional and constant as specified in 

Equation 14, respectively. 
***

,
 **

 and 
*
indicate confidence levels at 1%, 5% and 10%, respectively. 

 

    In Table 5, D (1, 2) indicates that the conditional variance of China’s stock market affects 

the US stock market. A (1, 2) indicates that the residual of China’s stock market affects the US 

stock market. When a spillover occurs, it is either unidirectional from market i to market j, 

and vice versa; or bidirectional between market i and market j. The rejection of the null 

hypothesis for two tests, i.e., A(i, j)=D(i, j)=0, and A(j, i)=D(j, i)=0, indicates that the 

spillover between market i and market j is bidirectional. The rejection of the null hypothesis 

of either of the two tests indicates that the spillover is unidirectional. The results show that the 

coefficients of the conditional variance and residual during the six periods are significant, at 

most times, at 1%, 5% and 10% significance levels, which indicates that the spillovers 

between the three paired markets occur. But, the direction of the spillovers will be determined 

by the Wald test. The results of the Wald test are shown in Table 6. 

 

Table 6. Wald test of volatility spillovers between the three paired markets during the six 

structural break periods 

  WTI US China 

P1(2 May1991-7 Oct 1993) (node: WTI)    

Spillover from WTI to   122.9002(0.0000) *** 2.7253(0.0655) * 

Spillover from US to  30.4986 (0.0000) ***  1.0628(0.3455) 
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Spillover from China to 8.8154(0.0001) *** 1.4398(0.2370)  

    

P2 (7 Oct 1993-5 Nov 2002) (node: China) 

Spillover from WTI to  

  

16.1981(0.0000) *** 

 

2.8418(0.0583) * 

Spillover from US to 0.7020(0.4956)  2.3435(0.0960) * 

Spillover from China to 

 

P3 (5 Nov 2002-19 Oct 2006) (node: US) 

Spillover from WTI to  

Spillover from US to  

Spillover from China to 

 

P4 (19 Oct 2006-17 Apr 2009) (node: WTI) 

Spillover from WTI to  

Spillover from US to  

Spillover from China to 

 

P5 (17 Apr 2009-18 Apr 2013) (node: WTI) 

Spillover from WTI to  

Spillover from US to  

Spillover from China to 

 

P6 (18 Apr 2013-31 May 2016) (node: US) 

Spillover from WTI to  

Spillover from US to  

Spillover from China to 

2.2317 (0.1073) 

 

 

 

6.8859(0.0010) *** 

5.2036(0.0055) *** 

 

 

 

13.9925(0.0000) *** 

5.3764(0.0046) *** 

 

 

 

0.8348(0.4339) 

1.8545(0.1565) 

 

 

 

5.2570(0.0052) *** 

23.7262(0.0000)*** 

0.7809(0.4580) 

 

 

9.5308(0.0000) *** 

 

2.2922(0.1010) 

 

 

9.9709(0.0000) *** 

 

3.5492(0.0287) ** 

 

 

3.8891(0.0205) ** 

 

1.1093(0.3298) 

 

 

0.5035(0.6044) 

 

6.1718(0.0021) *** 

 

 

 

1.7066(0.1815) 

3.0809(0.0459) ** 

 

 

 

9.5660(0.0000) *** 

1.1587(0.3139) 

 

 

 

2.5700(0.0765)* 

2.9424(0.0527)* 

 

 

 

11.0374(0.0000)*** 

3.7520(0.0235) ** 

Notes. Table 6 reports the results of Wald test for volatility spillovers between the three paired markets, WTI-US, 

WTI-China and US-China, during the six structural break periods. The statistics reported are standard error. P 

values are in the parentheses. The null hypothesis of the Wald test is that there is no spillover effect. ***, ** and 
*indicate confidence levels at 1%, 5% and 10%, respectively. 

Our results demonstrate that during the P1 period (root node: WTI), the spillovers 

between WTI and the US stock market are bidirectional (standard error=30.4986, P=0.0000; 

122.9002, P=0.0000), as they are between WTI and China’s stock market (2.7253, P=0.0655; 

8.8154, P=0.0001). The oil market, as the root node, performs its transmitting role in this 

multi-market dependence. During the P1 period, the Gulf War breaks out, generating a 

substantial shock to the supply of, and demand for, crude oil, so that aggregated oil shocks 

subsequently have a destabilizing impact on global markets, as suggested by Barsky and 

Kilian (2004). Our results are consistent with empirical evidence that the volatility of the oil 

price affects stock returns, with risk from the oil market transmitted to the stock market (Park 
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and Ratti, 2008; Jammazi, 2014). Kilian and Park (2009) provide further evidence that the oil 

price has a significant effect on the US stock price. Further, our results show that the oil 

market is also affected by stock market movements, which is supported by Malik and 

Hammoudeh (2007), who find significant spillovers from the stock market to the oil market. 

However, there is no evidence to suggest the incidence of spillovers between the US and 

China’s stock markets. This is arguably because the two markets demonstrate little 

interconnectedness during this phase, as evidenced in Table 4. China’s stock market is 

established only at the end of 1991, after a long period of economic isolation. Since its trading 

and securities regulatory systems are at a formative stage, with quoted companies extensively 

controlled by the state or state-appointed nominees (Liu, et al., 2016; Liu, et al., 2018), inward 

investment and interactions with international markets are limited. Overall, the evidence 

suggests that the crude oil market takes a central position in the global economy during this 

period. 

During the P2 period (root node: China), risk volatilities spill over from the oil market to 

the two stock markets, and from the US stock market to China’s stock market. Such risk 

volatilities are, debatably, stimulated first by the attack of September 11
th

, and next by the 

outbreak of the Afghanistan War in October. It is evident that the terrorist attack causes the 

Dow Jones index to fall over 600 points, deepening the 2001 recession (the balance, 2018), 

and also the oil price by 35% (Oilprice.com, 2009). These adversities are further exacerbated 

by the subsequent US attack on Afghanistan in October 2001. Consequential turbulence in the 

oil market spills over into both the US (16.1981, P=0.0000) and China (2.8418, P=0.0583) 

stock markets, providing further evidence that the oil market exerts an extensive, fundamental 

influence on financial trading. Resulting from the trajectories of spillovers between these 

markets, the volatility of the US stock market is transmitted to China’s stock market (2.3435, 

P=0.0960), indicating that the movements of the former have begun to have an effect on 

China’s market movements. There is no spillover, however, from China’s stock market to the 

oil market, nor to the US stock market. This is further evidence that China’s stock market has 

not fully integrated into the world economy and developed a global influence. Thus, when the 

Asian financial crisis struck in 1998, risks from the oil market and international stock markets 
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were far less likely to be deflected or repelled by China’s stock market; instead, risks from the 

oil and international stock markets were more likely to be transmitted to China’s stock market, 

which acted as a volatility receiver rather than transmitter, as explained in 4.4 above.  

During the P3 period (root node: US stock market), spillovers between the oil market and 

US stock market are bidirectional (6.8859, P=0.0010; 9.5308, P=0.0000). But the risk spills 

only from the US stock market to China’s stock market (3.0809, P=0.0459), and from China’s 

stock market to the oil market (5.2036, P=0.0055). During this period, the Iraq War breaks out, 

increasing the markets’ perception of risk, and exerting an immediate spillover effect onto the 

US stock market; and, as is also likely, onto other sectors of the global economy. Moreover, 

the September 11
th
 attack at the end of the P2 period causes a moderate recession in the US 

that continues into P3, depressing its demand for crude oil and having an inhibiting effect on 

China’s stock market and other markets besides. Mehrara (2007) finds that the oil and US 

stock markets act, respectively, as originators and transmitters of risk volatility, fundamentally 

affecting the world’s economy and leading it into both contraction and growth. Our P3 

analysis of how risk volatilities stem from successive crises, spilling over from the oil market 

to the US and China stock markets, as well as into other world markets, tends to support this 

thesis. In addition, our results show that risk is transmitted from China’s stock market to the 

oil market during the P3 period. With China’s inexorable ascent in the world economy, its 

slowly burgeoning stock market is beginning to exert an influence and leverage over the 

global oil market. Simultaneously, the special adjustment mechanism for oil pricing in China, 

first adopted during this period, may have also affected aggregate demand and supply in the 

international oil market (Chen and Lv, 2015), influencing international oil pricing and 

investment portfolios (Chai et al., 2011). 

During the P4 period (root node: WTI), the spillovers between the oil market and the US 

stock market are bidirectional (13.9925, P=0.0000; 9.9709, P=0.0000), the same as between 

the oil market and China’s stock market (9.5660, P=0.0000; 5.3764, P=0.0046). In 2007, 

when the Financial Crisis starts in the US, the risks stemming from one of the greatest fiscal 

catastrophes in history are rapidly transmitted from one market to the next, causing a series of 

market crashes commencing with a massive fall in the Dow-Jones index (the Balance, 2018), 
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provoking a global economic recession and depressing the aggregate demand for crude oil, 

which, in turn, WTI promptly transmits to the US and China stock markets. Wen et al (2012) 

examine the dependence between China’s stock market and the oil market and find that it rises 

significantly during the crisis, supporting our postulation that spillovers spread swiftly to 

China, because of its increasing integration with external markets. It is worth noting that risk 

unidirectionally spills over from China’s stock market to the US stock market (3.5492, 

P=0.0287), suggesting that the US stock market is extremely sensitive during the crisis period. 

The US stock market, undermined by its home-grown financial crisis, is assailed by the risk 

from other markets.  

During the P5 period (root node: WTI), the oil market generates a unidirectional 

spillover effect on the US and China’s stock markets (2.5700, P=0.0765; 3.8891, P=0.0205). 

This is clear evidence that oil exerts a decisive influence in shaping stock market movements, 

acting as a point of entry for spillovers when the world economy has plunged into the 

recession. This is consistent with Table 4, which shows the strongest dependence between 

WTI-US and WTI-China, with the highest Kendall’s τ at 0.34 and 0.13 of all the periods 

observed. Kang et al (2015) find that the oil market affects stock markets more significantly 

after the Financial Crisis of 2007-08 than before. Awartani and Maghyereh (2013) also assert 

that the oil market plays a significant role in the information transmission mechanism after the 

crisis, spreading risk to stock markets. Furthermore, the risk in the US stock market is 

transmitted to China’s stock market unidirectionally (2.9424, P=0.0527). The US stock market 

has become extremely volatile in the aftermath of its domestic financial catastrophe, and this 

volatility quickly spills over into other markets, China’s included, on an unprecedented scale. 

During the P6 period (when the root note is the US), the volatilities spill from the US 

stock market to the oil market unidirectionally (5.2570, P=0.0052), while the spillovers 

between WTI-China (11.0374, P=0.0000; 23.7262, P=0.0000) and US-China (3.7520, 

P=0.0235; 6.1718, P=0.0021) are bidirectional. These observations are convincing evidence to 

indicate that the volatility of stock markets dominates the global economy during the 

protracted period of economic recovery, with the US being the nexus of transmission. The US 

and China stock markets exert a powerful influence during this period, given that they are the 
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world’s two biggest economies. Following the crisis, the US stimulates its own economy 

despite tighter global fiscal conditions, supporting the financial sector in its efforts to weather 

the harsh economic climate and begin modest regeneration. China, as a rising economic 

power, and by dint of its continuing growth, helps to drive the revival of the global economy. 

Moreover, the dependence between the two stock markets has grown stronger than ever, as 

evidenced in Table 4 (Kendall’s τ =0.05), so that the risks inherent within these two markets 

will, thus, have an escalating effect on the crude oil market (2.8418, P=0.0583). China’s 

interactions with the oil market and US market signifies that its economy is, by this period, 

more fully integrated into the world economy, and that economic globalization, and the degree 

of China’s economic expansion, have helped to determine the nature of market risk 

transmission. 

Overall, our analyses demonstrate that the risk spillovers prevailing in each period 

change in step with dynamic dependences and interactions between the markets. These 

changes respond to the influence from major economic and political events, causing market 

uncertainty and volatilities to spread and intensify. Most significantly, though, our analyses 

appear to detect an increasing strength in the influence of China on the world’s economy, with 

its growing economic power appearing to strengthen the financial signals that it transmits. As 

we have already noted in our Introduction, China’s integration into global trading and the 

increasing strength of its stock market suggest that it is beginning to influence world oil and 

stock markets. 

 

5. Conclusions  

Our study, for the first time, integrates the copula models and the multivariate GARCH model 

to analyze the dependence and spillovers between the oil market (WTI) and the US and China 

stock markets over the extended period of 1991-2016. We first analyze the dynamic 

dependence relationship between the three paired markets, i.e., WTI-US, WTI-China and 

US-China, using the time-varying copula model. We further conduct an analysis of structural 

breaks of market dependence between the paired markets, and incorporate the structural 

breaks into an analysis of the market dependences by applying the vine copula model, and 
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determine the direction of risk transmission between the markets by applying the trivariate 

VAR-BEKK-GARCH model. We draw three conclusions.  

    First, dependences between the oil market and the stock markets are shaped by the 

impact of political and economic manifestations, which have a decisive effect on the nature of 

the interactions between them. This is demonstrated by the evidence that their dependences 

grow stronger during and after the Financial Crisis of 2007-08, and the tail dependence 

simultaneously turns asymmetric. Different markets act as the root nodes across the temporal 

subdivisions defined by the structural breaks, receiving and transmitting risk volatilities from 

and to the other markets and wielding varying degrees of influence over the market 

dependences. The oil market, in particular, stands at the nexus of the dependences, acting 

upon them to stimulate rapid and continual fluctuations. This effect manifests itself most 

acutely in the aftermath of the Financial Crisis, demonstrating the increasing interdependence 

of the oil and financial markets. Second, distinctive risk volatilities spill over between the 

markets, with varying directionality, activated by a series of significant economic and political 

events across the six structural break periods. The trajectories of these spillovers change 

direction across the temporal subdivisions, shaped by the strength of market dependence and 

interactions, which are, in their turn, modified by major changes of a political or economic 

nature. Crude oil is the strongest transmitter of all three, shaping the direction of volatilities 

between the markets. Third, and perhaps most interestingly of all, our analysis reveals that 

world economic power may now be in the midst of a transformation. The massive 

destabilization provoked by the Financial Crisis comes at the same time as China’s 

burgeoning economic power and massive increase in domestic energy consumption (caused, 

in large part, by a growth in the private motoring sector), and development of trade initiatives 

such as One-Belt-One-Road initiative initiated in 2013 (Du and Zhang, 2018), have 

transformed it into the largest oil importer in the world (Financial Times, 2015). The results of 

our study suggest that China has now become a transmitter of volatility spillovers itself and a 

significant participant in the sphere of globalization. Our analysis thus provides evidence of 

the growing power of China’s economy in relation to the US, suggesting the advent of global 

economic rebalancing.  
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Our research will help to improve regulation and practice. From the perspective of policy, 

our estimation procedure will enable governments and regulators to analyze and predict the 

formerly unforeseeable consequences of dynamic market interactions, facilitating the 

development of long-term policies to achieve consistent and sustainable growth. This is 

particularly important at a time when Middle Eastern conflicts, economic and financial market 

turmoil, and problematical attempts to ameliorate the effects of global warming are impacting 

unpredictably on the trajectories of world oil prices and financial markets. Moreover, the 

evaluation procedure that we have developed can be applied to examine similar phenomena in 

other countries and contexts and in different combinations. From the perspective of practice, 

our research provides an analytical procedure for investors and market-makers alike, enabling 

them to optimize their portfolios and minimize investment risk, especially during a period of 

intensifying global volatility. More importantly, our identification of China as an increasingly 

powerful transmitter of market information offers analysts an insight into similar phenomena 

in respect of other emerging economies. 
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